
biber
A backend bibliography processor for biblatex

François Charette, Philip Kime
firmicus@ankabut.net,

Philip@kime.org.uk

Version biber 0.9 (biblatex 1.4)
27th March 2011

Contents
1 Introduction 1

1.1 About 1
1.2 Requirements 2
1.3 License 2
1.4 History 2
1.5 Performance 3
1.6 Acknowledgements . . . 3

2 Use 3
2.1 Options and config file . 4
2.2 Input/Output File Loca-

tions 8
2.3 Logfile 9

2.4 Collation and Localisation 9
2.5 Encoding of files 11
2.6 Limitations 13
2.7 Editor Integration 14
2.8 BibTeX macros and the

MONTH field 15
2.9 Biber datasource drivers 16

3 Binaries 17
3.1 Binary Caches 17
3.2 Binary Architectures . . 18
3.3 Installing 18
3.4 Building 19

1 Introduction
1.1 About
biber is conceptually a bibtex replacement for biblatex. It is written in Perl
with the aim of providing a customised and sophisticated data preparation backend
for biblatex. Functionally, it offers a superset of bibtex’s capabilities but is
tightly coupled withbiblatex and cannot be used as a stand-alone tool with stand-
ard .bst styles. biber’s role is to support biblatex by performing the following
tasks:

• Parsing data from data sources
• Processing cross-references, entry sets, related entries
• Generating data for name, name list and name/year disambiguation
• Structural validation according to biblatex data model
• Sorting reference lists
• Outputting data to a .bbl for biblatex to consume

1

http://biblatex-biber.sourceforge.net
mailto:firmicus@ankabut.net, Philip@kime.org.uk
mailto:firmicus@ankabut.net, Philip@kime.org.uk

1.2 Requirements
biber is part of TeXLive. The first annual TexLive distribution which includes
biber is TeXLive 2011 but it was available for TexLive 2010 via the usual update
methods from March 2010.
biber is developed on SourceForge1 and this is the primary location for develop-

ment releases, forums and bugfixes etc. It is included into TeXLive from the Source-
Forge releases.
biber is a Perl application which relies heavily on quite a few modules. It is

packaged as a stand-alone binary using the excellent PAR::Packermodule which
can pack an entire perl tree plus dependencies into one file which acts as a virtual
stand-alone binary and is indistinguishable from such to the end user—see section
3. You can also simply download the perl source and run it as a normal perl program
which requires you to have a working Perl installation (preferably version 5.12 but
no less than 5.10) and the ability to install the pre-requisite modules.

1.3 License
biber is released under the free software Artistic License 2.02

1.4 History
bibtex has been the default (only …) integrated choice for bibliography processing
in TeX for a long time. It has well known limitations which stem from its data format,
data model and lack of Unicode support3. The .bst language for writing biblio-
graphy styles is painful to learn and use. It is not a general programming language
and this makes it really very hard to do sophisticated automated processing of bib-
liographies.
biblatex was a major advance for LaTeX users as it moved much of the bibli-

ography processing into LaTeX macros. However, biblatex still used bibtex as
a sorting engine for the bibliography and also to generate various labels for entries.
bibtex’s capabilities even for this reduced set of tasks was still quite restricted due
to the lack of Unicode support and the more and more complex programming issues
involved in label preparation and file encoding.
biber was designed specifically for biblatex in order to provide a powerful

backend engine which could deal with any required tasks to do with .bbl prepar-
ation. Its main features are:

• Deals with the full range of UTF-8

1http://sourceforge.net/projects/biblatex-biber/
2http://www.opensource.org/licenses/artistic-license-2.0.php
3In fact, there is now a Unicode version

2

http://sourceforge.net/projects/biblatex-biber/
http://www.opensource.org/licenses/artistic-license-2.0.php

• Sorts in a completely customisable manner, using when available, CLDR col-
lation tailorings

• Allows for per-entrytype options
• Automatically encodes the .bbl into any supported encoding format4

• Processes all bibliography sections in one pass of the tool
• Handles UTF-8 citekeys and filenames (given a suitable fully UTF-8 compliant

TeX engine)
• Creates entry sets dynamically and allow easily defined static entry sets, all

processed in one pass
• Flexible user-customisable crossreference field inheritance model
• Handles complex auto-expansion and contraction of names and namelists5

• Support for related entries, to enable generic treatment of things like ‘trans-
lated as’, ‘reprinted as’, ‘reprint of’ etc.6

• Extensible modular data sources architecture for ease of adding more data
source types.

