=y
RSA Laboratories. =

PKCS#11v2.1: Cryptographic Token Interface Standard
RSA Laboratories
Proposed Draft 3 —final — October 17, 1999

Table of Contents

6. GENERAL OVERVIEW ..o

6.1 DESIGN GOALS....eotieieieieieieieceitseseceisiesesesscssessessssessssssessessssssstesssssssesesesstesssesssesesesssasesssssasesesesesesssesesesssssesess
6.2 GENERAL MODEL ...uivisieieieieieieieieieieieeeieseseeesesesesesssesessasssssssssssssssssssssssssssseas
6.3 LOGICAL VIEW OF A TOKEN ...coieieieieiececececeiesececesssesecesesesesaseseseseas
(S U S = ST
6.5 APPLICATIONS AND THEIR USE OF CRYPTOK l.ucuieieieiesececesecenees
6.5.1 Applications and ProCeSSES........cucuieieeiiierieeeirieieiecrereenes
6.5.2 Applicationsand threads........oocoereieeeieieiiieiereeer e,
6.6 SESSIONS....oociiieeiririeieseeeeies s eseas e srerns
6.6.1 Read-0nly SESSION SEALES......ceieieeieceiieeieeis et ere e eeerensnnas
6.6.2 Read/Write SESSION SEALEScceiieirieieieeeceeieeeeee et ereesses s srenns
6.6.3 Permitted object accesses by sessions
6.6.4 SESSION EVENES. ...ttt ees et seses s esessesesessssaseseseasassseseasesssensasasesessasasesessassessensazsas
6.6.5 Session handlesand object hANAIES........ccceeeieeeeieieieiiee e
6.6.6 _ Capabilities of sessions.
6.6.7 Example Of USE Of SESSIONSceoveeieieiieeieieis i eeeressssseeessesesssessssesreasnnas
6.7 SECONDARY AUTHENTICATION 1.uitirieieieieieirieeeieieseieisiseessisssssessssssssssssesssens
6.7.1 Using Keys Protected by Secondary Authentication

Copyright O 1994-1999 RSA Laboratories, a division of RSA Data Security, Inc., a Security Dynamics
company. License to copy this document is granted provided that it isidentified as“RSA Data Security, Inc.
Public-Key Cryptography Standards (PKCS)” in all material mentioning or referencing this document. RSA,
RC2, RC4, RC5, MD2, and MD5 are registered trademarks of RSA Data Security, Inc. The RSA public-key
cryptosystem is protected by U.S. Patent #4,405,829. RSA Data Security, Inc., has patent pending on the
RCS5 cipher. CAST, CAST3, CASTS5, and CAST128 are registered trademarks of Entrust Technologies. OS/2
and CDMF (Commercial Data Masking Facility) are registered trademarks of International Business
Machines Corporation. LYNKS is a registered trademark of SPYRUS Corporation. IDEA is a registered
trademark of Ascom Systec. Windows, Windows 3.1, Windows 95, Windows NT, and Developer Studio are
registered trademarks of Microsoft Corporation. UNIX is a registered trademark of UNIX System
Laboratories. FORTEZZA is aregistered trademark of the National Security Agency.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD i

6.7.2 Generating Private Keys Protected by Secondary Authenticationc.ccccccoeveciececceiennee.e. 28

6.7.3 Changing the Secondary Authentication PIN ValU@.........cccccoviiiiiiiiiiiieieecceern

6.7.4 Secondary Authentication PIN Collection Mechanisms
6.8 FUNCTION OVERVIEW. 1.uiiieitiiiicictisisitetit ittt esessistss st eststesss s ssesesssssesssensssesssssssssasensstesassnsssessnssssesssnsseas

NULL PTR ottt

83 SAMPLE PLATFORM- AND COMPILER-DEPENDENT CODE
831 WINS2.oiiiiiiesetee ettt

8.3.2 WINILB ittt

8.3.3 GENENC UNIX ittt sttt sttt ettt er st b b s eser et b enerererenas

9. GENERAL DATATYPES....ccoiiiiiiiiiiiiiii 38

91 GENERAL INFORMATION titititit ittt ittt sttt sttt sttt sttt sttt sttt sttt sttt sttt sttt 38
CK_VERSON; CK_VERION PTR..cciiiiiiiiiiiiiissi 38
CK_INFO; CK_INFO PTR. i
CK_NOTIFICATION ..

92 SLOTAND TOKEN TYPES..ciiieieieieieieiiiiieii i s s
CK_SL.OT_ID: CK_S.OT_ID_PTR
CK_SLOT_INFO; CK_SLOT_INFO_PTR
CK_TOKEN_INFO; CK_TOKEN_INFO PTR...cccouiiiiiiiiiiiiiii i 42

93 SESSION TYPES
CK_SESSION_HANDLE; CK_SESSION_HANDLE PTR...ccoocciiiiiiiiiiiiiiciciii,
CK USER TYPE. ...
CK _STATE ..o
CK_SESSION_INFO; CK_SESSON_INFO_PTR

94 OBJECT TYPES . iiiiieiiieiestis ittt

N CK_OBJECT HANDLE; CK_OBJECT HANDLE PTR.......cococoniiiniiiiiiiiiiiiiciciin,
CK_OBJECT_CLASS, CK_OBJECT _CLASS PTR ...
CK_HW FEATURE TYPE ..o,

CK KEY TYPE ..o
CK_CERTIFICATE TYPE.......oooiiiiiiiiiiiiiiiiiscicn
CK_ATTRIBUTE TYPE ...
CK_ATTRIBUTE; CK ATTRIBUTE PTR...ccoiiiiiiiiiiiiiiiss
CK DATE ..o
95 DATA TYPESFORMECHANISMS ..uieieiiiiieieiiiieieieii s,
CK_MECHANISM_TYPE; CK_MECHANISM_TYPE PTR
CK_MECHANISM; CK_MECHANISM_PTR ..o
CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR
96 FUNCTION TYPES

CK LRV i
CK NOTIEY i
CR UG XXX et
CK_FUNCTION_LIST; CK_FUNCTION LIST PTR; CK_FUNCTION LIST PTR PTR......... 66
97 LOCKINGRELATED TY PES . ititititititititttttieitiest sttt sttt sttt sttt sttt sttt 68

Copyright © 1994-1999 RSA Laboratories.

10.

CK_CREATEMUTEX ..t
CK_DESTROYMUTEX ...ttt
CK_LOCKMUTEX and CK_UNLOCKMUTEX........co.cnienienienienes

CK_C INITIALIZE_ARGS, CK_C INITIALIZE_ARGS PTR

OBJECTS L. s

11.

10.1 CREATING, MODIFYING, AND COPYING OBJECTS...tuieisitiuieieitnieieseie sttt sttt

10.1.1 Creating ObJECES. ..uveiieiecieeeeee e
10.1.2 Modifying ODJECES v,
10.1.3 Copying objects
102 COMMON ATTRIBUTES.

10.3 HARDWARE FEATURE OBJECT S, ..ttt

10.3.1 Clock Objects
10.3.2 MonotoniC COUNtEr ODJECES ...uiviiiiriii i
104 STORAGE OBJECT S uittitiieieieiteteiees it isssssseessssssessessesssssesssssssses st ssseesssessssstssssess et et ss st st s bet et st st assnassssasennsstas

10.5 DATA OBJIECTS . ittt ittt

10.6 CERTIFICATE OBJECTS

10.6.1 X.509 public key certificate objects
10.6.2 X.509 attribute certifiCate 0D ECLS.oueririiiriiii s
10.7 KEY OBJECT S ittt itteieieisesssssesretesesssesssssssesssssse st essetssssetsssessss et ssee et este s st stsssee e es et ee st et e bt es st st essnssesasenansstas

10.8 PUBLIC KEY OBJECTS ..ciueieieitiieieiisisece sttt

10.8.1 RSA public key 0bj€CtS v
10.8.2 9.6.2. DSA public key objects
10.8.3 ECDSA PUDIICKEY ODJECES ..t
10.8.4 Diffie-Hellman public KEY ODJECES. ...ttt
10.8.5 KEA public KeY ObJECtS......vevceeeieieies e

109 PRIVATE KEY OBJECTS.iuiiiiiiiieiieiieissesissiseesisrsssssessssesssseseessnenns

10.9.1 RSA private key objects
10.9.2 DSA private key objects
10.9.3 ECDSAPrivate KEY ODJECES. .ot
10.9.4 Diffie-Hellman private key objects
10.9.5 KEA private KEY ODJECES vt
IO (OIS (0= N A ©)= N = O = VT

10.10.1 Generic secret Key ObjECtS. ..,
10.10.2 RC2 secret Key ODjECtS. ...,
10.10.3 RC4 secret Key ObjECtS. ...
10.10.4 RC5 SECIet KEY ODJECES. .uvviiieieieieicee ettt
10.10.5 DESSECIet KEY ODJECES. .uvviiieitieeeiecteieetesse ettt
10.10.6 DES? secret Key ODJECES....vvvieieieiceeieiiesieseeee
10.10.7 DES3 secret KeY ODJECES....vviieieiiceeieiieiseseee e,
10.10.8 CAST secret Key ODJECES.....viviieirieiceeieiiesesesen,
10.10.9 CAST3 SECIret KEY ODJECES ..ttt
10.10.10 CAST128 (CAST5) secret KEY 0D ECES ..t
10.10.11 IDEA secret Key ObjECtS. ..,
10.10.12 CDMF secret KeYy ObJECES v
10.10.13 SKIPJACK secret key objectS.....cocovvviciiiisiisiiccsiee,
10.10.14 BATON SeCret KEY ODJECES. ...ttt
10.10.15 JUNIPER SECIet KEY ODJECES ..uivieieir i

FUNCTIONS ... 116

111 FUNCTION RETURN VALUES. ...ttt

11.1.1 Universal Cryptoki fUNCtion return VAlUES.oceeieieiieeieiir i
11.1.2 Cryptoki function return values for functions that use a session handle
11.1.3 Cryptoki function return values for functions that USe & tOKEN.......ocereeiiierieiieieeiiirereeenes

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD v

11.1.4 Special return value for application-supplied callbacks
11.1.5 Special return values for mutex-handling funCtionS........coccvcevecciescecciiicceissccsce,
11.1.6 All other Cryptoki function return values..........c.ccccceevevrevenes
11.1.7 Moreonrelativepriorities of Cryptoki errors.........cccccevevee.s
11.1.8 Error code " gotChas”coeeiiieieiiiieieiiiiee sttt
11.2 CONVENTIONS FOR FUNCT IONS RETURNING OUTPUT IN A VARIABLE-LENGTH BUFFER............... 128
11.3 DISCLAIMER CONCERNING SAMPLE CODE
114 GENERAL-PURPOSE FUNCTIONSotoitisieiesierisessietiiseser s
C INitialiZe ottt
C_Finalize..................
C GEINFO 1ttt
C_GetFunctionList
115 SL.OT AND TOKEN MANAGEMENT FUNCTIONS
B GELI OLLISE vttt
GELI O NFO ot
GetTokenlnfo
WaitFOrSotEVeNt ..o,
GetMechani SMLISt ...
GetMeChani SMINFO ...ttt
[nitToken
INItPIN e

ool oNoNoNoNoNoNe@l

116 SESSION MANAGEMENT FUNCTIONS....ccoveitiieiiictiieseteesse s
B OPENSESSION L1ttt et ettt ettt et et e st et ettt et eser et et es et eb et er et et et ererererenane
ClOSESESSI ON..tiririiiiiriririeititit ittt ettt ettt it et et et et et ettt es et et et et st et eser et et eser et et erereb et er et ererererererenane
CloseAll Sessions
GetSeSS ONINfO. e,
GetOperatioNSatecveeeeiieieiiiee i,
SetOPEr At ONSEALE ..ot

O00000I0I0

11.7 OBJECT MANAGEMENT FUNCTIONS ...vvitititiiiititititsietsssststss ittt es sttt s ssesse s sssssssnenssesessnseas

B CreatEOD ECL ..ttt

CopyObject............

DestroyObject

GetObjectSze

GEtAUITDULEVAIUE ...ttt

SEtALTTDULEVAIUE. ...t

FindODBECtSI NIt cv.vveeceececeeiicee s

FindObjects..............

FindObjectsFinal

11.8 ENCRYPTION FUNCTIONS ..ctieititititestetisisseetisisststisstessssssisstssssssesestesssesssesssssssessssnsssetasasnssssnensssessssneseas
C ENCIYPEINIT ettt ettt ettt ettt
C_Encrypt.......ccco......
C_EncryptUpdate
C _ENCryptEinal oottt

11.9 DECRYPTION FUNCTIONS . ..coiiititititititisissietisisstet it sestssisstsssssseseststssesssessnssssesssssessetasasssssssanassessssnseas

B C_Decryptlnit

C_Decrypt ..o
C DECrYptUPALE. ...ttt
C _DECrYPtFINGl cuoveviviecectiieeeteeeeee ettt

1110 MESSAGE DIGESTING FUNCTIONS.....ciiiieceiiiiiicteieesst e

eleol ool oNoNoNoNe@l

Copyright © 1994-1999 RSA Laboratories.

C DigeStUDPAALE. ..vveieeritiiieeteiieieteeeeteeeee ettt
C DIQESKBY ottt ettt
C _DIigeStFiNal .oveeeeieieeeeeiieeiiiee s
1111 SIGNING AND MACING FUNCTIONS. ..ot
11.12
C_VerifyReCOVEN NIt ...
C _VErfYRECOVES v
1113 DUAL-FUNCTION CRYPTOGRAPHIC FUNCTIONS
B C _DigeStENCIyPtUPAALE ...cvevviecececieicieieieeeeeeee ettt
C _DecryptDIigeStUDAALE ...cvvvieeeercieiereieieceeeeeeeee e
C_SanEncryptUpdate........ccceveeeeiieieiiiieesiseiiie i
C_DecryptVerifyupdate.....cceiececeieieeeceieeseeiese e,
1114 KEY MANAGEMENT FUNCTIONS
a C GENEI AtEKEY .ttt ettt ettt
C_GenerateKeyPair
C WrapKeY ..ot
C_UnwrapKey...........
C DErVEKEY. .ot
1115 RANDOM NUMBER GENERATION FUNCTIONS....cuitiititiiieciciititisictssissiesessstess st
B C_SeeARANAOM. vttt ettt ettt ettt ettt eb ettt ettt er st ererenene
C_GenerateRandom
1116 PARALLEL FUNCTION MANAGEMENT FUNCTIONS...ccoiiiiiiieitieisissietissistesieissie s ssesissenessae e
B C_GEtFUNCH ONSEAIUS ...ttt
C_CancelFUNCION ...t
1117 CALLBACK FUNCTIONS....coiititieitstctesssessessieess st
11.17.1 Surrender callbackS.....coieeeeirieiriiieieiiieeeeeeeeeee e
11.17.2 Vendor-defined CallbacKS.ocoeviiieieiiiieeeiee sttt
12, MECHANISIMS ..ot se e ereerees e esers e sas st e ersirensere e enserennerannen
121 RSA MECHANISMS..oocuiiiiieieiiiieiiiteisitstetesessisss st
12.1.1 PKCS#1 RSA key pair generationc.ooccceceeeeeiecveercrerinnes
12.1.2 PKCSHIL RSA L.t ir et sse s sas st s ereasersesers e srs s srserennersren
12.1.3 PKCS#1 RSA OAEP mechaniSm parametersS........oeiiieeeiiieieiiieisiseieiesseieiesssieee s

CK_RSA PKCS MGF_TYPE: CK_RSA PKCS MGF_TYPE_PTR

CK_RSA PKCS OAEP_SOURCE_TYPE; CK_RSA PKCS OAEP_SOURCE_TYPE_PTR...225

CK_RSA PKCS OAEP_PARAMS, CK_RSA PKCS OAEP PARAMS PTR.....ccoccninnneee. 225

1214 PKCSH#LRSA OAEP ...

12.1.5 PKCS#1 RSA PSS mechani SM ParameterS. ... et

CK_RSA PKCS PSS PARAMS; CK_RSA PKCS PSS PARAMS PTR

12.1.6 PKCSHIL RSAPSS.....oiiiiiiiiii s

12.1.7 1SO/IEC 9796 RSA. ...ttt

12.1.8 X.509 (raw) RSA ..o

12.1.9 PKCS#1 RSA signature with MD2, MD5, or SHA-1

12.1.10 PKCS#1 RSA PSSsignature With SHA-1 ..o

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD vi

122 DSA MECHANISMS oottt ettt sttt sttt ss sttt es st et snsssses s s sssetasasnsessnanessesssneneas
12.2.1 DSAKEY PAIT QENEI AtION. . ..cririeieieieiiieieiritieee ittt
12.2.2 DSAWithout hashiNg....coceeeeiieeiieeeseeeeeeeee e
1223 DSAWIth SHAL oo
12.24 FORTEZZA timEStamD.....ccceieieieieieireiir e

123 ABOUT ECDSA ..ottt sttt en sttt sn st snannsetesn e

124 ECDSA MECHANISMS ...oiitiiieieititisitiietisissis ittt st sssssts it ese st esessesssssssesssssessetasasnsessnannsesessnseas
1241 ECDSAKey pair generationccceceeierereeieeriierereerererennes
12.4.2 ECDSA without hashingccceeeeeeeeeeeiiieeieeeeeeeeenn
12.4.3 ECDSAWIth SHA-T ..o,

125 DIFFIE-HELLMAN MECHANISMS ..ottt es sttt en st ssnssssnanssesesnneas
12,5.1 PKCS#3 Diffie-Hellman key pair generation..........cocoeeeeiiieieiiieieiieieiiiieeiiieeeis s
125.2 PKCS#3 Diffie-Hellman key derivation

126 KEA MECHANISM PARAMETERS ..ciititiiictitisitite ittt sttt es sttt es st asnsssssenssesessnneas

CK_KEA DERIVE PARAMS, CK_KEA DERIVE_PARAMS PTR

127 KEA MECHANISMS ottt
12.7.1 KEAKey pair generationcocccceeeeeiieriiiieiiereveeererennes
KEAKEY deriVationoceeiiieieiiieiieeee e

12.8 GENERIC SECRET KEY MECHANISMS
12.8.1 Generic secret key generation

129 WRAPPING/UNWRAPPING PRIVATE KEYS (RSA, DIFFIE-HELLMAN, AND DSA)..cocoiiieiieene 242

1210 ABOUT RC2u.tiiieseee ettt sttt sttt 244
1211 RC2MECHANISM PARAMETERS ...ccititiiitetiiit ittt ettt ettt snas s serarnas 244
B CK_RC2 PARAMS; CK RC2 PARAMS PTR....cccciiiiiiiiiiiiiiiii s 244
CK_RC2 CBC PARAMS. CK_RC2 CBC PARAMS PTR......ccciiiriiiiiiiiiiieeii e 245
CK_RC2 MAC GENERAL_PARAMS; CK_RC2 MAC GENERAL_PARAMS PTR.............. 245
1212 RC2MECHANISMS .ttt sttt ettt esss st s st et as s st et esnasset s ntetanannssssnensresarnas
12.12.1 RC2KeY geNeration .iocccieeeeeiieerieirieieeriireeeieieeeereveeiererennes
12.12.2 RC2-ECB ..ottt sttt
12.12.3 RC2-CBC ittt sttt ettt
12.12.4 RC2-CBC with PKCSpadding
12.12.5 General-1ength RC2-MAC ...ttt
12.12.6 RC2-MAGC ettt sttt ettt
1213 RCAMECHANISMS .ot
12.13.1 RCAKEY QENEratioN .o
12.13.2 RCAuiiieee ettt
1204 ABOUT ROCB. ..ttt ie et s e s i e e s ers s s er e s srsereae et e e srs s e st e s ersareneerar e s
1215 RC5MECHANISM PARAMETERS ...ccitiiiiitctisit ittt esist sttt st snss st
B CK_RC5 PARAMS. CK_RC5 PARAMS PTR.......cocevevivreneee.
CK_RC5 _CBC_PARAMS, CK_RC5 _CBC _PARAMS PTR
CK_RC5 MAC GENERAL_PARAMS; CK_RC5 MAC GENERAL_PARAMS PTR.............. 252
1216 RCEMECHANISMS . .eiieitiiiiieitiis ittt sttt sttt st et esessesenssssesss st tasssnsssenanessesesnneas
12.16.1 RC5KEY QENEIatiON v.vveeiieeiiieieeeii ittt

12.16.2 RC5-ECB
12.16.3 RC5-CBC
12.16.4 RC5-CBC with PKCSpaddingccccvvereviviririreririreriviirerernnes
12.16.5 General-1ength RC5-MAC ...ttt
12.16.6 RCSE-IMAC ...t s e ir e etseeees e s et s erenseresersereesers e ersereansrsren
1217 GENERAL BLOCK CIPHER MECHANISM PARAMETERS
CK_MAC_GENERAL_PARAMS; CK_MAC GENERAL PARAMS PTR
1218 GENERAL BLOCK CIPHER MECHANISMS....oiviiieitiiisiiisiieiisisiisis sttt ssestetssssssss s
12.18.1 General block cipher key generation
12.18.2 General block cipher ECB......ccocoivieieiiiiieiiieieeveeeevevne
12.18.3 General block CIPher CBC ...ttt

Copyright © 1994-1999 RSA Laboratories.

