CITMIC User Guide

Xilong Zhao, Junwei Han

2024-09-16

Introduce

This vignette illustrates how to easily use the CITMIC package. Here, we present a network-based computational approach, CTMIC, estimate cell infiltration by integrating gene transcriptomic data and individualized cell crosstalk network.

This network-based method major parts:


##Example calculate cell infiltration.

The function CITMIC is used to calculate the Cell infiltration (lnScore). This function requires users to input the gene expression matrix, the weighted specifies whether to create a weighted graph for the cell crosstalk network, the base for the standardized log base of data, the damping is the restart probability of random walk and the cl.cores is a number of CPU cores applied to this task. cell.type preset the relevant cell type (e.g. if the solid tumor tissue does not contain ‘HSC’, it is better to remove it when we preset it). We recommend using as input the gene expression matrix normalized by log2(fpkm+1). An example data is stored in the package.

The commands are as follows:

#Detect the Number of CPU Cores (Select the number of cl.cores to apply to CITMIC based on detectCores())
library(parallel)
library(igraph)
## Warning: package 'igraph' was built under R version 4.2.3
## 
## Attaching package: 'igraph'
## The following objects are masked from 'package:stats':
## 
##     decompose, spectrum
## The following object is masked from 'package:base':
## 
##     union
library(CITMIC)
detectCores()
## [1] 12
# Obtain the example data
GEP<-GetData_CITMIC("GEP")
# Calculate the Cell infiltration(lnScore)
lnScore<-CITMIC(GEP,weighted = TRUE,base = 10,damping=0.90,cl.cores=1,cell.type=NULL)
head(lnScore)
##                        TCGA.EE.A2GJ.06A TCGA.EE.A2GI.06A TCGA.WE.A8ZM.06A
## Activated B cell              0.4155478        0.5319714        0.1549675
## Activated CD4+ T cells        0.6105840        0.6376140        0.3149371
## Activated CD8+ T cells        0.3987288        0.4678214        0.1503589
## aDCs                          0.9157299        0.9146414        0.8568350
## Adipocytes                    0.2190414        0.3170802        0.4874105
## Angiogenesis                  0.5762410        0.5273987        0.6974899
##                        TCGA.DA.A1IA.06A TCGA.D3.A51H.06A
## Activated B cell              0.1314579        0.7365269
## Activated CD4+ T cells        0.4463615        0.7212100
## Activated CD8+ T cells        0.2170825        0.5600082
## aDCs                          0.9070054        0.9060217
## Adipocytes                    0.3171054        0.2778043
## Angiogenesis                  0.5255911        0.5043280

Refenrence

1. Bindea, G., et al., Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity, 2013. 39(4): p. 782-95. 2. Charoentong, P., et al., Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep, 2017. 18(1): p. 248-262. 3. Danaher, P., et al., Gene expression markers of Tumor Infiltrating Leukocytes. J Immunother Cancer, 2017. 5: p. 18. 4. Davoli, T., et al., Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science, 2017. 355(6322). 5. He, Y., et al., Classification of triple-negative breast cancers based on Immunogenomic profiling. J Exp Clin Cancer Res, 2018. 37(1): p. 327. 6. Rooney, M.S., et al., Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell, 2015. 160(1-2): p. 48-61. 7. Tirosh, I., et al., Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science, 2016. 352(6282): p. 189-96. 8. Becht, E., et al., Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol, 2016. 17(1): p. 218. 9. Racle, J., et al., Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data. Elife, 2017. 6. 10. Miao, Y.R., et al., ImmuCellAI: A Unique Method for Comprehensive T-Cell Subsets Abundance Prediction and its Application in Cancer Immunotherapy. Adv Sci (Weinh), 2020. 7(7): p. 1902880. 11. Jiang, P., et al., Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med, 2018. 24(10): p. 1550-1558. 12. Aran, D., Z. Hu, and A.J. Butte, xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol, 2017. 18(1): p. 220.