• Support for remote data sources

1.5 Performance
biber can’t really be compared with bibtex in any meaningful way performance-
wise. biber is written in perl and does a great deal more than bibtex which is
written in C. One of biber’s test cases is a 2150 entry, 15,000 line .bib file which
references a 630 entry macros file with a resulting 160 or so page (A4) formatted
bibliography. This takes biber about 100 seconds on average to process on a reas-
onable computer. This is perfectly acceptable, especially for a batch program …

1.6 Acknowledgements
François Charette originally wrote biber. Philip Kime joined in the development
in 2009.

2 Use
Firstly, please note that biber will not attempt to sanitise the content of bibtex
data sources. That is, don’t expect it to auto-escape any TeX special characters like
‘&’ or ‘%’ which it finds in, for example, yourTITLEfields. It used to do this in earlier
versions in some cases but as of version 0.9, it doesn’t because it’s fraught with prob-
lems and leads to inconsistent expectations and behaviour between different data

4‘Supported’ here means encodings supported by the Perl Encode module
5Coming in BibLaTeX 1.4
6Coming in BibLaTeX 1.5

3

source types. In your bibtex data sources, please make sure your entries are legal
TeX code.

Running biber --help will display all options and a brief description of each.
This is the most useful brief source of usage information. biber returns an exit
code of 0 on success or 1 if there was an error.

Most biber options can be specified in long or short format. When mentioning
options below, they are referred to as ‘long form|short form’ when an option
has both a long and short form. As usual with such options, when the option re-
quires an argument, the long form is followed by an equals sign ‘=’ and then the
argument, the short form is followed by a space and then the argument. For ex-
ample, the --configfile|-g option can be given in two ways:

biber --configfile=somefile.conf
biber -g somefile.conf

With the backend=biber option, biblatex switches its backend interface and
passes all options and information relevant to biber’s operation in a control file
with extension .bcf7. This is conceptually equivalent to the .aux file which LaTeX
uses to pass information to bibtex. The .bcf file is XML and contains many op-
tions and settings which configure how biber is to process the bibliography and
generate the .bbl file.

The usual way to call biber is simply with the .bcf file as the only argument.
The ‘.bcf’ extension of the control file is not optional. biblatex always outputs
a control file with the .bcf extension. Specifying the ‘.bcf’ extension to biber is
optional. Assuming a control file called test.bcf, the following two commands
are equivalent:

biber test.bcf
biber test

2.1 Options and config file
biber sets its options using the following resource chain which is given in decreas-
ing precedence order:

command line options →
biber.conf file →
.bcf file→
biber hard-coded defaults

7BibLaTeX Control File

4

Users do not need to care directly about the contents or format of the .bcf file as
this is generated from the options which they specify for biblatex. The config
file is a place to set commonly used command-line options and also to set options
which cannot be set on the command line.

The configuration file is by default called biber.conf but this can be changed
using the --configfile|-g option. Unless --configfile|-g is used, the con-
fig file is looked for in the following places, in decreasing order of preference:

biber.conf in the current directory →
$HOME/.biber.conf →
$XDG_CONFIG_HOME/biber/biber.conf →
$HOME/Library/biber/biber.conf (Mac OSX only)
$APPDATA/biber.conf (Windows only) →

the output of ‘kpsewhich biber.conf’ (if available on the system)

The config file format is a very flexible one which allows users to specify options in
most common formats, even mixed in the same file. It’s easier to see an example.
Here is a config file which displays the biber hard-coded defaults:

bblencoding UTF-8
bibencoding UTF-8
collate 1
<collate_options>

level 3
</collate_options>
debug 0
fastsort 0
mincrossrefs 2
nolog 0
nostdmacros 0
<nosort>
ignore prefices like 'al-' when sorting name fields
type_names \A\p{L}{2}\p{Pd}
ignore diacritics when sorting author
type_names [\x{2bf}\x{2018}]

</nosort>
onlylog 0
quiet 0
sortcase true
sortlocale en_US.utf8
sortupper true

5

trace 0
validate_control 0
validate_structure 0
wraplines 0

You can see here that options with multiple key/value pairs of their own like
--collate_options|-c can be specified in Apache config format. Please see
the documentation for the Config::General Perl module8 if you really need de-
tails. In practise, if you use a config file at all for biber, it will contain very little
as you will usually set all options by setting options in biblatex which will pass
them to biber via the .bcf file.

