In the context of paid research studies and clinical trials, budget considerations and patient sampling from available populations are subject to inherent constraints. CDsampling integrates optimal design theories within the framework of constrained sampling.
This package offers the possibility to find both D-optimal approximate and exact allocations for sampling with or without constraints.
Additionally, it provides functions to find constrained uniform sampling as a robust sampling strategy with limited model information.
It also provides tool for computation of Fisher information matrix of the generalized linear models (GLMs) including regular linear regression model and the multinomial logistic models (MLMs).
Two datasets are embedded in the package for application examples
Reference: Constrained D-optimal Design for Paid Research Study (2024+), Statistica Sinica, to appear, DOI: 10.5705/ss.202022.0414, Yifei Huang, Liping Tong, and Jie Yang
Consider a research study with a simple logistic regression model \[\log(\frac{\mu_i}{1-\mu_i}) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}\] where \(\mu_i = E(Y_i\mid {\mathbf x}_i)\), \({\mathbf x}_i = (x_{i1}, x_{i2})^\top \in \{(-1, -1), (-1, +1), (+1, -1)\}\) and parameters \(\boldsymbol \beta = (\beta_0, \beta_1, \beta_2) = (0.5, 0.5, 0.5)\). The approximate allocation to the three design points is \(\mathbf w = (1/3,1/3,1/3)^\top\)
To calculate Fisher information matrix of the design with GLM, we can use F_func_GLM in the package.
beta = c(0.5, 0.5, 0.5)
X = matrix(data=c(1,-1,-1,1,-1,1,1,1,-1), byrow=TRUE, nrow=3)
w = c(1/3,1/3,1/3) #approximate allocation
F_func_GLM(w=w, beta=beta, X=X, link='logit')
#> [,1] [,2] [,3]
#> [1,] 0.23500371 -0.07833457 -0.07833457
#> [2,] -0.07833457 0.23500371 -0.07833457
#> [3,] -0.07833457 -0.07833457 0.23500371
Consider a research study with cumulative npo multinomial logit model with \(J=5\) response levels with covariates \((x_{i1}, x_{i2})=\{(1,0),(2,0),(3,0), (4,0),(1,1),(2,1),(3,1),(4,1)\}\). The model can be written as:\[\log(\frac{\pi_{i1}}{\pi_{i2}+\dots+\pi_{i5}}) = \beta_{11}+\beta_{12}x_{i1}+\beta_{13}x_{i2}\] \[\log(\frac{\pi_{i1}+\pi_{i2}}{\pi_{i3}+\pi_{i4}+\pi_{i5}}) = \beta_{21}+\beta_{22}x_{i1}+\beta_{23}x_{i2}\] \[\log(\frac{\pi_{i1}+\pi_{i2}+\pi_{i3}}{\pi_{i4}+\pi_{i5}}) = \beta_{31}+\beta_{32}x_{i1}+\beta_{33}x_{i2}\] \[\log(\frac{\pi_{i1}+\dots+\pi_{i4}}{\pi_{i5}}) = \beta_{41}+\beta_{42}x_{i1}+\beta_{43}x_{i2}\] where \(i=1,\dots,8\), we assume the parameters \(\boldsymbol \beta = (\beta_{11}, \beta_{12}, \beta_{13}, \beta_{21}, \beta_{22}, \beta_{23}, \beta_{31}, \beta_{32}, \beta_{33}, \beta_{41}, \beta_{42}, \beta_{43})^\top = (-4.047, -0.131, 4.214, -2.225, -0.376,\) \(3.519, -0.302, -0.237, 2.420, 1.386, -0.120, 1.284)^\top\). The approximate allocation for the eight design points is \(\mathbf w = (1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8)^\top\).
To calculate the Fisher information matrix with MLM, we can use the F_func_MLM in the package.
