Functionalities for analyzing high-dimensional and longitudinal biomarker data to facilitate precision medicine, using a joint model of Bayesian sparse factor analysis and dependent Gaussian processes. This paper illustrates the method in detail: J Cai, RJB Goudie, C Starr, BDM Tom (2023) <doi:10.48550/arXiv.2307.02781>.
Version: | 1.0.0 |
Depends: | R (≥ 2.10) |
Imports: | GPFDA, Rcpp, factor.switching, mvtnorm, combinat, coda, corrplot, pheatmap, stats |
LinkingTo: | Rcpp, RcppArmadillo |
Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) |
Published: | 2024-05-28 |
DOI: | 10.32614/CRAN.package.DGP4LCF |
Author: | Jiachen Cai [aut, cre] |
Maintainer: | Jiachen Cai <jiachen.cai at mrc-bsu.cam.ac.uk> |
License: | MIT + file LICENSE |
NeedsCompilation: | yes |
CRAN checks: | DGP4LCF results |
Reference manual: | DGP4LCF.pdf |
Vignettes: |
An Example of Irregular Data Analysis An Example of Regular Data Analysis |
Package source: | DGP4LCF_1.0.0.tar.gz |
Windows binaries: | r-devel: DGP4LCF_1.0.0.zip, r-release: DGP4LCF_1.0.0.zip, r-oldrel: DGP4LCF_1.0.0.zip |
macOS binaries: | r-release (arm64): DGP4LCF_1.0.0.tgz, r-oldrel (arm64): DGP4LCF_1.0.0.tgz, r-release (x86_64): DGP4LCF_1.0.0.tgz, r-oldrel (x86_64): DGP4LCF_1.0.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=DGP4LCF to link to this page.