The--collate_options|-c option takes a number of key/value pairs as value.
See section 2.4 for details.

2.1.1 The ‘nosort’ option

The value of the nosort option can only be set in the config file and not on the
command line. This is because the values are Perl regular expressions and would
need special quoting to set on the command line. This can get a bit tricky on some
OSes (like Windows) so it’s safer to set them in the config file. In any case, it’s
unlikely you would want to set them for particular biber runs; they would more
likely be set as your personal default and thus they would naturally be set in the
config file anyway. nosort allows you to ignore parts of a field for sorting. This is
done using perl regular expressions which specify what to ignore in a field. You
can specify as many patterns as you like for a specific field. Also available are some
field type aliases so you can, for example, specify patterns for all name fields or all
title fields. These field types all begin with the string ‘type_’, see Table 1.

For example, this option can be used to ignore diacritic marks and prefices in
names which should not be considered when sorting. Given (the default):

<nosort>
type_names \A\p{L}{2}\p{Pd}
type_names [\x{2bf}\x{2018}]

</nosort>

and the .bib data source entry:

author = {{al-Hasan}, ʿAlī},

the prefix ‘al-’ and the diacritic ‘ʿ’ will not be considered when sorting. See the perl
regular expression manual page for details of the regular expression syntax9.

8http://search.cpan.org/search?query=Config::General&mode=all
9http://perldoc.perl.org/perlre.html

6

http://search.cpan.org/search?query=Config::General&mode=all
http://perldoc.perl.org/perlre.html

Alias Fields
type_name author

afterword
annotator
bookauthor
commentator
editor
editora
editorb
editorc
foreword
holder
introduction
namea
nameb
namec
shortauthor
shorteditor
translator

type_title booktitle
eventtitle
issuetitle
journaltitle
maintitle
origtitle
title

Table 1: nosort option field type aliases

7

If a nosort option is found for a specific field, it will override any option for a
type which also covers that field.

Here is another example. Suppose you wanted to ignore ‘The’ at the beginning
of a TITLE field when sorting, you could add this to your biber.conf:

<nosort>
title \AThe\s+

</nosort>

If you wanted to do this for all title fields listed in Table 1, then you would do this:

<nosort>
type_title \AThe\s+

</nosort>

Note: nosort can be specified for most fields but not for things like dates and
special fields as that wouldn’t make much sense.

2.2 Input/Output File Locations
2.2.1 Control file

The control file is normally passed as the only argument to biber. It is searched for
in the following locations, in decreasing order of priority:

Absolute filename →
In the --output_directory, if specified→

Relative to current directory→
Using kpsewhich, if available

2.2.2 Data sources

Local data sources of type ‘file’ are searched for in the following locations, in de-
creasing order of priority:

Absolute filename →
In the --output_directory, if specified→

Relative to current directory→
In the same directory as the control file→

Using kpsewhich for supported formats, if available

8

Remote file data sources (beginning with http:// or ftp://) are retrieved to a
temp file and processed as normal. Users do not specify explicitly the bibliography
database files; they are passed in the .bcf control file, which is constructed from
the biblatex \addbibresource{} macros.

2.3 Logfile
By default, the logfile for biber will be named \jobname.blg, so, if you run

biber <options> test.bcf

then the logfile will be called ‘test.blg’. Like the .bbl output file, it will be cre-
ated in the --output_directory|-c, if this option is defined. You can override
the logfile name by using the --logfile option:

biber --logfile=lfname test.bcf

results in a logfile called ‘lfname.blg’.

Warning: be careful if you are expecting biber to write to directories which you
don’t have appropriate permissions to. This is more commonly an issue on non-
Windows OSes. For example, if you rely on kpsewhich to find your database files
which are in system TeX directories, you may well not have write permission there
so biber will not be able to write the .bbl. Use the --outfile|-O option to
specify the location to write the .bbl to in such cases.

2.4 Collation and Localisation
biber takes care of collating the bibliography for biblatex. It writes entries to
the .bbl file sorted by a completely customisable set of rules which are passed in
the .bcf file by biblatex. biber has two ways of performing collation:

--collate|-C
The default. This option makes biber use the Unicode::Collate module for
collation which implements the full UCA (Unicode Collation Algorithm). It also
has CLDR (Common Locale Data Repository) tailoring to deal with cases which are
not covered by the UCA. It is a little slower than --fastsort|-f but the advant-
ages are such that it’s rarely worth using --fastsort|-f

--fastsort|-f
Biber will sort using the OS locale collation tables. The drawback for this method
is that special collation tailoring for various languages are not implemented in the

9

collation tables for many OSes. For example, few OSes correctly sort ’å’ before ’ä’ in
the Swedish (sv_SE) locale. If you are using a common latin alphabet, then this is
probably not a problem for you.