12.18.4 General block cipher CBC with PKCS padding
12.18.5 General-length general block Cipher MAC.......ooiiiiieiiie i
12.18.6 General block cipher MAC.......ccoiieiiiiieeiieeeeeeeevevne
1219 DOUBLE-LENGTH DESMECHANISMS..oovciiiiiiciiiessicissseinnens
12.19.1 Double-length DESkey generation........ccccceeveccccecceserennee.n.
1220 SKIPJACK MECHANISM PARAMETERS....cocviiiitiiiiiiitetitsseie sttt sttt
CK_SKIPJACK PRIVATE WRAP_PARAMS
CK_SKIPJACK PRIVATE WRAP PARAMS PTR ...t 262
CK_SKIPJACK RELAYX PARAMS. CK_SKIPJACK RELAYX PARAMS PTR.......c.co....... 263
1221 SKIPJACK MECHANISMS ..ottt ssssesis st esss et sssas et ssssetssannssssnenssesarnes
12.21.1 SKIPJACK key generation
12.21.2 SKIPJACK-ECBBA ..o et srsis et erenssreesses e sre e srsereenerenen
12.21.3 SKIPJACK-CBCBA......cocuieieiieiiieiiiiiie i
12.21.4 SKIPJACK-OFBBAccoiuiieiiiieiiieiiei it sssrs e s ees e sre e srserenersren
12.21.5 SKIPJACK-CEBBAccoiuiieieiieieieiieieieie it ee st eee e e sre s erenersnen
12.21.6 SKIPJACK-CEB32.......coiiiiiiiiiiii s
12.21.7 SKIPJACK-CEBI6ccceiviiieiiiiiicc s
12.21.8 SKIPJACK-CFEBS........cccocvieiiiiiiiiiiic s
12.21.9 SKIPJACK-WRAP ..ottt ir e ere s sreas st s eeenserseserseresers e srsereeesrsnen
12.21.10 KIPJACK-PRIVATE-WRAP
12.21.11 SKIPJACK-RELAYX....coiiiriiieiiiiiein i ieescecneenes
1222 BATON MECHANISMS...cuivieiieiiiiiiiisiesesisssssie sttt
12.22.1 BATON K&y QENEratioN.....cccverieeeiririeieeriiireeiieeeeeveveeerevnne
12.22.2 BATON-ECBI28 ...ttt
12.22.3 BATON-ECBOB......cciiiiieititiiistetees sttt sttt
12.22.4 BATON-CBCI28.....coieiiiieiiieeeee et
12.22.5 BATON-COUNTER.......coccieeiiiriiiiiiiii s
12.22.6 BATON-SHUFFLE.........ccooiiiiiiiii i
12.22.7 BATON WRAP.ottt i ee e ses e ss st s eeenserseserssreasere s srsereenersren
1223 JUNIPER MECHANISMS ...oiiiiititiiiiiist ittt esi sttt esss st sssass et ss st esssesessassetss s st snasnssssnsnssesasnas
12.23.1 JUNIPER key generation
12.23.2 JUNIPER-ECBI128........cccuiiiiiiiiiiriiieie i sesis s e srsiserssressra e erserenersinen
12.23.3 JUNIPER-CBCI28ot erss et erenssreeeees s sre e srserensranen
12.23.4 JUNIPER-COUNTER.........cccoiiiiiiiiiii i
12.23.5 JUNIPER-SHUFFLEcccooviiiiiiiic i
12.23.6 JUNIPERWRAP.......ociiiiiiiiiii s
1224 MD2 MECHANISMS. ..ttt ittt ststssss sttt st esssesssssssessssssssetasssnsessnanassesasnneas
12,241 MD2.... ittt er et sr et s e e et e er st eas et e ers e e ersren
12.24.2 General-length MD2-HMAC ..o
12.24.3 MD2-HMACot
12.24.4 MD2Key derivationcoccceeeeeiiieieiiieeiieeieeeveeevevennes
1225 MDS5 MECHANISMS. ottt ittt esss et sssasess s st et esss s essassesss s ssetsnasssssensnssesarnas
12.25. 0 M5 ittt sr et s er e er e ers et e er e e
12.25.2 General-length MD5-HMAC ..o
12.25.3 MD5-HMACot
12.25.4 MD5KeY derivation ...c.coceeeiieeeiiiieieeeeeeeee e
1226 SHA-1 MECHANISMS. .ottt ese st esssessnsssses s snessetasasnsessnennsesessnseas
12,261 SHA L ottt
12.26.2 General-length SHA-1-HMAC
12.26.3 SHA-T-HMAC .ottt sttt
12.26.4 SHA-1 KEY AEriVatiON. vttt
1227 FASTHASH MECHANISMS
12.27.1 FASTHASH. ..ot ee e e e ers e sra e ses e e ereren
1228 PASSWORD-BASED ENCRYPTION/AUTHENTICATION MECHANISM PARAMETERS......ccccciveenes 280

Copyright © 1994-1999 RSA Laboratories.

PKCS #11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD Vil

CK_PBE_PARAMS; CK_PBE _PARAMS PTR....ccccoeiiirititiiietiieeeieeeeeeee e 280
1229 PKCS#5AND PKCS#5-STYLE PASSWORD-BASED ENCRY PTION MECHANISMS....ccvveviecriiienes 281
12.29.1 MD2-PBE fOrf DES-CBC ..ottt
12.29.2 MD5-PBE for DES-CBC ...,
12.29.3 MD5-PBE for CAST-CBC....ccoooeieiiiieeiiesseeseeeesens
12.29.4 MD5-PBE fOr CAST3-CBC....citiiiiieitiieiiieisttetess ettt
12.29.5 MD5-PBE for CAST128-CBC (CAST5-CBQC) ..ottt
12.29.6 SHA-1-PBE for CAST128-CBC (CAST5-CBC) .ccocececeiiiicciiiccice,
12.29.7 PKCS#5 PBKDF2 key generation mechanism parameters
CK_PKCS5 PBKD2 PSEUDO _RANDOM_FUNCTION_TYPE;

CK _PKCS5 PBKD2 PSEUDO RANDOM_FUNCTION TYPE PTR....ccccoviiiiiiiiiie e, 283
CK_PKCS5 PBKD2 SALT SOURCE_TYPE;
CK _PKCS5 PBKD2 SALT SOURCE TYPE PTR....cciciiiiiiiiiii s 283
CK_PKCS5 PBKD2 PARAMS. CK_PKCS5 PBKD2 PARAMS PTR....cccciieiiiieiiee 284
12.29.8 PKCS#5 PBKD2 KEY QENEI AtiON ...cvvviieiiiiiieieieiieieiiie sttt 285
1230 PKCS#12 PASSWORD-BASED ENCRY PTION/AUTHENTICATION MECHANISMS..cuovieiiceieene, 285
12.30.1 SHA-1-PBE for 128-bit RC4coooveviiiieiiiee,

12.30.2 SHA-1-PBEfor 40-bit RCA.......ccooieiiiieiiieeiisiieseesesssessseesesneas
12.30.3 SHA-1-PBE for 3-key triple-DES-CBC
12.30.4 SHA-1-PBE for 2-key triple-DES-CBC

12.30.5 SHA-1-PBE for 128-bit RC2-CBC.....c.ccovvsiieeiiieresenen,
12.30.6 SHA-1-PBE for 40-bit RC2-CBC......cccocoveveiiieiiierseeenen,
12.30.7 SHA-1-PBA for SHA-1-HMAC ...,
1231 SET MECHANISM PARAMETERScvitiiititiiititetitit sttt es sttt es et ssnsssssenssesennneas
CK_KEY WRAP_SET OAEP_PARAMS. CK_KEY WRAP_SET OAEP_PARAMS PTR......289
1232 SET MECHANISMS ..ottt ettt sttt sttt esessessnssss et s st asasnsssenanensesennneas
12.32.1 OAEP key wrapping for SET ..o
1233 LYNKSMECHANISMS. .ottt
12.33.1 LYNKSKEY WIAPDINQ. ettt itieisit st ssis et st ssesssss st ssssenassssnesssssenananssenanas
1234 SS. MECHANISM PARAMETERS.....ctiiiiititisiiitititit sttt es sttt en st ssnsssssensaesesanneas
CK_SS.3 RANDOM _DATA ottt
CK_SSL .3 _MASTER KEY DERIVE _PARAMS
CK_SS 3 MASTER KEY DERIVE PARAMS PTR...coiiiiiieieses sttt
CK_SS. 3 KEY MAT OUT: CK_SS.3 KEY MAT OUT PTR....cccovvvreeee

CK_SS8.3 KEY_MAT PARAMS; CK_SS. 3 KEY MAT_PARAMS PTR
1235 SS MECHANISMS ..ottt ettt ens s
12.35.1 Pre_master Key QeNeratioN......cocceiieeeirieieeeeiiiieies ittt
12.35.2 Master KeY deriVation.......cociiiieiiieiiiieee ittt
12.35.3 Key and MAC derivationc.ccceeeeeeeiiieiiieieereveerererennes
12.35.4 MD5 MACINGINSSL 3.0 i,
12.35.5 SHA-1 MACING IN S 3.0 ittt
1236 PARAMETERS FOR MISCELLANEQUS SIMPLE KEY DERIVATION MECHANISMS....cccociveieiicrireenees 298
CK_KEY DERIVATION_STRING DATA; CK_KEY DERIVATION_STRING DATA PTR....298
CK_EXTRACT PARAMS, CK_EXTRACT PARAMS PTR
1237 MISCELLANEOUS SIMPLE KEY DERIVATION MECHANISMS........
12.37.1 Concatenation of a base key and another key
12.37.2 Concatenation of a base key and data..........coeevieiiiieiiiiiiiies s
12.37.3 Concatenation of data and a base KeY........c.ceevvieiiiieieiiiees s
12.37.4 XORing of a key and data
12.37.5 Extraction of one key fromanother KeYcocoovveiiieeiiiiiiiees s
1238 RIPE-MD 128 MECHANISMS. ..ottt isse st es sttt ssesesse s sssssssnanessessninneas
12.38.1 RIPE-MD 128........cccciiuiiieiieieiiiiiieiiec i
12.38.2 General-length RIPE-MD 128-HMAC.......ccccooiiiieiiiiinee,
12.38.3 RIPE-MD 128-HMAC.......oiiiiiiiiieiiieie i srs e e e sressre e ereesrsinas

Copyright © 1994-1999 RSA Laboratories.

12.39 RIPE-MD 160 MECHANISMS

12.39.1 RIPE-MD 160ccoiiiiiiiiiiiiiiicicisiisinns
12.39.2 General-length RIPE-MD 160-HMAC ...ttt 306
12.39.3 RIPE-MD 160-HMAGC ...t s 307
13. CRYPTOKI TIPSAND REMINDERS........cccoiiiiiiiiiiiiis e 307
131 OPERATIONS, SESSIONS AND THREADS. ...ttt ittt sttt
132 MULTIPLE APPLICATION ACCESSBEHAVIOR
133 OBJECTS ATTRIBUTES AND TEMPLATES. . cotieitieititieiesiis sttt
134 SIGNING WITH RECOVERY L.ttt
APPENDIX A: TOKEN PROFILEScocoiiiiiiiiiiii s 311
APPENDIX B: COMPARISON OF CRYPTOKI AND OTHERAPIS. ..o 313

List of Figures

FIGURE 1, GENERAL CRYPTOKI MODEL........cueteieeeceeeesesseesecaesesssesessssesesssesssssesssssessssssesesans 14
FIGURE 2, OBJECT HIERARCHYcocvviviuiecsctetesiesesesesesss e st ssssssesesesss s s sesesassssssesesasans 15
FIGURE 3, READ-ONLY SESSION STATEScveteiieecueteteseescsetesssesessesesesssssssssesssassssssssesssans 20
FIGURE 4, READ/WRITE SESSION STATEScvcviviieiueiereieesesesesssssssesesesssssssesesessssssssesessans 21
FIGURE 5, OBJECT ATTRIBUTE HIERARCHYoeveeerecreiiieececaete e esesaeaesesesessese e senenaees 727269
FIGURE 6, HARDWARE FEATURE OBJECT ATTRIBUTE HIERARCHYcocvveececrrereenes 777774
FIGURE 7, CERTIFICATE OBJECT ATTRIBUTE HIERARCHY.......cvoveveerereeeeeeeeeeeacee e 818177
FIGURE 8, KEY ATTRIBUTE DETAIL.....cvviueeeteteieectese et sssse et naes 858581

List of Tables

TABLE L, SYMBOLS. .t tttttiutssietesseesssseetasseeeseeetasseessaeetasereassaeataseetassseassrenesesseassresesreseassnes 109
T ABLE 2, PREFIXES. .. 1.uttttttteetssseesssesssssssasseesasensaseeeassseasseeatsseseassaeassseseassaeasseesessesessssenens 10
TABLE 3, CHARACTER SET .. riuttsitittsitestetastetessreetassetasaresssrestassressseesssestasseessssesssresesesreseans 12
TABLE 4, READ-ONLY SESSION STATES ...ututiuttereutesietssseeesssessssseasssesssessssssessssessssesesssseens 20
TABLE S, READ/WRITE SESSION STATES ... urtstutisieterietasireosssetastsesssesssessssssesssseesssesesssseseses 21
TABLE 6, ACCESS TO DIFFERENT TYPES OBXECTSBY DIFFERENT TYPESOF SESSIONS............ 22
TABLE 7, SESSION EVENT Sttt tetsettriatassetasseessreesassetasareassrestassreessaestsseseaesaeesreseseeresesreseans 22
TABLE 8, SUMMARY OF CRYPTOKI FUNCTIONS ... reetetsettssetsssesasssesssesssssesssssessssesessssenees 29
TABLE D, SLOT INFORMATION FLAGS.riuttrttireetssietassreossretastasessseesssessaeseessssessssesesssseseans 41
TABLE 10, TOKEN INFORMATION FLAGStttttereetseietseseeeesesssssesasssssssessssseeasseessssesessssenees 44
TABLE 11, SESSION INFORMATION FLAGS ...tututirietssietersriosssetsssesesssesssessasseesssseesseesessssesesns 49
TABLE 12, MECHANISM INFORMATION FLAGS ...vuttrietitseeeseessssesessssesssssssssessessessssesessssenees 61
TABLE 13, C INITIALIZE PARAMETER FLAGS. ... reuttsietesirietssetssisesssesssessseseesssseessseeesssresesns 71
TABLE 14, COMMON OBJECT ATTRIBUTESeuttreuterietessreosssetsseseasssesssesesssssssssesssesessssenees 76
TABLE 15, HARDWARE FEATURE COMMON ATTRIBUTES. ...2.ctrtrtrisitssssiseseessseesseesessssesees 77
TABLE 16, CLOCK OBJECT ATTRIBUTESrtutteseutesietssssessssetsssnsasssssssesssssnsssssesssesessssenees 77
TABLE 17, MONOTONIC COUNTER ATTRIBUTES ... rietrtrirsseetastesesssesssessssseessssessssesesssseseses 78
TABLE 18, COMMON STORAGE OBJECT ATTRIBUTESveutsseetsseeeessasesssesessseessssssssesessssenesns 78
TABLE 19, DATA OBJECT ATTRIBUTES. . ..urtststereetssietasareossretastrsessseesssessasssesssseesseesessssesees 79
TABLE 20, COMMON CERTIFICATE OBJECT ATTRIBUTES. ... reutreeirssesssessssseesessesssesesssseneses 81