J=5; p=12; m=8;
beta = c(-4.047, -0.131, 4.214, -2.225, -0.376, 3.519, -0.302,
-0.237, 2.420, 1.386, -0.120, 1.284)
Xi=rep(0,J*p*m)
dim(Xi)=c(J,p,m)
Xi[,,1] = rbind(c( 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,2] = rbind(c( 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,3] = rbind(c( 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,4] = rbind(c( 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,5] = rbind(c( 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,6] = rbind(c( 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,7] = rbind(c( 1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,8] = rbind(c( 1, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 1),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
alloc = rep(1/8,m) #approximate allocation
F_func_MLM(w=alloc, beta=beta, X=Xi, link='cumulative')
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0.44505694 1.3791556 0.43609135 -0.37247296 -1.2125205 -0.36379349
#> [2,] 1.37915564 4.7841093 1.35694145 -1.21252053 -4.3143634 -1.19085831
#> [3,] 0.43609135 1.3569415 0.43609135 -0.36379349 -1.1908583 -0.36379349
#> [4,] -0.37247296 -1.2125205 -0.36379349 0.51192600 1.5517741 0.48018678
#> [5,] -1.21252053 -4.3143634 -1.19085831 1.55177413 5.3119391 1.48241981
#> [6,] -0.36379349 -1.1908583 -0.36379349 0.48018678 1.4824198 0.48018678
#> [7,] 0.00000000 0.0000000 0.00000000 0.00000000 0.0000000 0.00000000
#> [8,] 0.00000000 0.0000000 0.00000000 0.00000000 0.0000000 0.00000000
#> [9,] 0.00000000 0.0000000 0.00000000 0.00000000 0.0000000 0.00000000
#> [10,] -0.09154268 -0.2202762 -0.07471168 -0.10435894 -0.2539939 -0.06194131
#> [11,] -0.22027625 -0.6432399 -0.18445802 -0.25399393 -0.7484274 -0.15305771
#> [12,] -0.07471168 -0.1844580 -0.07471168 -0.06194131 -0.1530577 -0.06194131
#> [,7] [,8] [,9] [,10] [,11] [,12]
#> [1,] 0.00000000 0.0000000 0.00000000 0.00000000 0.0000000 0.00000000
#> [2,] 0.00000000 0.0000000 0.00000000 0.00000000 0.0000000 0.00000000
#> [3,] 0.00000000 0.0000000 0.00000000 0.00000000 0.0000000 0.00000000
#> [4,] -0.09154268 -0.2202762 -0.07471168 0.00000000 0.0000000 0.00000000
#> [5,] -0.22027625 -0.6432399 -0.18445802 0.00000000 0.0000000 0.00000000
#> [6,] -0.07471168 -0.1844580 -0.07471168 0.00000000 0.0000000 0.00000000
#> [7,] 0.29320484 0.7197889 0.16205254 -0.10435894 -0.2539939 -0.06194131
#> [8,] 0.71978889 2.1331260 0.41294396 -0.25399393 -0.7484274 -0.15305771
#> [9,] 0.16205254 0.4129440 0.16205254 -0.06194131 -0.1530577 -0.06194131
#> [10,] 0.00000000 0.0000000 0.00000000 0.17861575 0.4528762 0.06925715
#> [11,] 0.00000000 0.0000000 0.00000000 0.45287619 1.3718019 0.17395849
#> [12,] 0.00000000 0.0000000 0.00000000 0.06925715 0.1739585 0.06925715
trial_data is a simulated dataset that contains \(N=500\) volunteers gender, age, and final efficacy information. The details as below: gender is coded as \(0\) for female and \(1\) for male. Age group is coded as both \(age\_1 = 0\) and \(age\_2 = 0\) for ages \(18\sim25\), \(age\_1 = 1\) for ages \(26\sim64\), and \(age\_2 = 1\) for ages \(65\) and above. The number of design points \(m=6\), that is, the number of combinations of gender and age groups \((x_{gender\_i}, x_{age\_1i}, x_{age\_2i})\) corresponds to \((0,0,0)\), \((0,1,0)\), \((0,0,1)\), \((1,0,0)\), \((1,1,0)\), \((1,0,1)\). We have the number of patients in each category as $(N_1, N_2, , N_6) = (50, 40, 10, $ \(200, 150, 50)\). Suppose that a sample of \(n=200\) participants is required due to budget limit.Our goal is to find the constrained D-optimal allocation \((w_1, w_2, \dots, w_6)\) with feasible allocation \(S = \{(w_1, \ldots, w_m)^T \in S_0 \mid n w_i \leq N_i, i=1, \ldots, m\}\).
We can use constrained lift-one algorithm liftone_constrained_GLM to find the locally D-optimal approximate sampling allocations.