The locale used for collation is determined by the following resource chain which
is given in decreasing precedence order:

--collate_options|-c (e.g. -c 'locale => "de_DE"') →
--sortlocale|-l →
LC_COLLATE environment variable →
LANG environment variable →
LC_ALL environment variable

With the default --collate|-C option, the locale will be used to look for a col-
lation tailoring for that locale. It will generate an informational warning if it finds
none. This is not a problem as the vast majority of collation cases are covered by
the standard UCA and many locales neither have nor need any special collation
tailoring.

With the --fastsort|-f option, the locale will be used to locate an OS locale
definition to use for the collation. This may or may not be correctly tailored, de-
pending on the locale and the OS.

Collation is by default case sensitive. You can turn this off globally using the biber
option--sortcase=false or frombiblatexusing its optionsortcase=false.
The option can also be defined per-field so you can sort some fields case sensitively
and others case insensitively. See the biblatex manual.

--collate|-C by default collates uppercase before lower. You can reverse this
globally for all sorting using thebiber option--sortupper=false or frombiblatex
by using its option sortupper=false. The option can also be defined per-field
so you can sort some fields uppercase before lower and others lower before up-
per. See the biblatex manual. Be aware though that some locales rightly en-
force a particular setting for this (for example, Danish). You will be able to over-
ride it but biber will warn you if you do. sortupper has no effect when using
--fastsort|-f–you are at the mercy of what your OS locale does.

There are in fact many options to Unicode::Collate which can tailor the col-
lation in various ways in addition to the locale tailoring which is automatically per-

10

formed. Users should see the the documentation to the module for the various
options, most of which the vast majority of users will never need10. Options are
passed using the --collate_options|-c option as a single quoted string, each
option separated by comma, each key and value separated by ‘=>’. See examples.

2.4.1 Examples

biber
Call biber using all settings from the .bcf generated from the LaTeX run. Case
sensitive UCA sorting is performed taking the locale for tailoring from the environ-
ment if no sortlocale is defined in the .bcf

biber --sortlocale=de_DE
Override any locale setting in the .bcf or the environment.

biber --fastsort
Use slightly quicker internal sorting routine. This uses the OS locale files which
may or may not be accurate.

biber --sortcase=false
Case insensitive sorting.

biber --sortupper=false --collate_options="backwards => 2"
Collate lowercase before upper and collate French accents in reverse order at UCA
level 2.

2.5 Encoding of files
biber takes care of reencoding the data source data as necessary. In normal use,
biblatex passes its bibencoding option value to biber via the .bcf file. It also
passes the value of itstexencoding option (which maps tobiber’sbblencoding|-E
option) the default value of which depends on which TeX engine and encoding
packages you are using (see biblatex manual for details).
biber performs the following tasks:

1. Decodes the data source into UTF-8 if it is not UTF-8 already
2. Decodes LaTeX character macros into UTF-8 if --bblencoding|-E is UTF-8
3. Encodes the output so that the.bbl is in the encoding that--bblencoding|-E

specifies
4. Warns if it is asked to output to the .bbl any UTF-8 decoded LaTeX character

macros which are not in the --bblencoding|-E encoding. Replaces with a
suitable LaTeX macro

Normally, you do not need to set the encoding options on the biber command line
as they are passed in the .bcf via the information in your biblatex environment.
10For details on the various options, see http://search.cpan.org/search?query=Unicode%

3A%3ACollate&mode=all

11

http://search.cpan.org/search?query=Unicode%3A%3ACollate&mode=all
http://search.cpan.org/search?query=Unicode%3A%3ACollate&mode=all

However, you can override the .bcf settings with the command line. The resource
chain for encoding settings is, in decreasing order of preference:

--bibencoding|-e and --bblencoding|-E →
biber config file →
.bcf control file

2.5.1 LaTeX macro decoding

As mentioned above, biber sometimes converts LaTeX character macros into UTF-8.
In fact there are two situations in which this occurs.