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD X

TABLE 21, X.509 CERTIFICATE OBJECT ATTRIBUTESuuiiiiiiiuiieiiiiueeieiissereseiissesssisssseeesanns 81
TABLE 22, X.509 ATTRIBUTE CERTIFICATE OBJECT ATTRIBUTES. ... cuiiiiiiiiiiiisiiieiesinneesneeas 83
TABLE 23, COMMON FOOTNOTES FOR KEY ATTRIBUTE TABLES.......uuuiiiiiiieiiiiiiiiesssisseeeeeanns 85
TABLE 24, COMMON KEY ATTRIBUTES ...uttiiitttiiistisiissieiissseiiseseisessissssassssssssessssesssssessssens 86
TABLE 25, COMMON PUBLIC KEY ATTRIBUTESutiiiiiiiueieiiiisueeesiiisserssisssreseiissesssisssseeesans 87
TABLE 26, MAPPING OF X.509 KEY USAGE FLAGSTO CRYPTOKI| ATTRIBUTES FOR PUBLIC
KDY Sttt ittt ettt ettt e ettt e ettt e ettt e e oo kbt e e e s eAbb e e e e eAbb e e e e ekhbeeesenbrseeeabbrreseabbreasaanrreeesanns 88
TABLE 27, RSA PUBLICKEY OBJECT ATTRIBUTESutiiiitiiiiiiiiitiiiiiessisseessssnsssssessssseesasenas 88
TABLE 28, DSA PUBLIC KEY OBJECT ATTRIBUTES.....iiiittiiiiiiuueieiiiissereeisssreseiissesssisssseessanns 89
TABLE 29, ECDSA PUBLICKEY OBJECT ATTRIBUTES....uuiiiitiiiitiiiiiissiseeiissneisssessssseesasenes 90
TABLE 30, DIFFIEHELLMAN PUBLIC KEY OBJECT ATTRIBUTES......uutiiiiiiiiiiiiiiisenssisisseeeeanns 91
TABLE 31, KEA PUBLIC KEY OBJECT ATTRIBUTES. .. .uiiiitiiiiitiriiiseiiiiissisessissesssssessssseesaseees 92
TABLE 32, COMMON PRIVATE KEY ATTRIBUTES0eiiiiittiiiiiisueeesiiisseresasssresesissesssisssssessans 93
TABLE 33, MAPPING OF X.509 KEY USAGE FLAGSTO CRYPTOKI ATTRIBUTES FOR PRIVATE
KDY Sttt ittt ettt ettt e ettt e ettt e ettt e e oo kbt e e e s eAbb e e e e eAbb e e e e ekhbeeesenbrseeeabbrreseabbreasaanrreeesanns 95
TABLE 34, RSA PRIVATEKEY OBJECT ATTRIBUTESiiiiuuiiitiiiiiiieiiissisessissesisssessisseessseees 95
TABLE 35, DSA PRIVATEKEY OBJECT ATTRIBUTES.uutiiiiiitiireiiiiireisiisseresesissesssisssseeasanns 97
TABLE 36, ECDSA PRIVATEKEY OBJECT ATTRIBUTES. ...eiiiiiiiiitiiiiiisiiiiiesisseessssesssseesneeas 98
TABLE 37, DIFFIEEHELLMAN PRIVATE KEY OBJECT ATTRIBUTESuviiiiiiiiiiiiiirerssiseneeeeanns 929
TABLE 38, KEA PRIVATE KEY OBJECT ATTRIBUTES ...iiiitiiiiieiiiiesiisieesissessinsessissesssseessanes 100
TABLE 39, COMMON SECRET KEY ATTRIBUTES. ... uuuiiiiiituiiiiiiisreieiaisseressiissenesiasssseesassenaeas 102
TABLE 40, GENERIC SECRET KEY OBJECT ATTRIBUTES. .. utiiitiiiiiiiiiiiesiiniessinsessssessseeesans 103
TABLE41, RC2 SECRET KEY OBJECT ATTRIBUTESciiiutiiiiiiitreieiiisseeessiisseseesiisseeesassenaeas 104
TABLE 42, RCA SECRET KEY OBJECT ..iiiutiiiiitiiiitiisiiseisiisessisessssessasssssasessonsesssssessssessssnes 104
TABLE 43, RC4 SECRET KEY OBJECT ...ttiiiiiiittiiiiiiiiiisiississsisisserssassssesssissssessasssssesasssenaas 105
TABLE 44, DES SECRET KEY OBJECT ..iiutiiiiitiiiittisiiseisiisessiisessaisessassessissessessesssssessssessssnes 106
TABLE 45, DES2 SECRET KEY OBJECT ATTRIBUTES.....utuiiiiiiitreieiiisseeessiisseseeiiisseeesasseneeas 107
TABLE 46, DES3 SECRET KEY OBJECT ATTRIBUTESiiictiiiiieiiiiisiiieesissessissessssessseeesans 108
TABLE 47, CAST SECRET KEY OBJECT ATTRIBUTESuuuiiiiiiittiieiiiiseressiisseneeiiisseeesassenaeas 108
TABLE 48, CAST3 SECRET KEY OBJECT ATTRIBUTESuutiiiiiiiiiiiiiiiesiisiessissessnsessneeesans 109
TABLE49, CAST128 (CAST5) SECRET KEY OBJECT ATTRIBUTES....cciiiiiiiiiiiiiiieeiesiinneeeass 110
TABLE S0, IDEA SECRET KEY OBJECT ...iutiiiiiiiiiiiisiiteisiiseisiisessaisessassessasessissesssssessasessssnes 111
TABLES1, CDMF SECRET KEY OBJECT ..iiiiiittiiiiiitueiiiiiisserssiiissesssassssesssaissssessssssssesasssenaas 111
TABLE 52, SKIPJACK SECRET KEY OBJECT ...iiiiutiiiitiiiiisiisiiessiiessissesssssessessesssnsessssssssanes 112
TABLES53, BATON SECRET KEY OBJECT ...uuttiiiiiittiiiiiisiirssiiisserssassseressiissenesissssssesasssenaass 113
TABLE 54, JUNIPER SECRET KEY OBJECT ...utiiiitiiiiiteisiisiisiiesssiessassesssssessinsesssssessssssssnns 114
TABLE 55, MECHANISMSVS. FUNCTIONS. .. . utiiiiiiueiiiiiisserssiiisseeesassseressiisssnessssssesesasssenaaas 219
TABLES6, PKCS#1 RSA: KEY AND DATA LENGTH tuiiiiuiiiiiiiiiiiiiiiiieesiieessinsessinessneeesnnas 224
TABLES7, PKCS#1 RSA: MESSAGE GENERATION FUNCTIONS......cuuiiiiiiiiiiiiiiieeesiiieeeaes 225
TABLES8, PKCS#1 RSA OAEP: ENCODING PARAMETER SOURCES......cueiiiiieiiirieiseeeianes 225
TABLES9, PKCS#1 RSA OAEP: KEY AND DATA LENGTH ..uvviiiiiiiiiiiiiiiiieneciiveeeesanneeeaes 227
TABLE 60, PKCS #1 PSS OAEP: KEY AND DATA LENGTH...ciiiiiiiiiiii i siiiissiseesveeesaees 228
TABLE 61, ISO/IEC 9796 RSA: KEY AND DATA LENGTH....ooiiuiiiiiiiiiiiiiiiiescsiieeeessnienees 229

Copyright © 1994-1999 RSA Laboratories.

TABLE 62, X.509 (RAW) RSA: KEY AND DATA LENGTH ..iiiiiiuiiiiiiiiiieisiiiienecsineeeesasnnenaas 230
TABLE 63, PKCS #1 RSA SIGNATURESWITH MD2, MD5, orR SHA-1: KEY AND DATA

L EN G T H &ttt ettt e ettt e sttt e e et e e ettt e e e et e e e ssb e e e e ek e e s e bbneeeeesnbeeeeeanbneasseanrrnaesann 231
TABLE 64, PKCS #1 RSA PSS SIGNATURESWITH SHA-1: KEY AND DATA LENGTH....... 232
TABLE 65, DSA: KEY AND DATA LENGTH ..uuttiiiiiitiiiiiiisiiissiiisseissassseeessiissesesissssseesassenaaas 233
TABLE 66, DSA WITH SHA-1: KEY AND DATA LENGTH...iiiitiiiiiiiiiiiieiiiesseiiessisessneeesnnes 234
TABLE 67, FORTEZZA TIMESTAMP. KEY AND DATA LENGTH.....cciiuiiiiiiiiiiiciiiiiiessiiieeae, 234
TABLE 68, ECDSA: KEY AND DATA LENGTH .iiiiutiiiiiiiiitiisiiiesiiessiiieesiseessinsessnsessseessans 236
TABLE 69, ECDSA WITH SHA-1: KEY AND DATA LENGTH....uuiiiiiiiiiiiiiiieneciiseeeessisnenees 237
TABLE 70, KEA PARAMETER VALUES AND OPERATIONSuvuiiiiiiiiiiieiiiiissiseessinseesneeesnnes 241
TABLE 71, RC2-ECB: KEY AND DATA LENGTH....uuuiiiiiitiiiiiiiiiiiieisisiiisssiisseseesisseeesasssenaaas 246
TABLE 72, RC2-CBC: KEY AND DATA LENGTH ..tiiiitiiiiitiiiiiissiiissiiieesiieessesnessnnessneessnes 248
TABLE 73, RC2-CBC WITH PKCS PADDING: KEY AND DATA LENGTH ..uvvviiiiiiiiiiiiienen, 249
TABLE 74, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH ..eoiiiiiiiiiciiiec i 249
TABLE 75, RC2-MAC: KEY AND DATA LENGTH ..uuuiiiiiiiiiiiiiiiiiecsiiiiessseisiesessssneeeesssssenaaas 250
TABLE 76, RC4: KEY AND DATA LENGTH...iitiiiitiiiittisiitiisiiseesiiessissesssssessensessssessasesesanes 251
TABLE 77, RC5-ECB: KEY AND DATA LENGTH. . .uuuiiiiiitiiiiiiiitiiieiiisieressiissesessissesesasssenaeas 254
TABLE 78, RC5-CBC: KEY AND DATA LENGTH ..tiiiitiiiiitiiiiieisiiessiiiesssieessissessnsessneeesnns 255
TABLE 79, RC5-CBC WITH PKCS PADDING: KEY AND DATA LENGTH ..evvviiiiiiiiiiiiiinen, 256
TABLE 80, GENERAL-LENGTH RC2-MAC: KEY AND DATA LENGTH ..ooiiviiiiiieiiiic e 256
TABLE 81, RC5-MAC: KEY AND DATA LENGTH ..uuiiiiiiiiiiiiiiiiiiecsiiiiessseieesessssseeeesasssenaeas 257
TABLE 82, GENERAL BLOCK CIPHER ECB: KEY AND DATA LENGTH ..ooiiiiiiiiiiciiiic e 259
TABLE 83, GENERAL BLOCK CIPHER CBC: KEY AND DATA LENGTH..coiiiciiiiiiiiieie s, 259

TABLE 84, GENERAL BLOCK CIPHER CBC WITH PKCS PADDING. KEY AND DATA LENGTH260
TABLE 85, GENERAL-LENGTH GENERAL BLOCK CIPHER MAC: KEY AND DATA LENGTH...261

TABLE 86, GENERAL BLOCK CIPHERMAC: KEY AND DATA LENGTH....ccviiiiiiiiiiie i 261
TABLE 87, SKIPJACK-ECB64: DATA AND LENGTH ..eiiciiiiiiiiiiiiiessieecsieessiesssieeecnnee e 265
TABLE 88, SKIPJACK-CBC64: DATA AND LENGTH...ccieiiiiiiiiiiiiiiiiiii s 265
TABLE 89, SKIPJACK-OFB64: DATA AND LENGTH...eccuiiiiiieiiiiieeiieecsieessiesssieeecnneeesnnis 266
TABLE 90, SKIPJACK-CFB64: DATA AND LENGTH ...coieeiiiiiiiiiiiiii i 266
TABLE 91, SKIPJACK-CFB32: DATA AND LENGTH ..eeicuiiiiiiiieiiiiesiieecsiesssieessiseecnnee e 267
TABLE 92, SKIPJACK-CFB16: DATA AND LENGTH ...cciiiiiiiiiiiiiiii i 267
TABLE 93, SKIPJACK-CFB8: DATA AND LENGTH ...ceiiitiiiiiiiiiiiiissiieecsiessssessssseesnneeesnnis 268
TABLE94, BATON-ECB128: DATA AND LENGTH ..vccuviieiiiiiiiiiiiiiii i 269
TABLE 95, BATON-ECB96: DATA AND LENGTH ..iiuiiiiiiiiiiiiiieiiiisssieecsiessssesssnseesnneeesnnis 269
TABLE 96, BATON-CBC128: DATA AND LENGTH...ccviiiiiiiiiiiiii i 270
TABLE 97, BATON-COUNTER: DATA AND LENGTH ...uvviiiiiiiciiiieciieecsieessiee s e e e 270
TABLE 98, BATON-SHUFFLE: DATA AND LENGTH ...ciieiiiiiiiiiiii i 271
TABLE 99, JUNIPER-ECB128: DATA AND LENGTH ...eeiiiiiiiiiieiiiiisiieessiesssseessnseesnseeesnns 272
TABLE 100, JUNIPER-CBC128: DATA AND LENGTH....ccciiiiiiiiiiiiiii i 272
TABLE 101, JUNIPER-COUNTER: DATA AND LENGTH ..cviiiiiiiiiiiiiiicsiiiiseei i 273
TABLE 102, JUNIPER-SHUFFLE: DATA AND LENGTH ...cooviiiiiiiiiiii i 273
TABLE 103, MD2: DATA LENGTH ..eiiuttiiiiiiiiiissiiessssseesasessassessansessassssssnsesssnsessssseesnsseesnnes 274

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD Xii

TABLE 104, GENERAL-LENGTH MD2-HMAC: KEY AND DATA LENGTH......cociviriiiiiiiiinns 274
TABLE 105, MD5: DATA LENGTH ..t seisisesseseessssasssssssesssssssassaasasasasssasasanas 276
TABLE 106, GENERAL-LENGTH MD5-HMAC: KEY AND DATA LENGTH.....ccociiiriiiiiiiiinnns 276
TABLE 107, SHA-1: DATA LENGTH ..uuuiiiiiiiiiiiieieiiieeesessesesseseisissasssssssesssssasassssaasasasasasaaanns 278
TABLE 108, GENERAL-LENGTH SHA-1-HMAC: KEY AND DATA LENGTH......uuvieiiiiiiiiinnnns 278
TABLE 109, FASTHASH: DATA LENGTH. tuuttttiiiiiiiiiiiiiieiieieseiiiiissseeseeesesiisssssseeeessssannne 280
TABLE 110, PKCS #5 PBKDF2 KEY GENERATION: PSEUDO-RANDOM FUNCTIONS.......... 283
TABLE 111, PKCS #5 PBKDF2 KEY GENERATION: SALT SOURCES....cceiiiiiiiiiiiiiiieiiieinnn, 284
TABLE 112, MD5 MACINGIN SSL 3.0: KEY AND DATA LENGTH ..uvuiiiiiiiiiiiiiiieiieesessennns 297
TABLE 113, SHA-1 MACINGIN SSL 3.0: KEY AND DATA LENGTH .ceeiiiiiiiiiieieieeeceenn, 298
TABLE 114, RIPE-MD 128: DATA LENGTH..uuuttiiiiiiiiiiitteeiiiieiiississssseeiisssesissssseeeeesssssassnes 305
TABLE 115, GENERAL-LENGTH RIPE-MD 128-HMAC: .. .ciiiiiiiiiieiieieeeeeeeeeeeeeeeeeieeeieeeean, 306
TABLE 116, RIPE-MD 160: DATA LENGTH..uuuttiiiiiiiiiiitteeiiiissiississssseeiisssesissssssseeaassssassnes 306
TABLE 117, GENERAL-LENGTH RIPE-MD 160-HMAGC: .. .ccciiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeieeean, 307
1. Foreword

As cryptography begins to see wide gpplication and acceptance, one thing is increasingly clear:
if it is going to be as effective as the underlying technology dlows it to be, there must be
interoperable standards. Even though vendors may agree on the basic cryptographic
techniques, compatibility between implementations is by no means guaranteed. Interoperability
requires strict adherence to agreed-upon standards.

Towards that goa, RSA Laboratories has developed, in cooperation with representatives of
industry, academia and government, a family of standards caled Public-Key Cryptography
Standards, or PKCS for short.

PKCS is offered by RSA Laboratories to developers of computer systems employing public-
key and relaed technology. It is RSA Laboratories intention to improve and refine the
gtandards in conjunction with computer system developers, with the god of producing standards
that mogt if not al developers adopt.

Therole of RSA Laboratories in the standards-making processis four-fold:
1. Publish carefully written documents describing the standards.

2. Solicit opinions and advice from developers and users on useful or
necessary changes and extensions.

3. Publish revised standards when appropriate.

4. Provide implementation guides and/or reference
implementations.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 2

During the process of PKCS development, RSA Laboratories retains fina authority on each
document, though input from reviewersiis clearly influentid. However, RSA Laboratories god
is to accelerate the development of formal standards, not to compete with such work. Thus,
when a PKCS document is accepted as a base document for a forma standard, RSA
Laboratories relinquishes its “ownership” of the document, giving way to the open sandards
development process. RSA Laboratories may continue to develop related documents, of
course, under the terms described above.

The PKCS family currently includes the following documents:
PKCS #1: RSA Encryption Standard. Version 1.5, November 1993.

PKCS #3: Diffie-Hellman Key-Agreement Standard. Version 1.4, November
1993.

PKCS #5: Password-Based Encryption Standard. Version 1.5, November
1993.

PKCS #6: Extended-Certificate Syntax Standard. Version 1.5, November
1993.

PKCS #7: Cryptographic Message Syntax Standard. Version 1.5, November
1993.

PKCS #8: Private-Key Information Syntax Standard. Version 1.2, November
1993.

PKCS #9: Selected Attribute Types. Version 1.1, November 1993.

PKCS #10: Certification Request Syntax Standard. Version 1.0, November
1993.

PKCS #11: Cryptographic Token Interface Standard. Version 1.0, April 1995.

PKCS #12: Personal Information Exchange Syntax Standard. Version 1.0 is
under construction.

PKCS documents and information are available online from RSADSI’s web server. To get
them, go to RSADSI's homepage (http://wwv. rsa. con); then go to RSA
Laboratories, then go to the PKCS page. There is an dectronic mailing lig, “pkcs-t ng”,
ar sa. com for discusson of issues relevant to the “next generation” of the PKCS standards.
To subscribe to this ligt, send emal to maj ordono a rsa. com with the line
“subscri be pkcs-tng” in the message body. To unsubscribe, send e-mail to
maj or dono a r sa. comwith the line‘unsubscri be pkcs-tng” in the message

body.

Copyright © 1994-1999 RSA Laboratories

Page 3

Thereisdso an dectronic maling lig, “cr ypt oki ", ar sa. com specificaly for discusson
and development of PKCS #11. To subscribe to this list, send e-mail to maj or dono at
rsa. comwiththeline“subscri be crypt oki ” inthe message body. To unsubscribe,
send email tomaj or dono ar sa. comwiththeline“unsubscri be cryptoki ”in

the message body.

Comments on the PKCS documents, requests to register extensions to the standards, and
suggestions for additional standards are welcomed. Address correspondence to:

PKCS Editor

RSA Laboratories

100 Marine Parkway, Suite 500
Redwood City, CA 94065
(650)595-7703

fax: (650)595-4126

emdl: pkcs-edi tor arsa.com

It would be difficult to enumerate adl the people and organizations who helped to produce
Verson 2.01 of PKCS #11. RSA Laboratories is grateful to each and every one of them.
Especid thanks go to Bruno Couillard of ChrysdisITS and John Centafont of NSA for the
many hours they spent writing up parts of this document.

For Version 1.0, PKCS #11's document editor was Aram Pérez of International Computer
Services, under contract to RSA Laboratories; the project coordinator was Burt Kaliski of
RSA Laboratories. For Verson 2.01, Ray Sidney served as document editor and project
coordinator.

2. Scope

This gandard specifies an gpplication programming interface (API), cadled “Cryptoki,” to
devices which hold cryptographic information and perform cryptographic functions. Cryptoki,
pronounced “crypto-key” and short for “cryptographic token interface” follows a smple
object-based gpproach, addressing the goals of technology independence (any kind of device)
and resource sharing (multiple agpplications accessng multiple devices), presenting to
gpplications acommon, logical view of the device caled a“ cryptographic token”.

This document specifies the data types and functions available to an gpplication requiring
cryptographic services using the ANSI C programming language. These daa types and
functions will typicaly be provided via C header files by the supplier of a Cryptoki library.
Generic ANSI C header files for Cryptoki are available from RSADSI’s webserver. To get
them, go to RSADSI's homepage (http://www. rsa. con); then go to RSA
Laboratories; then go to the PKCS page. This document and up-to-date errata for Cryptoki
will dso be avallable from the same place.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 4

Additiond documents may provide a generic, language-independent Cryptoki interface and/or
bindings between Cryptoki and other programming languages.

Cryptoki isolates an gpplication from the details of the cryptographic device. The gpplication
does not have to change to interface to a different type of device or to run in a different
environment; thus, the application is portable. How Cryptoki provides this isolation is beyond
the scope of this document, athough some conventions for the support of multiple types of
device will be addressed here and possibly in a separate document.

A number of cryptographic mechanisms (adgorithms) are supported in this verson. In addition,
new mechanisms can be added later without changing the generd interface. It is possible that
additiond mechanisms will be published from time to time in separate documents; it is dso
possble for token vendors to define their own mechanisms (dthough, for the sake of
interoperability, regigtration through the PKCS processis preferable).

Cryptoki Verson 2:012.1 is intended for cryptographic devices associated with a single user,
s0 some features that might be included in a generd-purpose interface are omitted. For
example, Cryptoki Verson 2.161 does not have a means of distinguishing multiple users. The
focusison asngle user’s keys and perhaps a smal number of public-key-certificates reated to
them. Moreover, the emphasis is on cryptography. While the device may perform useful non-
cryptographic functions, such functions are left to other interfaces.

3. References

ANSI C ANSI/ISO. ANS/ISO 9899: American National Sandard for
Programming Languages— C. 1990.

ANS| X9.9 ANSI. American National Sandard X9.9: Financia Institution
Message Authentication Code. 1982.

ANSI X9.17 ANSI. American National Standard X9.17: Financial Institution Key
Management (Wholesale). 1985.

ANS| X9.31 Accredited Standards Committee X9. Public Key Cryptography Using
Reversible Algorithms for the Financial Services Industry: Part 1: The
RSA Sgnature Algorithm. Working draft, March 7, 1993.