We consider the logistic regression model for \(j=1,\dots,m\), \(i=1,\dots,n_j\) with \(\boldsymbol \beta=(\beta_{1}, \beta_{21}, \beta_{22}= (0,3,3,3)\):
\[\begin{equation}\label{eq:trial_logistic_model} {\rm logit} \{P(Y_{ij}=1 \mid x_{gender\_i}, x_{age\_1i}, x_{age\_2i})\} = \beta_0 + \beta_1 x_{gender\_i} + \beta_{21} x_{age\_1i} + \beta_{22} x_{age\_2i} \end{equation}\]
We use the following R codes to define the beta coefficients, sample size, and design matrix:
beta = c(0, 3, 3, 3) #coefficients
X=matrix(data=c(1,0,0,0,1,0,1,0,1,0,0,1,1,1,0,0,1,1,1,0,1,1,0,1), ncol=4, byrow=TRUE) #design matrix X
nsample=200 #sample size
To run the liftone_constrained_GLM function, we also need to the \(\mathbf W\) matrix from the calculation of Fisher information matrix, we can use the W_func_GLM function in the package:
Lastly, we also need to define the constraints (number of patients from different gender and age group) and boundaries for constrained sampling (please see the reference for details of lower bound \(r_{i1}\) and upper bound \(r_{i2}\)):
rc = c(50, 40, 10, 200, 150, 50)/nsample
m = 6
g.con = matrix(0,nrow=(2*m+1), ncol=m)
g.con[1,] = rep(1, m)
g.con[2:(m+1),] = diag(m)
g.con[(m+2):(2*m+1), ] = diag(m)
g.dir = c("==", rep("<=", m), rep(">=", m))
g.rhs = c(1, rc, rep(0, m))
lower.bound=function(i, w){
nsample = 200
rc = c(50, 40, 10, 200, 150, 50)/nsample
m=length(w) #num of categories
temp = rep(0,m)
temp[w>0]=1-pmin(1,rc[w>0])*(1-w[i])/w[w>0];
temp[i]=0;
max(0,temp);
}
upper.bound=function(i, w){
nsample = 200
rc = c(50, 40, 10, 200, 150, 50)/nsample
m=length(w) #num of categories
rc[i];
min(1,rc[i])
}
Now, we can run the constrained lift-one algorithm:
approximate_design = liftone_constrained_GLM(X=X, W=W_matrix, g.con=g.con, g.dir=g.dir,
g.rhs=g.rhs, lower.bound=lower.bound,
upper.bound=upper.bound, reltol=1e-10,
maxit=100, random=TRUE, nram=4, w00=NULL,
epsilon=1e-8)
print(approximate_design)
#> $w
#> [1] 0.25 0.20 0.05 0.50 0.00 0.00
#>
#> $w0
#> [1] 0.25 0.20 0.05 0.50 0.00 0.00
#>
#> $maximum
#> [1] 2.881326e-08
#>
#> $convergence
#> [1] TRUE
#>
#> $itmax
#> [1] 1
#>
#> $deriv.ans
#> [1] 0.000000e+00 3.601657e-08 4.852759e-07 -1.152530e-07 -1.031041e-07
#> [6] -7.950737e-08
#>
#> $gmax
#> [1] 0
#>
#> $reason
#> [1] "gmax <= 0"
To find the exact allocation (integer value of allocation), we can use the approxtoexact_constrained_func:
exact_design = approxtoexact_constrained_func(n=200, w=approximate_design$w, m=6,
beta=beta, link='logit', X=X,
Fdet_func=Fdet_func_GLM,
iset_func=iset_func_trial)
print(exact_design)
#> $allocation
#> [1] 50 40 10 100 0 0
#>
#> $allocation.real
#> [1] 0.25 0.20 0.05 0.50 0.00 0.00
#>
#> $det.maximum
#> [1] 46.10121
Note:
If we cannot obtain an approximated value of beta coefficients, we can also try to find the EW D-optimal allocations instead. For EW D-optimal allocation, we can come up with some prior distributions of beta coefficients, and replace the coefficients value with expectation of those prior distributions in the R codes. (Please see reference for more details).