1. When --bblencoding|-E is UTF-8
2. Always for internal sorting purposes

This decoding is very useful but take note of the following two scenarios, which
relate to each of the two situations in which LaTeX macro decoding occurs:

Decoding when output is UTF-8
If you are using PDFLaTeX and \usepackage[utf8]{inputenc}, it is possible
that the UTF-8 characters resulting from biber’s internal LaTeX character macro
decoding break inputenc. This is because inputenc does not implement all of
UTF-8, only a commonly used subset.

An example–if you had \DJ in your .bib data source, biber decodes this cor-
rectly to ‘Đ’ and this breaks inputenc because it doesn’t understand that UTF-8
character. The real solution here is to switch to a TeX engine with full UTF-8 sup-
port like XeTeX or LuaTeX as these don’t use or need inputenc. However, you
can also try the --bblsafechars option which will try to convert any UTF-8
chars into LaTeX macros on output. The biblatex option ‘texencoding=ascii’
(which corresponds to the biber option ‘--bblencoding|-E’) will automatically
set --bblsafechars.

See also the biber --help output for the --bblsafecharsset option which
can customise the set of conversion characters to use.

Decoding for internal sorting
If your bblencoding is not UTF-8, and you are using some UTF-8 equivalent
LaTeX character macros in your .bib data source, then some .bbl fields (currently
only \sortinit{}) might end up with invalid characters in them, according to the
.bbl encoding. This is because some fields must be generated from the final sorting
data which is only available after the LaTeX character macro decoding step.

For example, suppose you are using PDFLaTeX with
\usepackage[latin1]{inputenc} and the followingbibtexdata source entry:

12

@BOOK{citekey1,
AUTHOR = {{\v S}imple, Simon},

}

With normal LaTeX character macro decoding, the {\v S} is decoded into ‘Š’ and
so with name-first sorting, \sortinit{} would be ‘Š’. This is an invalid char-
acter in latin1 encoding and so the .bbl would be broken. In such cases when
\sortinit{} is a char not valid in the bblencoding, biber tries to replace the
character with a suitable LaTeX macro. The solution is really to use UTF-8 .bbl en-
coding whenever possible. In extreme cases where even with UTF-8 encoding, the
char is not recognised by LaTeX due to an incomplete UTF-8 implementation (as
with inputenc), this might also mean switching TeX engines to one that supports
full UTF-8.

2.5.2 Examples

biber
Set bibencoding and bblencoding from the config file or .bcf.

biber --bblencoding=latin2
Encode the .bbl as latin2, overriding the .bcf.

biber --bblsafechars
Set bibencoding and bblencoding from the config file or .bcf. Force encoding
of UTF-8 chars to LaTeX macros using default conversion set.

biber --bblencoding=ascii
Encode the.bbl as ascii, overriding the.bcf. Automatically sets--bblsafechars
to force UTF-8 to LaTeX macro conversion.

biber --bblencoding=ascii --bblsafecharsset=full
Encode the.bbl as ascii, overriding the.bcf. Automatically sets--bblsafechars
to force UTF-8 to LaTeX macro conversion using the full set of conversions

biber --decodecharsset=full
Set bibencoding and bblencoding from the config file or .bcf. Use the full
LaTeX macro to UTF-8 conversion set because you have some more obscure charac-
ter macros in your .bib data source which you want to sort correctly

biber -u
Shortcut alias for biber --bibencoding=UTF-8

biber -U
Shortcut alias for biber --bblencoding=UTF-8

2.6 Limitations
Currently, users are restricted to a one-one mapping from datasource entry types/fields
to the biblatex supported entry type/fields. This is mitigated a little by the

13

type/field aliases which biblatex supports. In the future, users will be able to
customise the data source driver config in order to define their own entry type/field
aliases so that there is more flexibility in mapping data source entry type/fields to
internal biblatex types/fields.

2.7 Editor Integration
Here is some information on how to integratebiber into some of the more common
editors

2.7.1 Emacs

Emacs has the very powerful AUcTeX mode for editing TeX and running compila-
tions. BibTeX is already integrated into AUCTeX and it is quite simple to add sup-
port forbiber. Use the Emacs Customise interface to modify theTeX-command-list
variable and add a Biber command.

M-x customise-variable
TeX-command-list

and then Ins somewhere a new command that looks like Figure 1.