ANSI X9.42 Accredited Standards Committee X9. Public Key Cryptography for the
Financial Services Industry: Management of Symmetric Algorithm
Keys Using Diffie-Hellman. Working draft, September 21, 1994.

ANSI X9.62 Accredited Standards Committee X9. Public Key Cryptography for the
Financial Services Industry: the Elliptic Curve Digital Sgnature
Algorithm (ECDSA)©. Working draft, November 17, 1997.

Copyright © 1994-1999 RSA Laboratories

CDPD

FIPS PUB 46-2

FIPSPUB 74

FIPSPUB 81

FIPSPUB 113

FIPS PUB 180-1

FIPS PUB 186

Page 5

Ameritech Mobile Communicetions e d. Cellular Digital Packet Data
System Specifications. Part 406: Airlink Security. 1993.

Nationa Inditute of Standards and Technology (formerly National Bureau
of Standards). FIPS PUB 46-2: Data Encryption Sandard. December
30, 1993.

Nationa Indtitute of Standards and Technology (formerly Nationd Bureau
of Standards). FIPS PUB 74: Guidelines for Implementing and Using
the NBS Data Encryption Sandard. April 1, 1981.

Nationa Ingtitute of Standards and Technology (formerly Nationd Bureau
of Standards). FIPS PUB 81:. DES Modes of Operation. December
1980.

Nationd Indtitute of Standards and Technology (formerly Nationa Bureau
of Standards). FIPS PUB 113: Computer Data Authentication. May
30, 1985.

Nationd Ingtitute of Standards and Technology. FIPS PUB 180-1: Secure
Hash Sandard. April 17, 1995.

Nationd Ingtitute of Standards and Technology. FIPS PUB 186: Digital
Sgnature Sandard. May 19, 1994.

FORTEZZA CIPG NSA, Workstation Security Products. FORTEZZA Cryptologic

GCS-API

SO 7816-1

SO 7816-4

ISO/IEC 9796

PCMCIA

Interface Programmers Guide, Revision 1.52. November 1995.

X/Open Company Ltd. Generic Cryptographic Service APl (GCS-API),
Base - Draft 2. February 14, 1995.

|SO. International Sandard 7816-1: Identification Cards —
Integrated Circuit(s) with Contacts — Part 1. Physical
Characteristics. 1987.

ISO. Identification Cards — Integrated Circuit(s) with Contacts —
Part 4: Inter-industry Commands for Interchange. Committee draft,
1993.

ISO/IEC. International Standard 9796: Digital Sgnature Scheme
Giving Message Recovery. July 1991.

Persond Computer Memory Card International Association. PC Card
Sandard. Release 2.1, July 1993.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 6

PKCS#1 RSA Laboratories. RSA Encryption Sandard. Version 1.5, November
1993.

PKCS#3 RSA Laboratories. Diffie-Hellman Key-Agreement Sandard. Version
1.4, November 1993.

PKCS #5 RSA Laboratories. Password-Based Encryption Standard. Version 1.5,
November 1993.

PKCS#7 RSA Laboratories. Cryptographic Message Syntax Standard. Version
1.5, November 1993.

PKCS #8 RSA Laboratories. Private-Key Information Syntax Standard. Version
1.2, November 1993.

PKCS#12 draft RSA Laboratories. Personal Information Exchange Syntax Standard.
Verson 1.0 draft, April 1997.

RFC 1319 B. Kdisi. RFC 1319: The MD2 Message-Digest Algorithm. RSA
Laboratories, April 1992.

RFC 1321 R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. MIT
Laboratory for Computer Science and RSA Data Security, Inc., April
1992.

RFC 1421 J Linn. RFC 1421: Privacy Enhancement for Internet Electronic Mail:
Part I: Message Encryption and Authentication Procedures. 1AB IRTF
PSRG, IETF PEM WG, February 1993.

RFC 1423 D. Badenson. RFC 1423: Privacy Enhancement for Internet Electronic
Mail: Part I11: Algorithms, Modes, and Identifiers. TIS and IAB IRTF
PSRG, IETF PEM WG, February 1993.

RFC 1508 J Linn. RFC 1508: Generic Security Services Application
Programming Interface. Geer Zolot Associates, September 1993.

RFC 1509 J Wray. RFC 1509: Generic Security Services API: C-bindings. Digitd
Equipment Corporation, September 1993.

RFEC 2279 F. Yergeau. RFC 2279: UTF-8, a transformation format of 1SO 10646
Alis Technologies, January 1998.

X.500 ITU-T (formerly CCITT). Recommendation X.500: The Directory—

Overview of Concepts and Services. 1988.

Copyright © 1994-1999 RSA Laboratories

Page 7

X.509 ITU-T (formerly CCITT). Recommendation X.509: The Directory—
Authentication Framework. 1993. (Proposed extensions to X.509 are
gven in ISO/IEC 9594-8 PDAM 1: Information Technology—Open
Systems I nter connection—The Directory: Authentication Framework—
Amendment 1: Certificate Extensions. 1994.)

X.680 ITU-T (formerly CCITT). Recommendation X.680: Information
Technology-- Abstract Syntax Notation One (ASN.1): Specification of
Basic Notation. July 1994.

X.690 ITU-T (formely CCITT). Recommendation X.690: Information
Technology—ASN.1 Encoding Rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER), and Distinguished
Encoding Rules (DER). July 1994.
4. Definitions
For the purposes of this sandard, the following definitions apply:
API Applicaion programming interface.
Application Any computer program that cals the Cryptoki interface.
ASN.1 Absdtract Syntax Notation One, as defined in X.680.
Attribute A characterigtic of an object.
BATON MISSI’s BATON block cipher.
BER Basic Encoding Rules, as defined in X.690.
CAST Entrust Technologies proprietary symmetric block cipher.
CAST3 Entrust Technologies proprietary symmetric block cipher.

CAST5 Ancther namefor Entrust Technologies symmetric block
cipher CAST128. CAST128 isthe preferred name.

CAST128 Entrugt Technologies symmetric block cipher.
CBC Cipher-Block Chaining mode, as defined in FIPS PUB 81.

CDMF Commercid DataMasking Facility, a block encipherment
method specified by International Business Machines
Corporation and based on DES.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Certificate

Cryptographic Device

Cryptoki

Cryptoki library

DER

DES

DSA

ECB
ECDSA
FASTHASH
IDEA
JUNIPER
KEA
LYNKS
MAC

MD2

MD5

M echanism

OAEP

A signed message binding a subject name and a public
key, or asubject name and a set of attributes.

A device gtoring cryptographic information and possibly
performing cryptographic functions. May be implemented
asasmart card, smart disk, PCMCIA card, or with some
other technology, including software-only.

The Cryptographic Token Interface defined in this
standard.

A library that implements the functions specified in this
standard.

Didtinguished Encoding Rules, as defined in X.690.

Data Encryption Standard, as defined in FIPS PUB 46-2.
Digita Signature Algorithm, as defined in FIPS PUB 186.
Electronic Codebook mode, as defined in FIPS PUB 81.
Elliptic Curve DSA, asin ANSI X9.62.

MISSI’s FASTHA SH message-digesting agorithm.
Ascom Systec’s symmetric block cipher.

MISSI’s JUNIPER block cipher.

MISS’s Key Exchange Algorithm.

A smart card manufactured by SPY RUS.

Message Authentication Code, as defined in ANSI X9.9.

RSA Data Security, Inc.'s MD2 message-digest agorithm,
as defined in RFC 1319.

RSA Data Security, Inc.'s MD5 message-digest agorithm,
as defined in RFC 1321.

A process for implementing a cryptographic operation.

Optima Asymmetric Encryption Padding for RSA.

Copyright © 1994-1999 RSA Laboratories

Object

PIN
RSA
RC2

RC4

RC5

Reader

Session
SET

SHA-1

Slot
SKIPJACK
SSL

Subject Name

SO

Token

User

UTF-8

Page 9

Anitem that is stored on atoken. May be data, a
certificate, or akey.

Persona Identification Number.
The RSA public-key cryptosystem.
RSA Data Security’ s RC2 symmetric block cipher.

RSA Data Security’s proprietary RC4 symmetric stream
cipher.

RSA Data Security’ s RC5 symmetric block cipher.

The means by which information is exchanged with a
device.

A logica connection between an application and a token.
The Secure Electronic Transaction protocol.

The (revised) Secure Hash Algorithm, as defined in FIPS
PUB 180-1.

A logica reader that potentidly contains atoken.
MISSI’s SKIPJACK block cipher.
The Secure Sockets Layer 3.0 protocol.

The X.500 digtinguished name of the entity to which akey
isassgned.

A Security Officer user.

Thelogicd view of a cryptographic device defined by
Cryptoki.

The person using an gpplication that interfaces to Cryptoki.

Universal Character Set (UCS) transformation format

(UTF) that represents SO 10646 and UNICODE strings
with avariable number of octets.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 10

5. Symbols and abbreviations

The following symbols are used in this standard:

Table 1, Symbals

Symbol | Definition
N/A Not applicable
R/O Read-only
R/W Read/write

The following prefixes are used in this sandard:

Table 2, Prefixes

Prefix | Description
C_ Function
CK_ Datatype or generd constant
CKA_ | Attribute

CKC_ | Cetificatetype

CKF_ | Bitflag

CKG Mask generation function

CKH Hardware fegture type

CKK_ | Key type

CKM__ | Mechanism type

CKN_ | Noatification

CKO_ | Object class

CKP Pseudo-random function

CKS_ | Sesson gtate

CKR_ | Returnvdue

CKU_ | User type

CKZ SAt/Encoding parameter source

h ahandle
aCK_ULONG
p apointer
pb apointer toaCK_BYTE
ph apointer to ahandle

Copyright © 1994-1999 RSA Laboratories

Page 11

Prefix | Description

pul apointer toaCK_ULONG

Cryptoki is based on ANSI C types, and defines the following data types.

/* an unsigned 8-bit value */
typedef unsigned char CK_BYTE;

/* an unsigned 8-bit character */
typedef CK BYTE CK_CHAR;

/* an 8-bit UTF-8 character */
typedef CK BYTE CK UTF8CHAR;

/* a BYTE-si zed Bool ean flag */
typedef CK BYTE CK BBOOL;

/* an unsigned value, at least 32 bits long */
typedef unsigned long int CK ULONG

/* a signed value, the sane size as a CK_ULONG */
typedef long int CK _LONG

/* at least 32 bits; each bit is a Boolean flag */
typedef CK_ULONG CK_FLAGS;

Cryptoki also uses pointers to some of these data types, as well as to the type voi d, which
are implementation-dependent. These pointer types are:

CK_BYTE_PTR /* Pointer to a CK BYTE */
CK_CHAR PTR /* Pointer to a CK CHAR */

CK UTF8CHAR PTR /* Pointer to a CK UTF8CHAR */
CK_ULONG PTR /[* Pointer to a CK ULONG */
CK _vO D _PTR /* Pointer to a void */

Cryptoki aso defines a pointer to aCK_VOID_PTR, which isimplementation-dependent:

CK_ VO D PTR PTR /* Pointer to a CK VO D PTR */

In addition, Cryptoki definesa C-style NULL pointer, which is distinct from any vaid pointer:

NULL_PTR /* A NULL pointer */

It follows that many of the data and pointer types will vary somewhat from one environment to
another (e.9., a CK_ULONG will sometimes be 32 hits, and sometimes perhaps 64 hits).

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 12

However, these details should not affect an application, assuming it is compiled with Cryptoki
header files consistent with the Cryptoki library to which the application is linked.

All numbers and vaues expressed in this document are decimd, unless they are preceded by
“0x”, in which case they are hexadecima vaues.

The CK_CHAR data type holds characters from the following table, taken from ANS C:

Table 3, Character Set

Category Characters

Letters ABCDEFGHIJKLMNOPQRSTUVWXYZa
bcdefghijklmnopqgrstuvwxyz

Numbers 0123456789

Graphiccharacters [“#% & ‘() * +,-./:;<=>?[\]*_{|} ~

Blank character C

The CK UTF8CHAR data type holds UTF-8 encoded Uhicode characters as specified in
RFC2279. UTF-8 dlows internationdization while maintaining backward compeatibility with the
Locda String definition of PKCS #11 verson 2.01.

In Cryptoki, aflag isaBoolean flag that can be TRUE or FALSE. A zero vaue means the flag
is FALSE, and a nonzero vaue means the flag is TRUE. Cryptoki defines these macros, if
needed:

#i f ndef FALSE
#defi ne FALSE O
#endi f

#i f ndef TRUE
#defi ne TRUE (! FALSE)
#endi f

Portable computing devices such as smart cards, PCMCIA cards, and smart diskettes are ideal
tools for implementing public-key cryptography, as they provide a way to store the private-key
component of a public-key/private-key pair securely, under the control of a sngle user. With
such a device, a cryptographic gpplication, rather than performing cryptographic operations
itsdlf, utilizes the device to perform the operations, with sengtive information such as private
keys never being reveded. As more gpplications are developed for public-key cryptography, a
standard programming interface for these devices becomes increasingly vauable. This standard
addresses this need.

Copyright © 1994-1999 RSA Laboratories

Page 13

6. General overview

6.1 Design goals

Cryptoki was intended from the beginning to be an interface between gpplications and al kinds
of portable cryptographic devices, such as those based on smart cards, PCMCIA cards, and
smart diskettes. There are dready standards (de facto or officid) for interfacing to these
devices a some level. For instance, the mechanica characteristics and eectrica connections
are wdll-defined, as are the methods for supplying commands and receiving results. (See, for
example, ISO 7816, or the PCMCIA specifications.)

What remained to be defined were particular commands for performing cryptography. 1t would

not be enough smply to define command sets for each kind of device, as that would not solve
the genera problem of an application interface independent of the device. To do 0 is dill a
long-term god, and would certainly contribute to interoperability. The primary goa of Cryptoki

was a lower-level programming interface that abstracts the details of the devices, and presents
to the gpplication a common mode of the cryptographic device, cdled a “cryptographic token”

(or smply “token”).

A secondary god was resource-sharing. As desktop multi-tasking operating systems become
more popular, asingle device should be shared between more than one gpplication. 1n addition,
an gpplication should be able to interface to more than one device a a given time.

It is not the god of Cryptoki to be a generic interface to cryptographic operations or security
sarvices, dthough one certainly could build such operations and services with the functions that
Cryptoki provides. Cryptoki is intended to complement, not compete with, such emerging and
evolving interfaces as “Generic Security Services Application Programming Interface” (RFC
1508 and RFC 1509) and “ Generic Cryptographic Service API” (GCS-API) from X/Open.

6.2 General mode

Cryptoki's generd modd is illugrated in the following figure. The modd begins with one or
more gpplications that need to perform certain cryptographic operations, and ends with one or
more cryptographic devices, on which some or al of the operations are actudly performed. A
user may or may not be associated with an application.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 14

Application 1 Application k
Other Security Lavers Other Security Lavers |
Crvptoki Crvptoki

......

= —

Slot 1 Slot n
Token 1 Tokenn
(Device 1) (Device n)

Figure 1, General Cryptoki Model

Cryptoki provides an interface to one or more cryptographic devices that are active in the
system through a number of “dots’. Each dot, which corresponds to a physica reader or other
device interface, may contain a token. A token is typicaly “present in the dot” when a
cryptographic deviceis present in the reader. Of course, since Cryptoki provides alogica view
of dots and tokens, there may be other physical interpretations. It is possible that multiple dots
may share the same physica reader. The point is that a system has some number of dots, and
applications can connect to tokensin any or dl of those dots.

A cryptographic device can perform some cryptographic operations, following a certain
command set; these commands are typicaly passed through standard device drivers, for
instance PCMCIA card services or socket services. Cryptoki makes each cryptographic
device look logicdly like every other device, regardless of the implementation technology. Thus
the gpplication need not interface directly to the device drivers (or even know which ones are
involved); Cryptoki hides these details. Indeed, the underlying “device’ may be implemented
entirdy in software (for ingtance, as a process running on a server)—no specia hardware is
necessary.

Cryptoki is likely to be implemented as a library supporting the functions in the interface, and
applications will be linked to the library. An application may be linked to Cryptoki directly;
dternatively, Cryptoki can be a so-caled “shared” library (or dynamic link library), in which

Copyright © 1994-1999 RSA Laboratories

Page 15

cae the gpplication would link the library dynamicaly. Shared libraries are farly
sraightforward to produce in operating systems such as Microsoft Windows and OS2, and
can be achieved without too much difficulty in UNIX and DOS systems.

The dynamic gpproach certainly has advantages as new libraries are made available, but from a
Security perspective, there are some drawbacks. In particular, if a library is easily replaced,
then there is the possibility that an atacker can subgtitute a rogue library that intercepts a user’s
PIN. From a security perspective, therefore, direct linking is generdly preferable, athough
code-signing techniques can prevent many of the security risks of dynamic linking. In any case,
whether the linking is direct or dynamic, the programming interface between the application and
a Cryptoki library remains the same.

The kinds of devices and capabilities supported will depend on the particular Cryptoki library.
This standard specifies only the interface to the library, not its features. In particular, not al
libraries will support al the mechanisms (algorithms) defined in this interface (Snce not al tokens
are expected to support al the mechanisms), and libraries will likely support only a subset of al
the kinds of cryptographic devices that are avallable. (The more kinds, the better, of course,
and it is anticipated that libraries will be developed supporting multiple kinds of token, rather
than just those from a single vendor.) It is expected that as applications are developed that
interface to Cryptoki, standard library and token “profiles’ will emerge.

6.3 Logical view of atoken

Cryptoki’ s logicd view of atoken isadevice that stores objects and can perform cryptographic
functions. Cryptoki defines three classes of object: data, certificates, and keys. A data object
is defined by an gpplication. A certificate object stores a public-key-certificate. A key object
stores a cryptographic key. The key may be a public key, a private key, or a secret key; each
of these types of keys has subtypes for use in specific mechanisms. Thisview isilludrated in the
following figure

Object

m

Data Key Certificate

m

Public Key Private Key Secret Key

Figure 2, Object Hierarchy

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 16

Objects are d o classfied according to ther lifetime and visbility. “Token objects’ are visble
to dl gpplications connected to the token that have sufficient permission, and remain on the
token even after the “sessons’ (connections between an gpplication and the token) are closed
and the token is removed from its dot. “Sesson objects’ are more temporary: whenever a
session is closed by any means, al session objects created by that sesson are automaticaly
destroyed. In addition, session objects are only visible to the application which created them.

Further classfication defines access requirements. Applications are not required to log into the
token to view “public objects’; however, to view “private objects’, a user must be
authenticated to the token by a PIN or some other token-dependent method (for example, a
biometric device).

See Table 6Fable-6Table 6Table-6 on page 22222223 for further clarification on access to
objects.

A token can create and destroy objects, manipulate them, and search for them. It can dso
perform cryptographic functions with objects. A token may have an internd random number
generator.

It is important to distinguish between the logica view of atoken and the actud implementation,
because not al cryptographic devices will have this concept of “objects,” or be able to perform
every kind of cryptographic function. Many devices will smply have fixed storage places for
keys of afixed agorithm, and be able to do a limited set of operations. Cryptoki's role is to
trandate this into the logica view, mapping atributes to fixed storage elements and so on. Not
all Cryptoki libraries and tokens need to support every object type. It is expected that standard
“profiles” will be developed, specifying sets of dgorithms to be supported.

“Attributes’ are characteridtics that distinguish an instance of an object. In Cryptoki, there are
generd attributes, such as whether the object is private or public. There are dso attributes that
are specific to a particular type of object, such asamodulus or exponent for RSA keys.