If there is no knowledge of beta coefficients, we can use constrained uniform design:
w00 = rep(1/200, 6)
unif_design = approxtoexact_constrained_func(n=200, w=w00, m=6, beta=NULL,
link=NULL, X=NULL, Fdet_func=Fdet_func_unif, iset_func=iset_func_trial)
print(unif_design)
#> $allocation
#> [1] 38 38 10 38 38 38
#>
#> $allocation.real
#> [1] 0.005 0.005 0.005 0.005 0.005 0.005
#>
#> $det.maximum
#> [1] 792351680
trauma_data consists of \(N=802\) trauma patients. After the treatment, there are five outcomes, Death (\(1\)), Vegetative state (\(2\)), Major disability (\(3\)), Minor disability (\(4\)) and Good recovery (\(5\)). We consider two covariates, the symptoms of the trauma (\(x_{i1} = 0\) for mild or \(1\) for moderate /severe), there are \(392\) mild symptoms patients, and \(410\) moderate/severe symptoms patients. The other covariate is the treatment dose levels (\(x_{i2} = 1\) (Placebo), \(2\) (Low dose), \(3\) (Medium dose), and \(4\) (High dose). In total, we have \(m=8\) design points from the combination of levels from the two covariates. In this study, we plan to enroll \(n=600\) patients and the collection of feasible allocation is \(S=\{(w_1, \ldots, w_8)^\top \in S_0\mid n(w_1+w_2+w_3+w_4) \leq 392, n(w_5+w_6+w_7+w_8) \leq 410\}\). The model can be written as:\[\log(\frac{\pi_{i1}}{\pi_{i2}+\dots+\pi_{i5}}) = \beta_{11}+\beta_{12}x_{i1}+\beta_{13}x_{i2}\] \[\log(\frac{\pi_{i1}+\pi_{i2}}{\pi_{i3}+\pi_{i4}+\pi_{i5}}) = \beta_{21}+\beta_{22}x_{i1}+\beta_{23}x_{i2}\] \[\log(\frac{\pi_{i1}+\pi_{i2}+\pi_{i3}}{\pi_{i4}+\pi_{i5}}) = \beta_{31}+\beta_{32}x_{i1}+\beta_{33}x_{i2}\] \[\log(\frac{\pi_{i1}+\dots+\pi_{i4}}{\pi_{i5}}) = \beta_{41}+\beta_{42}x_{i1}+\beta_{43}x_{i2}\]
In this example, we assume the parameter to be \(\boldsymbol\beta = (\hat\beta_{11}, \hat\beta_{21}, \hat\beta_{31}, \hat\beta_{41}, \hat\beta_{12}, \hat\beta_{22}, \hat\beta_{32}, \hat\beta_{42}, \hat\beta_{13}, \hat\beta_{23}, \hat\beta_{33}, \hat\beta_{43})^\top = (-4.047, -2.225, -0.302, 1.386, 4.214, 3.519,\\ 2.420, 1.284, -0.131, -0.376, -0.237, -0.120)^\top\). In total, we have \(m=8\) design points from the combination of levels from the two covariates. In this study, we plan to enroll \(n=600\) patients and the collection of feasible allocation is \(S=\{(w_1, \ldots, w_8)^\top \in S_0\mid n(w_1+w_2+w_3+w_4) \leq 392, n(w_5+w_6+w_7+w_8) \leq 410\}\).