Figure 1: Screenshot of AUCTeX command setup for Biber

Alternatively, you can add it directly in lisp to your .emacs like this:

(add-to-list 'TeX-command-list
(quote

("Biber" "biber %s" TeX-run-Biber nil t :help "Run Biber")))

However you add the command toTeX-command-list, customise the actualBiber
command parameters as you want them, using ‘%s’ as the LaTeX file name place
holder. Then define the following two functions in your .emacs.

14

(eval-after-load "tex"
(quote (defun TeX-run-Biber (name command file)
"Create a process for NAME using COMMAND to format FILE with Biber."
(let ((process (TeX-run-command name command file)))

(setq TeX-sentinel-function 'TeX-Biber-sentinel)
(if TeX-process-asynchronous

process
(TeX-synchronous-sentinel name file process))))
)

)

(eval-after-load "tex"
(quote (defun TeX-Biber-sentinel (process name)
"Cleanup TeX output buffer after running Biber."
(goto-char (point-max))
(cond
;; Check whether Biber reports any warnings or errors.
((re-search-backward (concat

"^(There \\(?:was\\|were\\) \\([0-9]+\\) "
"\\(warnings?\\|error messages?\\))") nil t)

;; Tell the user their number so that she sees whether the
;; situation is getting better or worse.
(message (concat "Biber finished with %s %s. "

"Type `%s' to display output.")
(match-string 1) (match-string 2)
(substitute-command-keys
"\\<TeX-mode-map>\\[TeX-recenter-output-buffer]")))

(t
(message (concat "Biber finished successfully. "

"Run LaTeX again to get citations right."))))
(setq TeX-command-next TeX-command-default))

)
)

You’ll then see a Biber option in your AUCTeX command menu or you can just
C-c C-c and type Biber.

2.7.2 TeXworks

It’s very easy to add biber support to TeXworks. In the Preferences, select the
Typesetting tab and then add a new Processing Tool as in Figure 2.

2.8 BibTeX macros and the MONTH field
BibTeX defines macros for month abbreviations like ‘jan’, ‘feb’ etc. biber also
does this, defining them as numbers since that is what biblatex wants. In case

15

Figure 2: Screenshot of TeXworks processing tool setup for Biber

you are also defining these yourself (although if you are only usingbiblatex, there
isn’t much point), you will get macro redefinition warnings from the btparse lib-
rary. You can turn off biber’s macro definitions to avoid this by using the option
--nostdmacros.
biber will look at any MONTH field in a bibtex data source and if it’s not a

number as biblatex expects (because it wasn’t one of the macros as mentioned
above or these macros were disabled by --nostdmacros), it will try to turn it into
the right number in the .bbl. If you only use biblatex with your bibtex data
source files, you should probably make any MONTH fields be the numbers which
biblatex expects.

2.9 Biber datasource drivers
biber uses a modular data source driver model to provide access to supported data
sources. The drivers are responsible for mapping driver entry types and fields to the
biblatex model. This is aided by a driver configuration file (.dcf). The inform-
ation in this file for each driver can be found in the driver documentation folder
on SourceForge11. This file shows you which handlers the driver uses for differ-
ent fields and what certain entry types and fields are aliased to in the biblatex
data model. This is not fantastically useful to know without knowing also what the
named driver handlers do specifically but there is a ‘description’ section which men-
tions any special handling and general comments on the driver. You should read

11https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/
current/documentation/drivers

16

https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/current/documentation/drivers
https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/current/documentation/drivers

the documentation for the drivers you use to get an idea of how biber handles
your data. Data model mapping is an imprecise art and the drivers are where the
necessarily messy parts of biber live. Most data source models are not designed
with typesetting in mind and are usually not fine-grained enough to provide the
sorts of information that biblatex needs. biber does its best to obtain as much
meaningful information from a data source as possible.

3 Binaries
The binary distributions of biber are made using the Perl PAR::Packer module.
They can be used as a normal binary but have some behaviour which is worth not-
ing:

• Don’t be worried by the size of the binaries. PAR::Packer essentially con-
structs a self-extracting archive which unpacks the needed files first.

• On the first run of a new version (that is, with a specific hash), they actually
unpack themselves to a temporary location which varies by operating system.
This unpacking can take a little while and only happens on the first run of a
new version. Please don’t kill the process if it seems to take some time to
do anything on the first run of a new binary. If you do, it will not unpack
everything and it will almost certainly break biber. You will then have to de-
lete your binary cache (see section 3.1 below) and re-run the biber executable
again for the first time to allow it to unpack properly.