6.4 Users

This verson of Cryptoki recognizes two token user types. One typeis a Security Officer (SO).
The other type is the normal user. Only the norma user is alowed access to private objects on
the token, and that access is granted only after the normal user has been authenticated. Some
tokens may aso require that a user be authenticated before any cryptographic function can be
performed on the token, whether or not it involves private objects. The role of the SO is to
initilize atoken and to set the normal user’s PIN (or otherwise define, by some method outside
the scope of this version of Cryptoki, how the normal user may be authenticated), and possibly
to manipulate some public objects. The norma user cannot log in until the SO has et the
normal user’s PIN.

Copyright © 1994-1999 RSA Laboratories

Page 17

Other than the support for two types of user, Cryptoki does not address the relationship
between the SO and a community of users. In particular, the SO and the normal user may be
the same person or may be different, but such matters are outsde the scope of this standard.

With respect to PINs that are entered through an application, Cryptoki assumes only that they
are varidble-length strings of characters from the set in Table 3Table 3Table 3Table-3. Any
trandation to the device' s requirements is left to the Cryptoki library. The following issues are
beyond the scope of Cryptoki:

Any padding of PINs.
How the PINs are generated (by the user, by the application, or by some other means).

PINsthat are supplied by some means other than through an application (e.g., PINs entered via
a PINpad on the token) are even more abstract. Cryptoki knows how to wait (if need be) for
such aPIN to be supplied and used, and little more.

6.5 Applicationsand their use of Cryptoki

To Cryptoki, an application conssts of a single address space and al the threads of control
running in it. An gpplication becomes a “Cryptoki gpplication” by caling the Cryptoki function
C_Initialize (see Section 11.4) from one of its threads; after this cdl is made, the application
can cal other Cryptoki functions. When the application is done usng Cryptoki, it cdls the
Cryptoki function C_Finalize (see Section 11.4) and ceasesto be a Cryptoki application.

6.5.1 Applicationsand processes

In generd, on most platforms, the previous paragraph means that an gpplication consdts of a
sngle process.

Consider a UNIX process P which becomes a Cryptoki application by cdling C_Initialize,
and then uses the f or k() system cdl to cresate a child process C. Since P and C have
separate address spaces (or will when one of them performs a write operation, if the operating
gysem follows the copy-on-write paradigm), they are not pat of the same application.
Therefore, if C needs to use Cryptoki, it needs to perform its own C Initialize cdl.
Furthermore, if C needs to be logged into the token(s) that it will access via Cryptoki, it needs
to log into them even if P already logged in, snce P and C are completely separate
applications.

In this particular case (when C is the child of a process which is a Cryptoki application), the
behavior of Cryptoki is undefined if C triesto use it without itsown C_Initialize cdl. Idedly,
such an atempt would return the value CKR_CRYPTOKI_NOT _INITIALIZED; however,
because of theway f or k() works, indgsting on this return vaue might have a bad impact on

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 18

the performance of libraries Therefore, the behavior of Cryptoki in this Stuation is left
undefined. Applications should definitdly not attempt to take advantage of any potentia
“shortcuts’ which might (or might not!) be available because of this.

In the scenario specified above, C should actudly cal C_Initialize whether or not it needs to
use Cryptoki; if it has no need to use Cryptoki, it should then cal C_Finalize immediatdy
theregfter. This (having the child immediately cdl C_Initialize and then cal C_Finalize if the
parent is using Cryptoki) is considered to be good Cryptoki programming practice, Snce it can
prevent the existence of dangling duplicate resources that were created a the time of the
fork() cdl; however, itisnot required by Cryptoki.

6.5.2 Applicationsand threads

Some applications will access a Cryptoki library in a multi-threaded fashion. Cryptoki Mersien
201 enables gpplications to provide information to libraries so that they can give gppropriate
support for multi-threading. In particular, when an gpplication initiaizes a Cryptoki library with
acdl to C Initialize, it can specify one of four possble multi-threading behaviors for the
library:

1. The gpplication can specify that it will not be accessing the library concurrently from multiple
threads, and so the library need not worry about performing any type of locking for the ske
of thread-safety.

2. The application can specify that it will be accessng the library concurrently from multiple
threads, and the library must be able to use native operation system synchronization
primitives to ensure proper thread-safe behavior.

3. The gpplication can specify that it will be accessing the library concurrently from multiple
threads, and the library must use a set of gpplication-supplied synchronization primitives to
ensure proper thread-safe behavior.

4. The gpplication can specify that it will be accessing the library concurrently from multiple
threads, and the library must use ether the native operation system synchronization
primitives or a set of gpplication-supplied synchronizetion primitives to ensure proper
thread-safe behavior.

The 3% and 4™ types of behavior listed above are appropriate for multi-threaded applications
which are not usng the native operating sysem thread mode. The application-supplied
gynchronization primitives conast of four functions for handling mutex (mutuad exdusion)
objects in the gpplication’s threading modd. Mutex objects are smple objects which can bein
ether of two States at any given time: unlocked or locked. If acdl is made by athread to lock
amutex which is dready locked, that thread blocks (waits) until the mutex is unlocked; then it
locks it and the call returns. 1f more than one thread is blocking on a particular mutex, and that
mutex becomes unlocked, then exactly one of those threads will get the lock on the mutex and

Copyright © 1994-1999 RSA Laboratories

Page 19

return control to the caler (the other blocking threads will continue to block and wait for their
turn).

See Section 9.7 for more information on Cryptoki’ s view of mutex objects.

In addition to providing the above thread-handling information to a Cryptoki library at
initidization time, an application can aso specify whether or not gpplication threads executing
library cals may use native operating system cals to spawn new threads.

6.6 Sessions

Cryptoki requires that an application open one or more sessions with a token to gain access to
the token's objects and functions. A sesson provides a logica connection between the
gpplication and the token. A session can be a read/write (R/W) session or a read-only (R/O)
sesson. Read/write and read-only refer to the access to token objects, not to session objects.
In both session types, an application can create, read, write and destroy session objects, and
read token objects. However, only in a read/write sesson can an agpplication cregte, modify,
and destroy token objects.

After it opens a session, an application has access to the token's public objects. All threads of
a given application have access to exactly the same sessions and the same sesson objects. To
gain access to the token's private objects, the norma user must log in and be authenticated.

When a session is closed, any session objects which were created in that session are destroyed.
This holds even for sesson objects which are “being used” by other sessons. That is, if asingle
gpplication has multiple sessons open with a token, and it uses one of them to create a sesson
object, then that session object is visible through any of that application’s sessons. However,
as soon as the session that was used to create the object is closed, that object is destroyed.

Cryptoki supports multiple sessons on multiple tokens. An agpplication may have one or more
sessions with one or more tokens. In generd, a token may have multiple sessons with one or
more gpplications. A particular token may alow an gpplication to have only alimited number of
sessons—or only alimited number of read/write sessons-- however.

An open session can bein one of severa states. The session state determines alowable access
to objects and functions that can be performed on them. The session Sates are described in
Section 6.6.1 and Section 6.6.2.

6.6.1 Read-only session states

A read-only sesson can be in one of two dtates, asilludrated in the following figure. When the
sesson isinitidly opened, it is in ether the “R/O Public Sesson” date (if the gpplication has no

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 20

previoudy open sessonsthat are logged in) or the “R/O User Functions’” dtate (if the gpplication
aready has an open session that islogged in). Note that read-only SO sessons do not exist.

R/O Public
Session

Close Session/
Device Removed

Close Session/

Device Removed

Open Session

Login User
Logout

A
|

Open Session R/O User
Functions

Figure 3, Read-Only Session States
The following table describes the sesson states:

Table 4, Read-Only Session States

State Description

R/O Public Sesson | The gpplication has opened aread-only sesson. The gpplication has
read-only access to public token objects and read/write access to
public session objects.

R/O User Functions | The norma user has been authenticated to the token. The application
has read-only accessto al token objects (public or private) and
read/write access to al sesson objects (public or private).

6.6.2 Read/write session states

A read/write sesson can be in one of three gtates, as illugrated in the following figure. When
the sesson is opened, it is in either the “R/W Public Sesson” date (if the application has no
previoudy open sessons that are logged in), the “R/W User Functions’ dtate (if the gpplication
dready has an open session that the norma user is logged into), or the “R/W SO Functions’
date (if the gpplication dready has an open session that the SO islogged into).

Copyright © 1994-1999 RSA Laboratories

Open Session

Open Session R/W Public Close Session/

Page 21

R/W SO
Functions
Close Session/
Device Removed

Open Session

Session Device Removed

Close Session/
Device Removed

Login User
<4“—
Logout

>

R/W User
Functions

Figure4, Read/Write Session States

The following table describes the sesson Sates:

Table5, Read/Write Session States

State

Description

R/W Public Session

The agpplication has opened a read/write sesson. The application has
read/write access to al public objects.

R/W SO Functions | The Security Officer has been authenticated to the token. The
gpplication has read/write access only to public objects on the token,
not to private objects. The SO can set the normal user’s PIN.

R/W User Functions | The norma user has been authenticated to the token. The gpplication

has read/write access to all objects.

6.6.3 Permitted object accesses by sessions

The following table summarizes the kind of access each type of sesson has to each type of
object. A given type of sesson has either read-only access, read/write access, or no access
whatsoever to agiven type of object.

Note that creating or deleting an object requires read/write access to it, e.g., a “R/O User
Functions’ session cannot create or del ete a token object.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 22

Table 6, Accessto Different Types Objects by Different Types of Sessions

Type of session
R/O R/W R/O User R/W R/W
Type of object Public Public User SO
Public session object R/W R/W R/W R/W RIW
Private session object R/W R/W
Public token object R/O R/W R/O R/W RIW
Private token object R/O R/W

As previoudy indicated, the access to a given sesson object which is shown in Table 6Fsble
6Table 6Table6 is limited to sessons belonging to the gpplication which owns that object (i.e.,
which created that object).

6.6.4 Session events

Session events cause the sesson gtate to change. The following table describes the events:

Table 7, Session Events

Event Occurswhen...

Log In SO the SO is authenticated to the token.

Log In User the normal user is authenticated to the token.

Log Out the gpplication logs out the current user (SO or norma user).
Close Session the gpplication closes the session or closes dl sessons.
Device Removed | the device underlying the token has been removed from its dot.

When the device is removed, dl sessons of dl applications are automaticaly logged out.
Furthermore, al sessons any gpplications have with the device are closed (this latter behavior
was not present in Version 1.0 of Cryptoki)—an application cannot have a sesson with atoken
which is not present. Redlistically, Cryptoki may not be congtantly monitoring whether or not the
token is present, and so the token's absence could conceivably not be noticed until a Cryptoki
function is executed. If the token is re-insarted into the dot before that, Cryptoki might never
know that it was missing.

Copyright © 1994-1999 RSA Laboratories

Page 23

In Cryptoki Verson 2:012.1, al sessons that an application has with a token must have the
same login/logout gatus (i.e., for a given gpplication and token, one of the following holds. al
sessions are public sessons; al sessons are SO sessons; or al sessons are user sessons).
When an gpplication’s sesson logs into atoken, all of that application’s sessons with that token
become logged in, and when an gpplication's sesson logs out of a token, all of that
goplication’s sessons with that token become logged out. Similarly, for example, if an
application aready has a R/O user sesson open with a token, and then opens a R/W sesson
with that token, the RW session is automaticaly logged in.

Thisimplies that a given gpplication may not Smultaneoudy have SO sessions and user sessions
open with a given token. It dso implies that if an gpplication has a R/W SO sesson with a
token, then it may not open a R/O session with that token, since R/O SO sessions do not exigt.
For the same reason, if an gpplication has a R/O session open, then it may not log any other
session into the token as the SO.

6.6.5 Session handlesand object handles

A session handle is a Cryptoki-assgned vaue that identifies a sesson. It isin many ways akin
to afile handle, and is specified to functions to indicate which sesson the function should act on.
All threads of an application have equa accessto dl sesson handles. That is, anything that can
be accomplished with a given file handle by one thread can adso be accomplished with that file
handle by any other thread of the same application.

Cryptoki aso has object handles, which are identifiers used to manipulate Cryptoki objects.
Object handles are smilar to sesson handles in the sense that visibility of a given object through
an object handle is the same among al threads of a given gpplication. R/O sessions, of course,
only have read-only access to token objects, whereas R/W sessions have read/write access to
token objects.

Valid session handles and object handles in Cryptoki always have nonzero values. For
developers convenience, Cryptoki defines the following symbolic vaue:

#def i ne CK_I NVALI D_HANDLE 0
6.6.6 Capabilities of sessions

Very roughly speaking, there are three broad types of operations an open session can be used
to perform: adminidrative operations (such as logging in); object management operations (such
as cregting or destroying an object on the token); and cryptographic operations (such as
computing a message digest). Cryptographic operations sometimes require more than one
function cal to the Cryptoki APl to complete. In generd, a single sesson can perform only one
operdion a atime; for this reason, it may be desirable for a single gpplication to open multiple
sessons with a single token. For efficiency’s sake, however, a sngle sesson on some tokens
can peform the following pairs of operation types smultaneoudy: message digesting and

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 24

encryption; decryption and message digesting; sgnature or MACing and encryption; and
decryption and verifying sgnaures or MACs Dedails on peforming smultaneous
cryptographic operationsin one sesson are provided in Section 11.13.

A consequence of the fact that a Single sesson can, in generd, perform only one operation at a
time is that an application should never make multiple simultaneous function calls to
Cryptoki which use a common session. |f multiple threads of an gpplication attempt to use a
common sesson concurrently in this fashion, Cryptoki does not define what happens. This
means that if multiple threads of an application al need to use Cryptoki to access a particular
token, it might be gppropriate for each thread to have its own sesson with the token, unless the
gpplication can ensure by some other means (e.g., by some locking mechanism) that no sessons
are ever used by multiple threads smultaneoudly. This is true regardiess of whether or not the
Cryptoki library was initidized in a fashion which permits safe multi-threaded accessto it. Even
if it is safe to access the library from multiple threads smultaneoudly, it is ill not necessarily sefe
to use a particular session from multiple threads smultaneoudy.

6.6.7 Exampleof useof sessions

We give here a detalled and lengthy example of how multiple applications can make use of
sessons in a Cryptoki library. Despite the somewhat painful level of detal, we highly
recommend reading through this example carefully to understand sesson handles and object
handles.

We caution that our example is decidedly not meant to indicate how multiple applications
should use Cryptoki smultaneoudly; rether, it is meant to clarify what uses of Cryptoki’'s
sessons and objects and handles are permissible. In other words, instead of demondgtrating
good technique here, we demondrate “ pushing the envelope’.

For our example, we suppose that two applications, A and B, are using a Cryptoki library to
accessasingletoken T. Each gpplication has two threads running: A has threads A1 and A2,
and B has threads B1 and B2. We assume in what follows that there are no instances where
multiple threads of a single gpplication Smultaneoudy use the same session, and that the events
of our example occur in the order specified, without overlgpping each other in time.

1. Al and B1 eech initidize the Cryptoki library by cdling C_Initialize (the specifics of
Cryptoki functions will be explained in Section 11). Note that exactly one cdl to
C_Initialize should be made for each gpplication (as opposed to one cdl for every thread,
for example).

2. Al opensaR/W session and recaives the sesson handle 7 for the sesson. Since thisisthe
first sesson to be opened for A, it isa public session.

3. A2 opens a R/O s=esson and recalves the sesson handle 4. Since dl of A’s exiding
sessons are public sessions, sesson 4 isaso a public sesson.

Copyright © 1994-1999 RSA Laboratories

10.

11.

12.

13.

14.

Page 25

Al atempts to log the SO into sesson 7. The attempt fails, because if sesson 7 becomes
an SO session, then sesson 4 does, as well, and R/O SO sessions do not exist. Al
receives an error code indicating that the existence of a R/O sesson has blocked this
attempt tolog in (CKR_SESSION_READ_ONLY_EXISTS).

A2 |ogs the normal user into sesson 7. This turns sesson 7 into a RAW user sesson, and
turns session 4 into a R/O user sesson. Note that because A1 and A2 belong to the same
application, they have equa accessto al sessons, and therefore, A2 is adle to perform this
action.

A2 opens a R'W session and receives the sesson handle 9. Since dl of A’s exiding
2SI 0NS are User sessons, session 9 isalso a user session.

Al closes session 9.

B1 atemptsto log out sesson 4. The attempt fails, because A and B have no access rights
to each other’s sessions or objects. B1 recaves an error message which indicates that
thereis no such session handle (CKR_SESSION_HANDLE _INVALID).

B2 atemptsto close sesson 4. The attempt fallsin precisely the same way as B1' s attempt
to log out session 4 failed (.e,, B2 receives a CKR_SESSION_HANDLE_INVALID
error code).

B1 opens a R/W session and receives the sesson handle 7. Note that, as far as B is
concerned, thisisthe first occurrence of sesson handle7. A’s session 7 and B’s session 7
are completely different sessons.

Bllogsthe SOinto [B’'s| sesson 7. Thisturns B's sesson 7 into a R/W SO session, and
has no effect on ether of A’ssessions.

B2 attempts to open a R/O session. The attempt fails, snce B aready has an SO session
open, and R/O SO sessions do not exist. B1 receives an error message indicating that the
exigence of an SO sesson has blocked this attempt to open a R/O sesson
(CKR_SESSION_READ_WRITE_SO _EXISTS).

Al uses[A’S| session 7 to create asession object O1 of some sort and receives the object
handle 7. Note that a Cryptoki implementation may or may not support separate spaces of
handles for sessons and objects.

B1 uses[B’s| session 7 to create a token object O2 of some sort and receives the object
handle 7. As with sesson handles, different gpplications have no access rights to each
other’s object handles, and so B’s object handle 7 is entirdy different from A’s object
handle 7. Of course, snce B1 isan SO session, it cannot create private objects, and so O2
must be a public object (if B1 attempted to create a private object, the attempt would fall

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 26

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

with error code CKR_USER NOT _LOGGED IN or
CKR_TEMPLATE_INCONSISTENT).

B2 uses [B’s] sesson 7 to perform some operation to modify the object associated with
[B’s] object handle 7. This modifies O2.

Al uses[A’g| session 4 to perform an object search operation to get ahandlefor O2. The
search returns object handle 1. Note that A’s object handle 1 and B’ s object handle 7 now
point to the same object.

Al attemptsto use [A’g| session 4 to modify the object associated with [A’s] object handle
1. Theattempt fails, because A’s session 4 is a R/O sesson, and is therefore incapable of
modifying O2, which is a token object. Al receives an error message indicating that the
sesson isaR/O sesson (CKR_SESSION_READ_ONLY).

Al uses[A’g session 7 to modify the object associated with [A’s] object handle 1. This
time, Snce A’'ssesson 7 isaR/W sesson, the attempt succeeds in modifying O2.

B1 uses [B’s| session 7 to perform an object search operation to find O1. Since Olisa
session object belonging to A, however, the search does not succeed.

A2 uses [A’g session 4 to perform some operation to modify the object associated with
[A’g] object handle 7. This operation modifies O1.

A2 uses[A’s] session 7 to destroy the object associated with [A’s] object handle 1. This
destroys O2.

B1 atempts to perform some operation with the object associated with [B’g] object handle
7. The atempt fals, snce there is no longer any such object. B1 receives an error
message indicating that its object handle is invdid
(CKR_OBJECT_HANDLE _INVALID).

Allogsout [A’g sesson 4. Thisturns A’s sesson 4 into a R/O public sesson, and turns
A’ssesson 7 into a R/W public sesson.

Al closes[A’s] sesson 7. Thisdestroys the session object O1, which was created by A's
sesson 7.

A2 attempt to use [A’s] sesson 4 to perform some operation with the object associated
with [A’s| object handle 7. The attempt fails, snce there is no longer any such object. It
returnsa CKR_OBJECT_HANDLE INVALID.

A2 executesacdl to C_CloseAllSessions. Thiscloses[A’s] sesson 4. At thispoint, if A
were to open a new session, the sesson would not be logged in (i.e., it would be a public
Session).