For this example, we can reuse the set-up of design matrix and beta coefficients from the MLM Fisher information matrix:
J=5; p=12; m=8;
beta = c(-4.047, -0.131, 4.214, -2.225, -0.376, 3.519, -0.302,
-0.237, 2.420, 1.386, -0.120, 1.284)
Xi=rep(0,J*p*m)
dim(Xi)=c(J,p,m)
Xi[,,1] = rbind(c( 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,2] = rbind(c( 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,3] = rbind(c( 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 3, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,4] = rbind(c( 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,5] = rbind(c( 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,6] = rbind(c( 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,7] = rbind(c( 1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 3, 1, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 3, 1, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Xi[,,8] = rbind(c( 1, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 1, 4, 1, 0, 0, 0, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 0),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, 1),
c( 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0))
Similarly to the GLM example, we define the sample size, constraints, and boundaries using the following R codes:
nsample=600 #sample size
constraint = c(392, 410) #mild:severe
lower.bound <- function(i, w0){
n = 600
constraint = c(392,410)
if(i <= 4){
a.lower <- (sum(w0[5:8])-(constraint[2]/n)*(1-w0[i]))/(sum(w0[5:8]))
}
else{
a.lower <- (sum(w0[1:4])-(constraint[1]/n)*(1-w0[i]))/(sum(w0[1:4]))
}
a.lower
}
upper.bound <- function(i, w0){
n = 600
constraint = c(392,410)
if(i <= 4){
b.upper <- ((constraint[1]/n)*(1-w0[i]) - (sum(w0[1:4])-w0[i]))/(1-sum(w0[1:4]))
}
else{
b.upper <- ((constraint[2]/n)*(1-w0[i]) - (sum(w0[5:8])-w0[i]))/(1-sum(w0[5:8]))
}
b.upper
}
g.con = matrix(0,nrow=length(constraint)+1+m, ncol=m)
g.con[2:3,] = matrix(data=c(1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1), ncol = m, byrow=TRUE)
g.con[1,] = rep(1, m)
g.con[4:(length(constraint)+1+m), ] = diag(1, nrow=m)
g.dir = c("==", "<=","<=", rep(">=",m))
g.rhs = c(1, ifelse((constraint/nsample<1),constraint/nsample,1), rep(0, m))
Then, we can use the constrained lift-one algorithm to find the locally D-optimal approximate sampling with liftone_constrained_MLM function in the package:
set.seed(123)
approx_design = liftone_constrained_MLM(m=m, p=p, Xi=Xi, J=J, beta=beta,
lower.bound=lower.bound, upper.bound=upper.bound,
g.con=g.con, g.dir=g.dir, g.rhs=g.rhs, w00=NULL,
link='cumulative', Fi.func = Fi_func_MLM,
reltol=1e-5, maxit=500, delta = 1e-6,
epsilon=1e-8, random=TRUE, nram=1)
print(approx_design)
#> $w
#> [1] 0.2593504 0.0000000 0.0000000 0.1565031 0.2891434 0.0000000 0.0000000
#> [8] 0.2950031
#>
#> $w0
#> [1] 0.0000000 0.6533333 0.0000000 0.0000000 0.3466667 0.0000000 0.0000000
#> [8] 0.0000000
#>
#> $Maximum
#> [1] 1.793034e-10
#>
#> $iteration
#> [1] 14
#>
#> $convergence
#> [1] TRUE
#>
#> $deriv.ans
#> [1] 3.734907e-10 4.341054e-10 4.341054e-10 5.002218e-10 3.281816e-10
#> [6] 4.341054e-10 4.341054e-10 3.191988e-10
#>
#> $gmax
#> [1] NA
#>
#> $reason
#> [1] "all derivative <=0"
To get the exact allocation, we can again apply the approxtoexact_constrained_func in the package:
exact_design = approxtoexact_constrained_func(n=600, w=approx_design$w, m=8,
beta=beta, link='cumulative', X=Xi, Fdet_func=Fdet_func_MLM,
iset_func=iset_func_trauma)
print(exact_design)
#> $allocation
#> [1] 156 0 0 94 173 0 0 177
#>
#> $allocation.real
#> [1] 0.2593504 0.0000000 0.0000000 0.1565031 0.2891434 0.0000000 0.0000000
#> [8] 0.2950031
#>
#> $det.maximum
#> [1] 3.902964e+23
If there is no coefficients information, we can find the constrained uniform sampling with the folloiwng codes:
iset_func_trauma <- function(allocation){
iset = rep(1,8)
if(sum(allocation[1:4])>=392){iset[1:4]=0}
if(sum(allocation[5:8])>=410){iset[5:8]=0}
return(iset)
}
unif_design = approxtoexact_constrained_func(n=600, w=rep(1/600,8), m=8, beta=NULL,
link=NULL, X=NULL, Fdet_func=Fdet_func_unif, iset_func=iset_func_trauma)
unif_design
#> $allocation
#> [1] 75 75 75 75 75 75 75 75
#>
#> $allocation.real
#> [1] 0.001666667 0.001666667 0.001666667 0.001666667 0.001666667 0.001666667
#> [7] 0.001666667 0.001666667
#>
#> $det.maximum
#> [1] 1.001129e+15