3.1 Binary Caches
PAR::Packer works by unpacking the required files to a cache location. It only
does this on the first run of a binary by computing a hash of the binary and com-
paring it with the cache directory name which contains the hash. So, if you run
several versions of a binary, you will end up with several cached trees which are
never used. This is particularly true if you are regularly testing new versions of the
biber binary. It is a good idea to delete the caches for older binaries as they are not
needed and can take up a fair bit of space. The caches are located in a temporary
location which varies from OS to OS. The cache name is:

par-<username>/cache-<hash> (Linux/Unix/OSX)
par-<username>\cache-<hash> (Windows)

The temp location is not always obvious but these are sensible places to look (where
* can vary depending on username:

• /var/folders/*/*/-Tmp-/ (OSX, local GUI login shell)

17

• /var/tmp/ (OSX (remote ssh login shell), Unix)
• /tmp/ (Linux)
• C:\Documents and Settings\<username>\Local Settings\Temp (Win-

dows/Cygwin)
• C:\Windows\Temp (Windows)

To clean up, you can just remove the whole par-<username>directory/folder and
then run the current binary again.

3.2 Binary Architectures
Binaries are available for many architectures, directly on SourceForge and also via
TeXLive:

• linux_x86_32
• linux_x86_64
• MSWin32
• cygwin32
• darwin_x86_64
• darwin_x86_i386
• freebsd_x8612

• freebsd_amd6412

• solaris_x8612

If you want to run development versions, they are usually only regularly updated
for the core architectures which are not flagged as third-party built above. If you
want to regularly run the latest development version, you should probably git clone
the relevant branch and run biber as a pure perl program directly.

3.3 Installing
These instructions only apply to manually downloaded binaries. If biber came
with your TeX distribution just use it as normal.

Download the binary appropriate to you OS/arch13. Below I assume it’s on your
desktop.

You have to move the binary to somewhere in you command-line or TeX utility
path so that it can be found. If you know how to do this, just ignore the rest of this
section which contains some instructions for users who are not sure about this.

12Binary maintained by third party. See README in binary download directory for this platform
for support/contact details. Usually, the binary maintainer is also the binary build provider for
TexLive.

13https://sourceforge.net/projects/biblatex-biber

18

https://sourceforge.net/projects/biblatex-biber

3.3.1 OSX

If you are using the TexLive MacTeX distribution:

sudo mv ~/Desktop/biber /usr/texbin/
sudo chmod +x /usr/texbin/biber

If you are using the macports TexLive distribution:

sudo mv ~/Desktop/biber /opt/local/bin/
sudo chmod +x /opt/local/bin/biber

The ‘sudo’ commands will prompt you for your password.

3.3.2 Windows

The easiest way is to just move the executable into your C:\Windows directory
since that is always in your path. A more elegant is to put it somewhere in your TeX
distribution that is already in your path. For example if you are using MiKTeX:

C:\Program Files\MiKTeX 2.8\miktex\bin\

3.3.3 Unix/Linux

sudo mv ~/Desktop/biber /usr/local/bin/biber
sudo chmod +x /usr/local/bin/biber

Make sure /usr/local/bin is in your PATH. Search Google for ‘set PATH linux’
if unsure about this. There are many pages about this, for example: http://www.
cyberciti.biz/faq/unix-linux-adding-path/

3.4 Building
Instructions for those who want/need to build an executable from the Perl version.
For this, you will need to have a recent Perl, preferably 5.12 at least with the follow-
ing modules:

• All biber pre-requisites
• PAR::Packer and all dependencies

You should have the latest CPAN versions of all required modules as biber is very
specific in some cases about module versions and depends on recent fixes in many
cases. You can see if you have the biber Perl dependencies by the usual

perl ./Build.PL

19

http://www.cyberciti.biz/faq/unix-linux-adding-path/
http://www.cyberciti.biz/faq/unix-linux-adding-path/

invocation in the biber Perl distribution tree directory. Normally, the build proced-
ure for the binaries is as follows14:

• Get the biber source tree from SF and put it on the architecture you are build-
ing for

• cd to the root of the source tree
• perl Build.PL (this will check your module dependencies)
• Build test
• Build install (may need to run this as sudo on UNIXesque systems)
• cd dist/<arch>
• build.sh (build.bat on Windows)

This leaves a binary called ‘biber-<arch>’ (also with a ‘.exe’ extension on Win-
dows/Cygwin) in your current directory. The tricky part is constructing the inform-
ation for the build script. There are two things that need to be configured, both of
which are required by the PAR::Packer module:

1. A list of modules/libraries to include in the binary which are not automatic-
ally detected by the PAR::Packer dependency scanner

2. A list of extra files to include in the binary which are not automatically detec-
ted by the PAR::Packer dependency scanner

To build biber for a new architecture you need to define these two things as part
of constructing new build scripts:

• Make a new subfolder in the dist directory named after the architecture
you are building for. This name is arbitrary but should be fairly obvious like
‘solaris-sparc-64’, for example.