Copyright © 1994-1999 RSA Laboratories

Page 27

27. B2 closes [B'g session 7. At this point, if B were to open a new sesson, the sesson
would not be logged in.

28. A and B each cdll C_Finalize to indicate that they are done with the Cryptoki library.

6.7 Secondary Authentication

Cryptoki dlows an application to specify that aprivate key should be protected by a secondary
authentication mechanism. This mechaniam is in addition to the standard login mechanism
described in section 6.6 for sessons. The mechanism is modly transparent to the application
because the Cryptoki implementation does amost dl of the work.

The intent of secondary authentication is to provide a means for _a cryptographic token to
produce digital sSignatures for non-repudiation with reasonable certainty that only the authorized
user could have produced that signature. This capability is becoming increesngly important as
digita sgnature laws are introduced worldwide.

The secondary authentication is based on the following principles:

1. The owner of the private key must be authenticated to the token before secondary
authentication can proceed (i.e. C Login must have been cdled successtully).

2. If aprivate key is protected by a secondary authentication PIN, then the token must require
that the PIN be presented before each use of the key for any purpose.

3. All secondary authentication operatl ons are done usmq a pmteeted—path—@#ﬂy—a—nteteeted

key—mechaﬁlsn that is transparent to the Cryptokl c |ent

The secondary authentication mechanism adds a couple of subtle points to the way that an
application presents an object to a user and generates new private keys with the additiona
protections. The following sections detail the minor additions to applications that are required to
take full advantage of secondary authentication.

6.7.1 Using KeysProtected by Secondary Authentication

Usng a private key protected by secondary authentication uses the same process, and cal
sequence, as using a private key that is only protected by the login PIN. In fact, applications
written for Cryptoki Version 2.01 will use secondary authentication without modification.

When a cryptographic operation, such as adigital Signature, is started using a key protected by
secondary authentication, a combination of the Cryptoki implementation and the token will
gather the required PIN valuefrom-aprotectedpath. If the PIN is correct, then the operation is
dlowed to complete. Otherwise, the function will return an appropriate error code. The

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 28

application is not required to gather PIN information from the user and send it through Cryptoki
to the token. It is completdy transparent.

The application can detect when Cryptoki and the token will gather a PIN for secondary
authentication by querying the key for the CKA SECONDARY AUTH attribute (see section
10.9). If the attribute value is TRUE, then the application can present a prompt to the user.
Since Cryptoki Veson 201 applications will not be awae of the
CKA SECONDARY AUTH attribute, the pretected-path-devicePIN gathering mechanism
should make and indication to the user that an authentication is required.

6.7.2 Generating Private K eys Protected by Secondary Authentication

To generate a private key protected by secondary authentication, the application supplies the
CKA SECONDARY AUTH atribute with vdue TRUE in the private key template. If the
atribute does not exist in the template or has the vadue FALSE, then the private key is
generated with the normd login protection. See sections 10.9 and 11.14 for more information
about private key templates and key generation functions respectively.

If the new private key is protected by secondary authentication, a combination of the Cryptoki
implementation and the device will transparently gather the initiad PIN vaue-from-a-pretected

path,

6.7.3 Chanaging the Secondary Authentication PIN Value

The application causes the device to change the secondary authentication PIN on a private key
usng the C SetAttributeValue function. The template to the function should contain the
CKA SECONDARY AUTH atribute. The vaue of CKA SECONDARY AUTH in the
template does not matter.

When the Cryptoki implementation finds this attribute in a C_SetAttributeValue templae, it
causes the device to gather the appropriate vaues—from—a—protected—path. If
C_SetAttributeValue is successful, the PIN has been changed to the new value. See sections
10.9 and 11.7 for more information about private key objects and C SetAttributeValue
r ively.

6.7.4 Secondary Authentication PIN Collection M echanisms

Cryptoki does not specify a mechanism for secondary authentication PIN collection. The only
requirement is that the operation of the collection mechanism is transparent to the client.

Idedlly, secondary authentication PINs will be gathered using a protected path device, but that
can not aways bethe case. A Cryptoki implementation may utilize platform specific services to

Copyright © 1994-1999 RSA Laboratories

Page 29

gather PIN vdues, induding GUI didog boxes. While this is different than the typicd avoidance
of non-portable implementation requirements in the design of Cryptoki, it dlows secondary
authentication to be utilized by verson 2.01 aware applications without changes. If an
application requires PIN values to be collected from a protected path, it should insure that the
CKF PROTECTED AUTHENTICATION PATH flagissetinthe CK TOKEN INFO
structure.

6.8 Function overview

The Cryptoki API consists of a number of functions, spanning dot and token management and
object management, as well as cryptographic functions. These functions are presented in the
following teble:

Table 8, Summary of Cryptoki Functions

Category Function Description
Generd C Initidize initidizes Cryptoki
purpose C Findize clean up miscellaneous Cryptoki-associated
functions resources
C_Gslnfo obtains generd information about Cryptoki
C_GetFunctionList obtains entry points of Cryptoki library
functions
Sotandtoken | C_GetSotList obtansalig of dotsin the system
management C _GetSotinfo obtains information about a particular dot
functions C_GetTokenlnfo obtains information about a particular token
C WaitForSotEvent walts for adot event (token insertion,
removal, etc.) to occur
C_GetMechanismList obtainsalist of mechanisms supported by a
token
C_GetMechanisminfo obtains information about a particular
mechanism
C_InitToken initiaizes a token
C InitPIN initidizesthe normd user’s PIN
C SetPIN modifiesthe PIN of the current user
Session C_OpenSession opens a connection between an application
management and a particular token or setsup an
functions gpplication callback for token insertion
C CloseSession closesasesson
C CloseAllSessions closes dl sessonswith atoken

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 30

Category Function Description
C GetSessoninfo obtains information about the session
C_GetOperationState obtains the cryptographic operations state of a
session
C_SetOperationState sets the cryptographic operations state of a
session
C Login logsinto atoken
C_Logout logs out from atoken
Object C_CreateObject creates an object
management C_CopyObject creates a copy of an object
functions C_DestroyObject destroys an object
C_GetObjectSize obtains the size of an object in bytes
C_GetAttributeVdue obtains an attribute vaue of an object
C_SetAttributevVadue modifies an attribute vaue of an object
C_FindObjectslnit initializes an object search operation
C_FindObjects continues an object search operation
C_FindObjectsFinal finishes an object search operation
Encryption C_Encryptinit initializes an encryption operation
functions C_Encrypt encrypts single-part data
C_EncryptUpdate continues a multiple-part encryption operation
C_EncryptFina finishes amultiple-part encryption operation
Decryption C_Decryptlnit initializes a decryption operation
functions C_Decrypt decrypts single-part encrypted data
C_DecryptUpdate continues amultiple-part decryption operation
C_DecryptFina finishes a multiple-part decryption operation
Message C _DigedInit initidizes amessage-digesting operation
digesting C Digest digests sngle-part data
functions C_DigestUpdate continues a multiple-part digesting operation
C DigestKey digests akey
C DigestFind finishes amultiple-part digesting operation

Copyright © 1994-1999 RSA Laboratories

Page 31

Category Function Description
Sgning C_Sgninit initidizes a Sgnature operation
and MACing C Sgn sgns sngle-part data
functions C_SignUpdate continues a multiple-part signature operation
C_SignFind finishes a multiple-part Sgnature operation
C_SignRecoverlnit initidizes a Sgnature operation, where the data
can be recovered from the signature
C_SignRecover sgns sngle-part data, where the data can be
recovered from the sgnature
Functions for C Veifylnit initidizes a verification operation
vaifying
ggnatures C Veity verifies asgnature on Sngle-part data
and MACs C VeifyUpdate continues a multiple-part verification operation
C VeifyFind finishes amultiple-part verification operation
C VeifyRecoverlnit initidizes a verification operation where the
datais recovered from the sgnature
C_VeifyRecover verifies a sgnature on sngle-part data, where
the datais recovered from the signature
Dua-purpose C DigestEncryptUpdate | continues smultaneous multiple-part digesting
cryptographic and encryption operations
functions C_DecryptDigestUpdate | continues Smultaneous multiple-part
decryption and digesting operations
C_SignEncryptUpdate continues Smultaneous multiple-part sgnature
and encryption operations
C_DecryptVerifyUpdate | continues Smultaneous multiple-part
decryption and verification operations
Key C_GenerateKey generates a secret key
management C_GenerateKeyPair generates a public-key/private-key pair
functions C WrapKey wraps (encrypts) akey
C _UnwrapKey unwraps (decrypts) akey
C DeriveKey derives akey from a base key

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 32

Category Function Description

Random number | C_SeedRandom mixesin additiona seed materid to the

generation random number generator

functions C_GenerateRandom generates random data

Padld function | C_GetFunctionStatus legacy function which dways returns

management CKR_FUNCTION_NOT_PARALLEL

functions C_CancdFunction legacy function which dways returns
CKR_FUNCTION_NOT_PARALLEL

Callback gpplication-supplied function to process

function notifications from Cryptoki

7. Security considerations

As an interface to cryptographic devices, Cryptoki provides a basis for security in a computer
or communications system. Two of the particular features of the interface that facilitate such
Security are the following:

1. Access to private objects on the token, and possbly to cryptographic functions and/or
certificates on the token as well, requires a PIN. Thus, possessing the cryptographic device
that implements the token may not be sufficient to useit; the PIN may aso be needed.

2. Additiond protection can be given to private keys and secret keys by marking them as
“senditive’ or “unextractable’. Sengtive keys cannot be reveded in plaintext off the token,
and unextractable keys cannot be revedled off the token even when encrypted (though they
can dill be used as keys).

It is expected that access to private, senstive, or unextractable objects by means other than
Cryptoki (e.g., other programming interfaces, or reverse engineering of the device) would be
difficult.

If a device does not have a tamper-proof environment or protected memory in which to store
private and sengtive objects, the device may encrypt the objects with a master key which is
perhaps derived from the user’s PIN. The particular mechanism for protecting private objects
is|eft to the device implementation, however.

Based on these features it should be possible to design gpplications in such away that the token
can provide adequate security for the objects the gpplications manage.

Of course, cryptography is only one element of security, and the token is only one component in
a sysem. While the token itsdf may be secure, one must dso consder the security of the
operaing system by which the gpplication interfaces to it, epecidly snce the PIN may be
passed through the operating system. This can make it easy for a rogue application on the
operating system to obtain the PIN; it is dso possble that other devices monitoring

Copyright © 1994-1999 RSA Laboratories

Page 33

communication lines to the cryptographic device can obtain the PIN. Rogue gpplications and
devices may aso change the commands sent to the cryptographic device to obtain services
other than what the gpplication requested.

It isimportant to be sure that the system is secure againgt such attack. Cryptoki may well play a
role here; for instance, atoken may beinvolved in the “booting up” of the system.

We note that none of the attacks just described can compromise keys marked “sendtive,” since
akey that is sengtive will aways remain sengtive. Smilarly, akey that is unextractable cannot
be modified to be extractable.

An gpplication may aso want to be sure that the token is “legitimate’ in some sense (for a
variety of reasons, including export restrictions and basic security). This is outside the scope of

the present standard, but it can be achieved by didtributing the token with a built-in, certified

public/private-key pair, by which the token can prove its identity. The certificate would be
sgned by an authority (presumably the one indicating thet the token is “legitimate’) whose public

key is known to the application. The agpplication would verify the certificate and chdlenge the

token to prove itsidentity by sgning atime-varying message with its built-in privete key.

Once a norma user has been authenticated to the token, Cryptoki does not restrict which
cryptographic operations the user may perform; the user may perform any operation supported
by the token. Some tokens may not even require any type of authentication to make use of its

cryptographic functions.

8. Platform- and compiler-dependent directivesfor C or C++

Thereis alarge array of Cryptoki-related data types which are defined in the Cryptoki header
files. Certain packing- and pointer-related aspects of these types are platform- and compiler-
dependent; these aspects are therefore resolved on a platform-by-platform (or compiler-by-
compiler) basis outsde of the Cryptoki header files by means of preprocessor directives.

This means that when writing C or C++ code, certain preprocessor directives must be issued
before including a Cryptoki header file. These directives are described in the remainder of
Section 8.

8.1 Structure packing

Cryptoki structures are packed to occupy as little space as is possible. In particular, on the
Win32 and Win16 platforms, Cryptoki structures should be packed with 1-byte dignment. Ina
UNIX environment, it may or may not be necessary (or even possible) to dter the byte-
dignment of Structures.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 34

8.2 Poainter-related macros

Because different platforms and compilers have different ways of deding with different types of
pointers, Cryptoki requires the following 6 macros to be set outside the scope of Cryptoki:

CK_PTR

CK_PTRisthe “indirection string” a given platform and compiler uses to make a pointer to an
object. Itisusad in the following fashion:

typedef CK_BYTE CK_PTR CK_BYTE_PTR
CK_DEFINE_FUNCTION

CK_DEFI NE_FUNCTI ON(r et urnType, nane), when followed by a parentheses-
enclosed lig of arguments and a function definition, defines a Cryptoki APl function in a
Cryptoki library. r et ur nTy pe isthereturn type of the function, and nane isitsname. Itis
usd in the following fashion:

CK_DEFI NE_FUNCTION(CK_RV, C_Initialize)(
CK VO D_PTR pReserved

)
{

}
CK_DECLARE_FUNCTION

CK_DECLARE_FUNCTI ON(r et urnType, nane), when followmed by a
parentheses-enclosed list of arguments and a semicolon, declares a Cryptoki API function in a
Cryptoki library. r et ur nType isthereturn type of the function, and nane isitsname. Itis
usd in the following fashion:

CK_DECLARE_FUNCTION(CK_RV, C_Initialize)(
CK VO D_PTR pReserved

);
CK_DECLARE_FUNCTION_POINTER

CK_DECLARE_FUNCTI ON_PO NTER(r et urnType, nane),whenfollowed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which isa
pointer to a Cryptoki API function in a Cryptoki library. r et ur nType is the return type of
the function, and nae isitsname. It can be used in ether of the following fashions to define a
function pointer variable, myC_I ni ti al i ze, which can point to a C_Initialize function in

Copyright © 1994-1999 RSA Laboratories

Page 35

a Cryptoki library (note that neither of the following code snippets actudly assigns a vaue to
myC Initialize):

CK_DECLARE_FUNCTI ON_PO NTER(CK_RV, nyC Initialize)(
CK VO D_PTR pReserved

)
or:

t ypedef CK _DECLARE_FUNCTI ON_PO NTER(CK_RV,
myC InitializeType)(
CK VO D_PTR pReserved

);
myC InitializeType myC Initialize;

CK_CALLBACK_FUNCTION

CK_CALLBACK_FUNCTI ON(returnType, name), when followed by a
parentheses-enclosed list of arguments and a semicolon, declares a variable or type which isa
pointer to an application calback function that can be used by a Cryptoki APl function in a
Cryptoki library. r et ur nType isthe return type of the function, and name isits name. It
can be usd in ether of the following fashions to define a function pointer variable,
my Cal | back, which can point to an application calback which takes arguments ar gs and
returnsa CK_RV (note that neither of the following code snippets actudly assigns a vaue to
myCal | back):

CK_CALLBACK_FUNCTI ON(CK_RV, nycCal | back) (args);
or:
t ypedef CK_CALLBACK_FUNCTI ON(CK_RV,
myCal | backType) (args);
myCal | backType mnyCal | back;
NULL _PTR

NULL_PTR is the vadue of a NULL pointer. In any ANS C environment—and in many
othersaswell—NULL_PTR should be defined smply as 0.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 36

8.3 Sample platform- and compiler-dependent code

8.3.1 Win32

Developers usng Microsoft Developer Studio 5.0 to produce C or C++ code which
implements or makes use of a Win32 Cryptoki .dil might issue the following directives before
including any Cryptoki heeder files:

#pragma pack(push, cryptoki, 1)
#define CK PTR *

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType _ decl spec(dl |l export) name

#defi ne CK_DECLARE_FUNCTI ON(returnType, nane) \
returnType _ decl spec(dllinport) name

#define CK DECLARE _FUNCTI ON_PO NTER(returnType, nane)
\
returnType _ decl spec(dllinmport) (* nane)

#defi ne CK _CALLBACK FUNCTI ON(returnType, nane) \
returnType (* nane)

#i f ndef NULL_PTR

#define NULL PTR O
#endi f

After including any Cryptoki header files, they might issue the following directives to reset the
sructure packing to its earlier vaue:

#pragma pack(pop, cryptoki)
8.3.2 Winl6

Developers using a pre-5.0 version of Microsoft Developer Studio to produce C or C++ code
which implements or makes use of a Winl16 Cryptoki .dll might issue the following directives
before including any Cryptoki heeder files:

#pragma pack(1)
#define CK_PTR far *

#define CK _DEFI NE_FUNCTI ON(returnType, nane) \
returnType _ _export _far _pascal nane

Copyright © 1994-1999 RSA Laboratories

Page 37

#defi ne CK_DECLARE_FUNCTI ON(returnType, nane) \
returnType _ _export _far _pascal nanme

#defi ne CK DECLARE _FUNCTI ON_PO NTER(returnType, nane)
\
returnType _ _export _far _pascal (* nane)

#define CK _CALLBACK FUNCTI ON(returnType, nane) \
returnType _far _pascal (* nanme)

#i f ndef NULL_PTR
#define NULL PTR O
#endi f

8.3.3 Generic UNIX

Deveopers performing generic UNIX development might issue the following directives before
including any Cryptoki heeder files:

#define CK PTR *

#defi ne CK_DEFI NE_FUNCTI ON(returnType, nane) \
returnType nane

#defi ne CK_DECLARE_FUNCTI ON(returnType, nane) \
returnType nane

#defi ne CK DECLARE _FUNCTI ON_PO NTER(returnType, nane)
\
returnType (* nane)

#defi ne CK _CALLBACK FUNCTI ON(returnType, nane) \
returnType (* nanme)

#i f ndef NULL_PTR

#define NULL PTR O
#endi f

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 38

9. General datatypes

The generd Cryptoki data types are described in the following subsections. The data types for
holding parameters for various mechanisms, and the pointers to those parameters, are not
described here; these types are described with the information on the mechanisms themselves, in
Section 11.17.2.

A C or C++ sourcefilein a Cryptoki application or library can define dl these types (the types
described here and the types that are specificaly used for particular mechanism parameters) by
including the top-leve Cryptoki include file, pkcs11. h. pkcs1l. h, in turn, indudes the
other Cryptoki includefiles pkcs11t . h and pkcs11f. h. A source file can dso include
just pkcs1lt. h (ingead of pkcs11. h); this defines most (but not dl) of the types
specified here.

When including ether of these header files, a source file must specify the preprocessor
directivesindicated in Section 8.
9.1 General information

Cryptoki represents generd information with the following types:

CK_VERSION; CK_VERSION_PTR

CK_VERSION is a gtructure that describes the verson of a Cryptoki interface, a Cryptoki
library, or an SSL implementation, or the hardware or firmware verson of adot or token. It is
defined asfollows:

typedef struct CK _VERSI ON {
CK_BYTE mmj or;

CK_BYTE m nor;
} CK_VERSI ON;

Thefields of the sructure have the following meanings
major mgjor verson number (the integer portion of the version)

minor minor verson number (the hundredths portion of the
verson)

For verson 1.0, major = 1 and minor = 0. For verson 2.1, major = 2 and minor = 10.
Minor revisons of the Cryptoki standard are dways upwardly competible within the same
magor verson number.

CK_VERSION_PTR isapointer toaCK_VERSION.

Copyright © 1994-1999 RSA Laboratories

Page 39

CK_INFO; CK_INFO_PTR

CK_INFO provides genera information about Cryptoki. It isdefined as follows:

typedef struct CK I NFO {
CK_VERSI ON crypt oki Ver si on;
CK_UTF8CHAR manuf acturer! D[32]; |
CK_FLAGS fl ags;
CK_UTF8CHAR | i braryDescription[32]; |
CK_VERSI ON | i braryVersi on;

} CK_I NFG;

Thefields of the structure have the following meanings

cryptokiVersion Cryptoki interface version number, for competibility with
future revisons of thisinterface

manufacturer|D ID of the Cryptoki library manufacturer. Must be padded
with the blank character (* *). Should not be null-
terminated.

flags it flags reserved for future versons. Must be zero for this
verson

libraryDescription character-string description of the library. Must be
padded with the blank character (* *). Should not be null-
terminated.

libraryVersion Cryptoki library verson number

For libraries written to this document, the vaue of cryptokiVersion should be 2:612.1; the |
vauedf libraryVersion isthe verson number of the library software itsdlf.

CK_INFO_PTR isapointer toaCK_INFO.

CK_NOTIFICATION

CK_NOTIFICATION holds the types of notifications that Cryptoki provides to an
goplicaion. It isdefined asfollows:

t ypedef CK_ULONG CK_NOTI FI CATI ON:

For this verson of Cryptoki, the following types of notifications are defined:

#defi ne CKN_SURRENDER O

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 40

The natifications have the following meanings

CKN_SURRENDER Cryptoki is surrendering the execution of afunction
executing in a session so that the application may perform
other operations. After performing any desired operations,
the application should indicate to Cryptoki whether to
continue or cancel the function (see Section 11.17.1).

9.2 Slot and token types

Cryptoki represents dot and token information with the following types.

CK_SLOT_ID; CK_SLOT_ID_PTR
CK_SLOT_ID isaCryptoki-assigned vaue that identifiesadot. It is defined asfollows

t ypedef CK_ULONG CK_SLOT | D:

A lig of CK_SLOT_IDs is returned by C _GetSlotList. A priori, any vdue of
CK_SLOT_ID can be avdid dot identifier—in particular, a sysem may have a dot identified
by the value 0. It need not have such adot, however.

CK_SLOT_ID PTR isapointer toaCK_SLOT_ID.

CK_SLOT_INFO; CK_SLOT_INFO_PTR
CK_SLOT_INFO providesinformation about adot. It isdefined asfollows.

typedef struct CK _SLOT_I NFO {
CK_UTF8CHAR sl ot Descri ption[64];
CK_UTF8CHAR manuf acturerl D 32];
CK_FLAGS fl ags;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON firmnar eVer si on;

} CK_SLOT_I NFG,

Thefidds of the structure have the following meanings.

dotDescription character-string description of the dot. Must be padded
with the blank character (* *). Should not be null-
terminated.

manufacturer|D ID of the dot manufacturer. Must be padded with the
blank character (* *). Should not be null-terminated.

Copyright © 1994-1999 RSA Laboratories

Page 41

flags hitsflagsthat provide capabilities of thedot. Theflagsare
defined below

hardwareVersion verson number of the dot’s hardware
firmwareVersion verdon number of the dot’s firmware

Thefollowing table defines the flags fidd:

Table 9, Sot Information Flags

Bit Flag M ask Meaning

CKF_TOKEN_PRESENT 0x00000001 | TRUE if atoken ispresent in the dot
(e.g., adeviceisin the reader)
CKF_REMOVABLE DEVICE | 0x00000002 | TRUE if the reader supports removable
devices

CKF_HW_SLOT 0x00000004 | TRUE if the dot isahardware dot, as
opposed to a software dot implementing
a " soft token”

For a given dat, the value of the CKF_REMOVABLE_DEVICE flag never changes. In
addition, if thisflag is not set for agiven dat, then the CKF_TOKEN_PRESENT flag for thet
dotisalways set. That is, if a dot does not support a removable device, then that dot dways
hasatokeninit.

CK_SLOT_INFO_PTR isapointer toaCK_SLOT_INFO.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 42

CK_TOKEN_INFO; CK_TOKEN_INFO_PTR

CK_TOKEN_INFO providesinformation about atoken. It is defined asfollows.

typedef struct CK TOKEN | NFO {
CK_UTF8CHAR | abel [32];
CK_UTF8CHAR manuf acturerl D[32];
CK_UTF8CHAR nodel [16] ;
CK_CHAR seri al Nunber [16];
CK_FLAGS fl ags;
CK_ULONG ul MaxSessi onCount ;
CK_ULONG ul Sessi onCount ;
CK_ULONG ul MaxRwSessi onCount ;
CK_ULONG ul RwSessi onCount ;
CK_ULONG ul MaxPi nLen;
CK_ULONG ul M nPi nLen;
CK_ULONG ul Tot al Publ i cMenory;
CK_ULONG ul FreePubl i cMenory;
CK_ULONG ul Tot al Pri vat eMenory;
CK_ULONG ul FreePrivat eMenory;
CK_VERSI ON har dwar eVer si on;
CK_VERSI ON firmnar eVer si on;
CK_CHAR ut cTi ne[16] ;

} CK_TOKEN_I NFO,

Thefields of the sructure have the following meanings

label gpplication-defined |abel, assigned during token
initidization. Must be padded with the blank character (*
). Should not be null-terminated.

manufacturer|D ID of the device manufacturer. Must be padded with the
blank character (*). Should not be null-terminated.

model model of the device. Must be padded with the blank
character (* *). Should not be null-terminated.

serial Number character-gtring serid number of the device. Must be
padded with the blank character (* *). Should not be null-
terminated.

flags hit flagsindicating capabilities and status of the device as
defined below

ulMaxSessionCount maximum number of sessons that can be opened with the
token at one time by a single application (see note below)

Copyright © 1994-1999 RSA Laboratories

ul SessionCount

ulMaxRwSess onCount

ulRwSessionCount

ulMaxPinLen
ulMinPinLen

ul Total PublicMemory

ulFreePublicMemory

ul Total PrivateMemory

ulFreePrivateMemory

hardwareVersion
firmwareVersion

utcTime

Page 43

number of sessons that this application currently has open
with the token (see note below)

maximum number of read/write sessions that can be
opened with the token at one time by a single application
(see note below)

number of read/write sessons that this application currently
has open with the token (see note below)

maximum length in bytes of the PIN
minimum length in bytes of the PIN

the total amount of memory on the token in bytesin which
public objects may be stored (see note below)

the amount of free (unused) memory on the token in bytes
for public objects (see note below)

the tota amount of memory on the token in bytesin which
private objects may be stored (see note below)

the amount of free (unused) memory on the token in bytes
for private objects (see note below)

verson number of hardware
verson number of firmware

current time as a character-string of length 16, represented
intheformat YYYYMMDDhhmmssxx (4 characters for
theyear; 2 characters each for the month, the day, the
hour, the minute, and the second; and 2 additional reserved
‘0’ characters). Thevaue of thisfield only makes sense
for tokens equipped with a clock, as indicated in the token
information flags (see Table 10Fable 10T able 10Fable-10)

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

Thefollowing table defines the flags fidd:

Table 10, Token Information Flags

Bit Flag

M ask

Meaning

CKF_RNG

0x00000001

TRUE if thetoken
has its own random
number generator

CKF_WRITE_PROTECTED

0x00000002

TRUE if thetokenis
write-protected (see
below)

CKF_LOGIN_REQUIRED

(0x00000004

TRUE if there are

some cryptographic
functions that a user
must be logged in to

perform

CKF_USER_PIN_INITIALIZED

(0x00000008

TRUE if the normd
user's PIN has been
initidized

CKF_RESTORE_KEY_NOT NEEDED

0x00000020

TRUEif a
successful save of a
L£sIon's
cryptographic
operations state
always contansdl
keys needed to
restore the state of
the session

CKF_CLOCK_ON_TOKEN

0x00000040

TRUE if token has
its own hardware
clock

CKF_PROTECTED_AUTHENTICATION_PATH

0x00000100

TRUE if token hasa
“protected
authentication path”,
whereby a user can
log into the token
without passing a
PIN through the
Cryptoki library

Copyright © 1994-1999 RSA Laboratories

Page 45

Bit Flag

M ask

Meaning

CKF DUAL CRYPTO OPERATIONS

0x00000200

TRUE if agnge

ssgon with the
token can perform
dud cryptographic
operations (see
Section 11.13)

CKF TOKEN INITIALIZED

0x00000400

TRUE if the token

has been initidized
usng

C InitidizeToken or
an equivdent
mechanism outsde
the scope of this
gandard. Cdling

C InitidizeToken
when thisflag is s&t
will cause the token
to be ranitidized.

CKF _SECONDARY AUTHENTICATION

0x00000800

TRUE if the token

supports secondary
authentication for
private key objects.

CKF USER PIN COUNT LOW

0x00010000

TRUEIf an

incorrect user login
PIN has been
entered at least once
sncethelast
successful
authentication.

CKF USER PIN FINAL TRY

0x00020000

TRUE if supplying

an incorrect user
PIN will it to
become locked.

CKEF USER PIN LOCKED

0x00040000

TRUE if the user

PIN has been
locked. User login
to thetoken is not

possible.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

46

Bit Flag

M ask

Meaning

CKF USER PIN TO BE CHANGED

0x00080000

TRUE if the user

PIN vdueisthe
default value set by
token initidization or
menufacturing.

CKE SO PIN COUNT LOW

0x00100000

TRUE if an

incorrect SO login
PIN has been
entered at least once
sncethe last
successtul

CKE SO PIN FINAL TRY

0x00200000

TRUE if supplying

an incorrect SO
PIN will it to
become locked.

CKF SO PIN LOCKED

0x00400000

TRUE if the user

PIN has been
locked. User login
to the token is not

possible.

CKF SO PIN TO BE CHANGED

0x00800000

TRUE if the SO

PIN vdueisthe
default vaue set by
token initidization or
manufacturing.

Exactly what the CKF_WRITE_PROTECTED flag means is not specified in Cryptoki. An
gpplication may be unable to perform certain actions on a write-protected token; these actions

can include any of the following, among others:

Cresting/modifying/deleting any object on the token.

Creating/modifying/deleting a token object on the token.

Changing the SO's PIN.

Changing the norma user's PIN.

Copyright © 1994-1999 RSA Laboratories

Page 47

The CKE USER PIN COUNT LOW, CKE USER PIN COUNT LOW,
CKF USER PIN FINAL TRY, and CKF SO PIN FINAL TRY flags may dways be
st to FALSE if the token does not support the functiondity or will not reved the information
because of its security policy.

The CKF USER PIN TO BE CHANGED and CKE SO PIN TO BE CHANGED
flags may aways be set to FAL SE if the token does not support the functionality.

Note The fidds ulMaxSessonCount, ulSessonCount, ulMaxRwSessionCount,
ulRwSessionCount, ulTotal PublicMemory, ulFreePublicMemory, ul Total PrivateMemory,
and ulFreePrivateMemory can have the Specid vaue
CK_UNAVAILABLE _INFORMATION, which means that the token and/or library is unable
or unwilling to provide that information. In addition, the fidlds ulMaxSessionCount and
ulMaxRwSessionCount can have the specia vaue CK_EFFECTIVELY _INFINITE, which
means that there is no practicd limit on the number of sessons (resp. RAW sessions) an
gpplication can have open with the token.

These vaues are defined as

#defi ne CK_UNAVAI LABLE_I NFORVATI ON (~0uL)
#defi ne CK_EFFECTI VELY_I NFI NI TE 0

It is important to check these fidds for these specid values. This is particularly true for
CK_EFFECTIVELY_INFINITE, dnce an gpplication seeing this vdue in the
ulMaxSessionCount or ulMaxRwSessionCount field would otherwise conclude that it can't
open any sessons with the token, which isfar from being the case.

The upshot of dl thisisthat the correct way to interpret (for example) the ulMaxSessionCount
field is something dong the lines of the following:

CK_TOKEN_| NFO i nf o;

if ((CK_LONG) info.ul MaxSessi onCount
== CK_UNAVAI LABLE_I| NFORMATI ON) {
/* Token refuses to give value of ul MaxSessi onCount
*/

} else if (info.ul MaxSessi onCount ==
CK_EFFECTI VELY_I NFI NI TE) {
/* Application can open as nmany sessions as it wants
*/

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 48

} else {
/* ul MaxSessi onCount really does contain what it
shoul d */

}

CK_TOKEN_INFO_PTR isapointer toaCK_TOKEN_INFO.

9.3 Session types

Cryptoki represents session information with the following types:

CK_SESSION_HANDLE; CK_SESSION_HANDLE_PTR

CK_SESSION_HANDLE is a Cryptoki-assigned vaue that identifies a sesson. It is defined
asfollows

typedef CK_ULONG CK_SESSI ON_HANDLE;

Valid session handles in Cryptoki always have nonzero values. For developers
convenience, Cryptoki defines the following symbalic vaue:

#defi ne CK_| NVALI D_HANDLE 0

CK_SESSION_HANDLE_PTR isapointer toaCK_SESSION_HANDLE.

CK_USER_TYPE

CK_USER_TYPE holdsthe types of Cryptoki users described in Section 6.4. It is defined as
follows

typedef CK_ULONG CK_USER TYPE;

For thisversgon of Cryptoki, the following types of users are defined:

#define CKU SO O
#define CKU_USER 1

Copyright © 1994-1999 RSA Laboratories

Page 49

CK_STATE

CK_STATE holds the session dtate, as described in Sections 6.6.1 and 6.6.2. 1t is defined as
follows

typedef CK ULONG CK_STATE;

For thisverson of Cryptoki, the following sesson states are defined:
#define CKS_RO PUBLI C_SESSI ON 0
#defi ne CKS_RO _USER FUNCTI ONS 1
#defi ne CKS_RW PUBLI C_SESSI ON 2
#defi ne CKS_RW USER FUNCTI ONS 3
#define CKS_RW SO FUNCTIONS 4
CK_SESSION_INFO; CK_SESSION_INFO_PTR
CK_SESSION_INFO providesinformeation about a sesson. It is defined asfollows:
typedef struct CK_SESSI ON I NFO {
CK_SLOT_ID slotlD;
CK_STATE st at e;
CK_FLAGS fl ags;

CK_ULONG ul Devi ceError;
} CK_SESSI ON_I NFG

Thefidds of the structure have the following meanings.
dotlD ID of the dot that interfaces with the token
state the sate of the session

flags hit flagsthat define the type of session; the flags are defined
below

ulDeviceError an error code defined by the cryptographic device. Used
for errors not covered by Cryptoki.

Thefollowing table defines the flags fidd:

Table 1211111111 Session Information Flags

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 50

Bit Flag M ask Meaning

CKF_RW_SESSION 0x00000002 | TRUE if the session is read/write; FALSE if
the session is read-only

CKF_SERIAL_SESSION | 0x00000004 | Thisflagis provided for backward
compdtibility, and should aways be st to
TRUE

CK_SESSION_INFO_PTR isapointer toaCK_SESSION_INFO.

9.4 Object types

Cryptoki represents object information with the following types:

CK_OBJECT_HANDLE; CK_OBJECT_HANDLE _PTR
CK_OBJECT_HANDLE isatoken-specific identifier for an object. It is defined asfollows:

t ypedef CK_ULONG CK_OBJECT HANDLE;

When an object is created or found on atoken by an application, Cryptoki assigns it an object
handle for that application’s sessons to use to access it. A particular object on a token does
not necessaxily have a handle which is fixed for the lifetime of the object; however, if a particular
sesson can use a particular handle to access a particular object, then that sesson will continue
to be able to use that handle to access that object as long as the session continues to exig, the
object continues to exist, and the object continues to be accessible to the session.

Valid object handles in Cryptoki always have nonzero values. For developers
convenience, Cryptoki defines the following symboalic vaue:

#defi ne CK_| NVALI D_HANDLE 0

CK_OBJECT_HANDLE_PTR isapointer toaCK_OBJECT_HANDLE.

CK_OBJECT _CLASS;, CK_OBJECT CLASS PTR

CK_OBJECT_CLASS isavaue that identifies the classes (or types) of objects that Cryptoki
recognizes. It isdefined asfollows

t ypedef CK_ULONG CK_OBJECT CLASS:

For thisverson of Cryptoki, the following classes of objects are defined:

Copyright © 1994-1999 RSA Laboratories

Page 51

#defi ne CKO_DATA 0x00000000
#defi ne CKO_CERTI FI CATE 0x00000001
#defi ne CKO_PUBLI C_KEY 0x00000002
#defi ne CKO_PRI VATE_KEY 0x00000003
#defi ne CKO_SECRET_KEY 0x00000004
#defi ne CKO_HW FEATURE 0x00000005

#defi ne CKO VENDOR DEFI NED 0x80000000

Object classes CKO_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their object classes through the PKCS
process.

CK_OBJECT_CLASS PTR isapointer toaCK_OBJECT CLASS.

CK_HW FEATURE TYPE

CK HW FEATURE TYPE isavadue that identifies a hardware feature type of adevice. Itis
defined asfollows:

t ypedef CK ULONG CK _HW FEATURE_TYPE;

For this verson of Cryptoki, the following hardware feature types are defined:

#define CKH_MONOTONI C COUNTER 0x00000001
#defi ne CKH_CLOCK 0x00000002
#defi ne CKH_VENDOR_DEFI NED 0x80000000

Feature types CKH VENDOR DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their feature types through the PKCS

process.

CK_KEY_TYPE

CK_KEY_TYPE isavduethat identifiesakey type. It is defined as follows

typedef CK_ULONG CK_KEY_ TYPE;

For this versgon of Cryptoki, the following key types are defined:

#def i ne CKK_RSA 0x00000000
#def i ne CKK_DSA 0x00000001
#define CKK_DH 0x00000002
#def i ne CKK_ECDSA 0x00000003
#def i ne CKK_KEA 0x00000005

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 52

#defi ne CKK_GENERI C_SECRET 0x00000010

#defi ne CKK_RC2 0x00000011
#defi ne CKK _RC4 0x00000012
#defi ne CKK_DES 0x00000013
#defi ne CKK_DES2 0x00000014
#defi ne CKK DES3 0x00000015
#defi ne CKK_CAST 0x00000016
#defi ne CKK_CAST3 0x00000017
#defi ne CKK_CAST5 0x00000018
#defi ne CKK CAST128 0x00000018
#defi ne CKK_RC5 0x00000019
#defi ne CKK_| DEA 0x0000001A
#defi ne CKK_SKI PJACK 0x0000001B
#defi ne CKK_BATON 0x0000001C
#defi ne CKK_JUNI PER 0x0000001D
#defi ne CKK_CDMF 0x0000001E

#defi ne CKK_VENDOR_DEFI NED 0x80000000

Key types CKK_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their key types through the PKCS
process.

CK_CERTIFICATE_TYPE

CK_CERTIFICATE_TYPE isavduethat identifies a certificate type. It is defined as follows.

t ypedef CK_ULONG CK_CERTI FI CATE_TYPE;

For thisverson of Cryptoki, the following certificate types are defined:

#define CKC_X_ 509 0x00000000
#define CKC_X 509 ATTR CERT 0x00000001
#define CKC_VENDOR DEFI NED 0x80000000

Certificate types CKC_VENDOR_DEFINED and above are permanently reserved for token
vendors. For interoperability, vendors should register their certificate types through the PKCS
process.