• Copy the biber.files file from an existing build architecture into this dir-
ectory.

• For all of the files with absolute pathnames in there (that is, ones we are not
pulling from the biber tree itself), locate these files in your Perl installation
tree and put the correct path in the file.

• Copy the build script from a vaguely similar architecture (i.e. Windows/non-
Windows …) to your new architecture directory.

• Change the --link options to point to where the required libraries reside on
your system.

• Change the --output option to name the resulting binary for your architec-
ture.

• Run the build script

14On UNIXequse systems, you may need to specify a full path to the scripts e.g. ./Build

20

The --link options can be a little tricky sometimes. It is usually best to build
without them once and then run ldd (or OS equivalent) on the binary to see which
version/location of a library you should link to. You can also try just running the
binary and it should complain about missing libraries and where it expected to find
them. Put this path into the --link option. The --module options are the same
for all architectures and do not need to be modified. On architectures which have
or can have case-insensitive file systems, you should use the build script from either
Windows or OSX as a reference as these include a step to copy the mainbiber script
to a new name before packing the binary. This is required as otherwise a spurious
error is reported to the user on first run of the binary due to a name collision when
it unpacks itself.

See the PARwiki page15 for FAQs and help on building with PAR::Packer. Take
special note of the FAQs on including libraries with the packed binary16.

3.4.1 Testing a binary build

You can test a binary that you have created by copying it to a machine which prefer-
ably doesn’t have perl at all on it. Running the binary with no arguments will
unpack it in the background and display the help. To really test it without hav-
ing LaTeX available, get the two quick test files from SourceForge17, put them in a
directory and run biber in that directory like this:

biber --convert_control test

This will run biber normally on the test files plus it will also perform an XSLT
transform on the .bcf and leave an HTML representation of it in the same directory
thus testing the links to the XML and XSLT libraries as well as the bibtex parsing
libraries. The output should look something like this (may be differences of biber
version and locale of course but there should be no errors or warnings).

INFO - This is biber 0.9
INFO - Logfile is 'test.blg'
INFO - Converted BibLaTeX control file 'test.bcf' to 'test.bcf.html'
INFO - Reading test.bcf
INFO - Using all citekeys in bib section 0
INFO - Processing bib section 0
INFO - Processing bibtex format file 'test.bib' for section 0
INFO - Decoding LaTeX character macros into UTF-8

15http://par.perl.org/wiki/Main_Page
16http://par.perl.org/wiki/FAQ, section entitled ‘My PAR executable needs some dynamic

libraries’
17https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/

testfiles

21

http://par.perl.org/wiki/Main_Page
http://par.perl.org/wiki/FAQ
https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/testfiles
https://sourceforge.net/projects/biblatex-biber/files/biblatex-biber/testfiles

INFO - Sorting list 'MAIN' keys
INFO - No sort tailoring available for locale 'en_GB.UTF-8'
INFO - Sorting list 'SHORTHANDS' keys
INFO - No sort tailoring available for locale 'en_GB.UTF-8'
INFO - Writing 'test.bbl' with encoding 'UTF-8'
INFO - Output to test.bbl

There should now be these new files in the directory:

test.bcf.html
test.blg
test.bbl

22

	Introduction
	About
	Requirements
	License
	History
	Performance
	Acknowledgements

	Use
	Options and config file
	The "nosort" option

	Input/Output File Locations
	Control file
	Data sources

	Logfile
	Collation and Localisation
	Examples

	Encoding of files
	LaTeX macro decoding
	Examples

	Limitations
	Editor Integration
	Emacs
	TeXworks

	BibTeX macros and the MONTH field
	Biber datasource drivers

	Binaries
	Binary Caches
	Binary Architectures
	Installing
	OSX
	Windows
	Unix/Linux

	Building
	Testing a binary build