CK_ATTRIBUTE_TYPE

CK_ATTRIBUTE_TYPE isavauethat identifies an attribute type. It is defined as follows:

t ypedef CK_ULONG CK_ATTRI BUTE_TYPE;

For thisverson of Cryptoki, the following attribute types are defined:

Copyright © 1994-1999 RSA Laboratories

#defi ne CKA _CLASS 0x00000000
#defi ne CKA TOKEN 0x00000001
#defi ne CKA_ PRI VATE 0x00000002
#defi ne CKA_LABEL 0x00000003
#defi ne CKA_APPLI CATI ON 0x00000010
#defi ne CKA VALUE 0x00000011
#defi ne CKA OBJECT ID 0x00000012
#defi ne CKA_CERTI FI CATE_TYPE 0x00000080
#defi ne CKA | SSUER 0x00000081
#defi ne CKA_SERI AL_NUMBER 0x00000082
#defi ne CKA AC | SSUER 0x00000083
#defi ne CKA OWNER 0x00000084
#defi ne CKA ATTR TYPES 0x00000085
#defi ne CKA _KEY_TYPE 0x00000100
#defi ne CKA_SUBJECT 0x00000101
#define CKA_ID 0x00000102
#def i ne CKA_SENSI Tl VE 0x00000103
#defi ne CKA_ENCRYPT 0x00000104
#defi ne CKA_DECRYPT 0x00000105
#defi ne CKA WRAP 0x00000106
#def i ne CKA_UNWRAP 0x00000107
#defi ne CKA_SI GN 0x00000108
#defi ne CKA_SI GN_RECOVER 0x00000109
#defi ne CKA_VERI FY 0x0000010A
#defi ne CKA_VERI FY_RECOVER 0x0000010B
#defi ne CKA_DERI VE 0x0000010C
#defi ne CKA _START_DATE 0x00000110
#defi ne CKA_END_DATE 0x00000111
#defi ne CKA_MODULUS 0x00000120
#defi ne CKA_MODULUS BI TS 0x00000121
#defi ne CKA PUBLI C_EXPONENT 0x00000122
#defi ne CKA_ PRI VATE_EXPONENT 0x00000123
#defi ne CKA PRI MVE_1 0x00000124
#define CKA PRI VE 2 0x00000125
#defi ne CKA EXPONENT_1 0x00000126
#defi ne CKA_EXPONENT_2 0x00000127
#def i ne CKA_COEFFI CI ENT 0x00000128
#defi ne CKA PRI ME 0x00000130
#defi ne CKA_ SUBPRI ME 0x00000131
#defi ne CKA_BASE 0x00000132
#defi ne CKA VALUE BITS 0x00000160
#defi ne CKA VALUE LEN 0x00000161
#defi ne CKA EXTRACTABLE 0x00000162
#defi ne CKA_LOCAL 0x00000163
#defi ne CKA_NEVER _EXTRACTABLE 0x00000164
#defi ne CKA_ALWAYS_SENSI Tl VE 0x00000165
#defi ne CKA MODI FI ABLE 0x00000170
#defi ne CKA_ECDSA PARAMS 0x00000180

Page 53

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 4

#define CKA_EC POl NT 0x00000181
#defi ne CKA SECONDARY AUTH 0x00000200
#define CKA AUTH PI N FLAGS 0x00000201
#define CKA _HW FEATURE TYPE __ 0x00000300
#define CKA RESET ON INI T 0x00000301
#define CKA HAS RESET 0x00000302
#defi ne CKA_VENDOR _DEFI NED 0x80000000

Section 9.7 defines the attributes for each object cdass. Attribute types
CKA_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their attribute types through the PKCS process.

CK_ATTRIBUTE; CK_ATTRIBUTE_PTR

CK_ATTRIBUTE is a dructure tha includes the type, value, and length of an attribute. 1t is
defined as follows.

typedef struct CK_ATTRI BUTE {
CK_ATTRI BUTE_TYPE type;
CK_VA D_PTR pVal ue;

CK_ULONG ul Val uelLen;
} CK_ATTRI BUTE;

Thefidds of the structure have the following meanings.
type theattribute type
pValue pointer to the vaue of the atribute
ulValueLen lengthin bytes of the vaue

If an attribute has no vaue, then ulVValueLen = O, and the vaue of pValue is irrdevant. An
aray of CK_ATTRIBUTESsi s cdled a “template’ and is used for cregting, manipulating and
searching for objects. The order of the attributes in a template never maters, even if the
template contains vendor-specific attributes. Note that pValue is a “void” pointer, facilitating
the passing of arbitrary values. Both the goplication and Cryptoki library must ensure that the
pointer can be safely cast to the expected type (i.e., without word-aignment errors).

CK_ATTRIBUTE_PTR isapointer toaCK_ATTRIBUTE.

CK_DATE

CK_DATE isadructure that defines adate. It is defined as follows:

Copyright © 1994-1999 RSA Laboratories

Page 55

typedef struct CK DATE {
CK_CHAR year|[4];
CK_CHAR nont h[2] ;
CK_CHAR day|[2] ;
} CK_DATE;
Thefidds of the structure have the following meanings.
year theyear (“1900" - “9999")
month themonth (“01” - “12")
day theday (“O1" - “31")

The fields hold numeric characters from the character set in Table 3Table 3Table-3Fable-3, not |
the literd byte vaues.

9.5 Datatypesfor mechanisms

Cryptoki supports the following types for describing mechanisms and parameters to them:

CK_MECHANISM_TYPE; CK_MECHANISM_TYPE_PTR

CK_MECHANISM_TYPE is a vdue that identifies a mechaniam type. It is defined as
follows

typedef CK_ULONG CK_MECHANI SM TYPE;

For Cryptoki Verson 2:012.1, the following mechanism types are defined:

#defi ne CKM_RSA PKCS_KEY_PAI R_GEN 0x00000000
#defi ne CKM _RSA_ PKCS 0x00000001
#defi ne CKM RSA 9796 0x00000002
#defi ne CKM_RSA_ X 509 0x00000003
#defi ne CKM_MD2_RSA PKCS 0x00000004
#defi ne CKM _MD5_RSA PKCS 0x00000005
#defi ne CKM _SHA1 RSA PKCS 0x00000006
#defi ne CKM RI PEVMD128 RSA PKCS 0x00000007
#defi ne CKM RI PEMD160 RSA PKCS 0x00000008
#defi ne CKM RSA PKCS OAEP 0x00000009
#defi ne CKM RSA PKCS PSS 0x0000000A
#defi ne CKM SHA1 RSA PKCS PSS 0x0000000B
#defi ne CKM_DSA KEY_PAI R_GEN 0x00000010
#defi ne CKM DSA 0x00000011
#defi ne CKM DSA SHAl 0x00000012
#defi ne CKM DH PKCS_KEY_PAI R_GEN 0x00000020

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#defi ne CKM DH_PKCS DERI VE 0x00000021
#defi ne CKM RC2_KEY_GEN 0x00000100
#defi ne CKM RC2_ECB 0x00000101
#defi ne CKM RC2_CBC 0x00000102
#defi ne CKM RC2_MAC 0x00000103
#defi ne CKM RC2_MAC GENERAL 0x00000104
#defi ne CKM RC2_CBC_PAD 0x00000105
#defi ne CKM RC4_KEY_GEN 0x00000110
#defi ne CKM RC4 0x00000111
#defi ne CKM DES_KEY_GEN 0x00000120
#defi ne CKM DES ECB 0x00000121
#defi ne CKM DES CBC 0x00000122
#defi ne CKM DES MAC 0x00000123
#defi ne CKM DES MAC GENERAL 0x00000124
#defi ne CKM DES CBC PAD 0x00000125
#defi ne CKM DES2_ KEY_GEN 0x00000130
#defi ne CKM DES3_KEY_GEN 0x00000131
#defi ne CKM DES3_ECB 0x00000132
#defi ne CKM DES3_CBC 0x00000133
#defi ne CKM DES3_MAC 0x00000134
#defi ne CKM DES3_ MAC GENERAL 0x00000135
#defi ne CKM DES3_CBC_PAD 0x00000136
#defi ne CKM CDMF_KEY_GEN 0x00000140
#defi ne CKM CDMF_ECB 0x00000141
#defi ne CKM CDMF_CBC 0x00000142
#defi ne CKM _CDMF_MAC 0x00000143
#defi ne CKM CDMF_MAC GENERAL 0x00000144
#defi ne CKM CDMF_CBC_PAD 0x00000145
#defi ne CKM MD2 0x00000200
#defi ne CKM MD2_HVAC 0x00000201
#defi ne CKM MD2_HVAC GENERAL 0x00000202
#defi ne CKM_MD5 0x00000210
#defi ne CKM MD5_ HMAC 0x00000211
#defi ne CKM _MD5_HVAC GENERAL 0x00000212
#define CKM SHA 1 0x00000220
#defi ne CKM SHA 1 HMAC 0x00000221
#defi ne CKM SHA 1 HMAC GENERAL 0x00000222
#defi ne CKM Rl PEVMD128 0x00000230
#defi ne CKM Rl PEVMD128 HVAC 0x00000231
#defi ne CKM Rl PEMD128 HVAC GENERAL 0x00000232
#defi ne CKM Rl PEMD160 0x00000240
#defi ne CKM Rl PEVMD160 HVAC 0x00000241
#defi ne CKM Rl PEMD160 HVAC GENERAL 0x00000242
#defi ne CKM CAST_KEY_GEN 0x00000300
#defi ne CKM CAST_ECB 0x00000301
#defi ne CKM CAST_CBC 0x00000302
#defi ne CKM CAST_MAC 0x00000303
#defi ne CKM CAST_MAC GENERAL 0x00000304

Copyright © 1994-1999 RSA Laboratories

56

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

CKM_CAST_CBC_PAD
CKM_CAST3_KEY_GEN
CKM_CAST3_ECB

CKM_CAST3_CBC
CKM_CAST3_MAC
CKM_CAST3_MAC_GENERAL
CKM_CAST3_CBC_PAD
CKM_CAST5_KEY GEN
CKM_CAST128_KEY_GEN
CKM_CAST5_ECB

CKM CAST128_ ECB
CKM_CAST5_CBC
CKM_CAST128_CBC
CKM_CAST5_MAC
CKM_CAST128_MAC
CKM_CAST5_MAC_GENERAL
CKM_CAST128_ MAC_GENERAL
CKM_CAST5_CBC_PAD
CKM_CAST128 CBC_PAD
CKM_RC5_KEY_GEN

CKM_RC5_ECB

CKM_RC5_CBC

CKM_RC5_MAC
CKM_RC5_MAC_GENERAL
CKM_RC5_CBC_PAD

CKM_| DEA_KEY_GEN

CKM_| DEA_ECB

CKM_| DEA_CBC

CKM_| DEA_MAC

CKM_| DEA_MAC_GENERAL

CKM_| DEA_CBC_PAD

CKM_GENERI C_SECRET_KEY_GEN
CKM_CONCATENATE_BASE_AND_KEY
CKM_CONCATENATE_BASE_AND_DATA
CKM_CONCATENATE_DATA_AND_BASE
CKM_XOR_BASE_AND_DATA
CKM_EXTRACT _KEY_FROM KEY
CKM_SSL3_PRE_MASTER KEY_GEN
CKM_SSL3_MASTER KEY_DERI VE
CKM_SSL3_KEY_AND_MAC_DERI VE
CKM_SSL3_MD5_MAC
CKM_SSL3_SHA1 MAC
CKM_MD5_KEY_DERI VATI ON
CKM_MD2_KEY_DERI VATI ON
CKM_SHA1_KEY_DERI VATI ON
CKM_PBE_MD2_DES_CBC

CKM _PBE_MD5_DES_CBC
CKM_PBE_MD5_CAST_CBC

0x00000305
0x00000310
0x00000311
0x00000312
0x00000313
0x00000314
0x00000315
0x00000320
0x00000320
0x00000321
0x00000321
0x00000322
0x00000322
0x00000323
0x00000323
0x00000324
0x00000324
0x00000325
0x00000325
0x00000330
0x00000331
0x00000332
0x00000333
0x00000334
0x00000335
0x00000340
0x00000341
0x00000342
0x00000343
0x00000344
0x00000345
0x00000350
0x00000360
0x00000362
0x00000363
0x00000364
0x00000365
0x00000370
0x00000371
0x00000372
0x00000380
0x00000381
0x00000390
0x00000391
0x00000392
0x000003A0
0x000003A1
0x000003A2

Page 57

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#defi ne CKM _PBE_MD5_CAST3_CBC 0x000003A3
#defi ne CKM PBE_NMD5_CAST5_CBC 0x000003A4
#defi ne CKM PBE_NMD5_ CAST128 CBC 0x000003A4
#defi ne CKM_PBE_SHAl1 CAST5_CBC 0x000003A5
#defi ne CKM PBE_SHA1 CAST128_CBC 0x000003A5
#defi ne CKM PBE_SHAl1 RC4_128 0x000003A6
#defi ne CKM PBE_SHA1 RC4 40 0x000003A7
#defi ne CKM PBE_SHA1 DES3_EDE_CBC 0x000003A8
#defi ne CKM PBE_SHA1 DES2 EDE_CBC 0x000003A9
#defi ne CKM PBE_SHAl1 RC2 128 CBC O0x000003AA
#defi ne CKM PBE_SHA1 RC2 40 _CBC 0x000003AB
#defi ne CKM PKCS5 PBKD2
0x000003B0

#defi ne CKM PBA_SHA1 W TH_SHA1 HWVAC 0x000003C0
#defi ne CKM KEY_WRAP_LYNKS 0x00000400
#defi ne CKM _KEY_WRAP_SET_OAEP 0x00000401
#def i ne CKM_SKI PJACK_KEY_GEN 0x00001000
#defi ne CKM_SKI PJACK ECB64 0x00001001
#defi ne CKM_SKI PJACK CBC64 0x00001002
#defi ne CKM_SKI PJACK OFB64 0x00001003
#def i ne CKM_SKI PJACK CFB64 0x00001004
#defi ne CKM_SKI PJACK CFB32 0x00001005
#defi ne CKM_SKI PJACK CFB16 0x00001006
#defi ne CKM_SKI PJACK CFB8 0x00001007
#def i ne CKM_SKI PJACK WRAP 0x00001008
#defi ne CKM_SKI PJACK_PRI VATE_WRAP 0x00001009
#defi ne CKM_SKI PJACK RELAYX 0x0000100a
#defi ne CKM_KEA KEY_PAI R_GEN 0x00001010
#defi ne CKM _KEA_ KEY_DERI VE 0x00001011
#defi ne CKM FORTEZZA TI MESTAMP 0x00001020
#defi ne CKM BATON_KEY_GEN 0x00001030
#defi ne CKM_BATON_ECB128 0x00001031
#defi ne CKM _BATON_ECB96 0x00001032
#defi ne CKM BATON _CBC128 0x00001033
#defi ne CKM BATON_COUNTER 0x00001034
#defi ne CKM_BATON_SHUFFLE 0x00001035
#defi ne CKM_BATON_WVRAP 0x00001036
#defi ne CKM ECDSA KEY_PAI R_GEN 0x00001040
#defi ne CKM _ECDSA 0x00001041
#defi ne CKM_ECDSA SHA1l 0x00001042
#defi ne CKM_JUNI PER_KEY_GEN 0x00001060
#defi ne CKM_JUNI PER_ECB128 0x00001061
#defi ne CKM_JUNI PER_CBC128 0x00001062
#defi ne CKM_JUNI PER_COUNTER 0x00001063
#defi ne CKM_JUNI PER_SHUFFLE 0x00001064
#defi ne CKM_JUNI PER_WRAP 0x00001065
#defi ne CKM FASTHASH 0x00001070
#def i ne CKM_VENDOR_DEFI NED 0x80000000

Copyright © 1994-1999 RSA Laboratories

58

Page 59

Mechanism types CKM_VENDOR_DEFINED and above are permanently reserved for
token vendors. For interoperability, vendors should register their mechaniam types through the
PKCS process.

CK_MECHANISM_TYPE_PTR isapointer toaCK_MECHANISM_TYPE.

CK_MECHANISM; CK_MECHANISM_PTR

CK_MECHANISM isadructure that specifies a particular mechanism and any parameters it
requires. Itisdefined asfollows:

typedef struct CK_MECHANI SM {
CK_MECHANI SM TYPE nmechani sm
CK_VO D_PTR pPar aneter;
CK_ULONG ul Par anet er Len;

} CK_MECHANI SM

Thefields of the sructure have the following meanings
mechanism thetype of mechanism
pParameter pointer to the parameter if required by the mechanism
ulParameterLen length in bytes of the parameter

Note that pParameter is a“void’ pointer, facilitating the passing of arbitrary values. Both the
goplication and the Cryptoki library must ensure that the pointer can be safely cadt to the
expected type (i.e., without word-alignment errors).

CK_MECHANISM_PTR isapointer toaCK_MECHANISM .

CK_MECHANISM_INFO; CK_MECHANISM_INFO_PTR

CK_MECHANISM _INFO is a dructure that provides information about a particular
mechanism. It is defined asfollows:

typedef struct CK_MECHANI SM | NFO {
CK_ULONG ul M nKeySi ze;
CK_ULONG ul MaxKeySi ze;
CK_FLAGS fl ags;

} CK_MECHANI SM I NFG;

Thefields of the sructure have the following meanings

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 60

ulMinKeySze the minimum size of the key for the mechanism (whether
thisis measured in bits or in bytes is mechanism-

dependent)

ulMaxKeySze the maximum sze of the key for the mechanism (whether
thisis measured in bits or in bytes is mechanism-
dependent)

flags it flags specifying mechanism capabiilities
For some mechaniams, the ulMinKeyS ze and ulMaxKeyS ze fid ds have meaningless va ues.

Thefollowing table defines the flags fidd:

Copyright © 1994-1999 RSA Laboratories

Table 12, Mechanism Information Flags

Page 61

Bit Flag M ask Meaning
CKF_HW 0x00000001 | TRUE if the mechanism is performed
by the device; FALSE if the mechanism
is performed in software
CKF_ENCRYPT 0x00000100 | TRUE if the mechanism can be used
with C_Encryptlnit
CKF_DECRYPT 0x00000200 | TRUE if the mechanism can be used
with C_Decryptl nit
CKF_DIGEST 0x00000400 | TRUE if the mechanism can be used
with C_Digestlnit
CKF_SIGN 0x00000800 | TRUE if the mechanism can be used
with C_Signinit
CKF_SIGN_RECOVER 0x00001000 | TRUE if the mechanism can be used
with C_SignRecover | nit
CKF_VERIFY 0x00002000 | TRUE if the mechanism can be used
with C_Verifylnit
CKF_VERIFY_RECOVER 0x00004000 | TRUE if the mechanism can be used
with C_VerifyRecoverInit
CKF_GENERATE 0x00008000 | TRUE if the mechanism can be used
with C_GenerateK ey
CKF_GENERATE_KEY_PAIR | 0x00010000 | TRUE if the mechanism can be used
with C_Gener ateK eyPair
CKF_WRAP 0x00020000 | TRUE if the mechanism can be used
withC_WrapKey
CKF_UNWRAP 0x00040000 | TRUE if the mechanism can be used
withC_UnwrapKey
CKF_DERIVE 0x00080000 | TRUE if the mechanism can be used
withC_DeriveKey
CKF_EXTENSION 0x80000000 | TRUE if thereis an extendon to the

flags, FALSE if no extensons. Must
be FALSE for this verson.

CK_MECHANISM_INFO_PTR isapointer toaCK_MECHANISM_INFO.

9.6 Function types

Cryptoki represents information about functions with the following data types:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_RV

62

CK_RYV isavdue that identifies the return vaue of a Cryptoki function. It is defined asfollows:

typedef CK _ULONG CK_RV;

For this verson of Cryptoki, the following return vaues are defined:

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

CKR_OK
0x00000000

CKR_CANCEL

0x00000001

CKR_HOST _MEMORY

0x00000002
CKR_SLOT | D_| NVALI D
0x00000003
CKR_GENERAL_ERROR
0x00000005

CKR_FUNCTI ON_FAI LED
0x00000006
CKR_ARGUMENTS_BAD
0x00000007

CKR_NO_EVENT

0x00000008
CKR_NEED TO CREATE_THREADS
0x00000009

CKR_CANT_LOCK

0x0000000A

CKR_ATTRI BUTE_READ ONLY
0x00000010

CKR_ATTRI BUTE_SENSI TI VE
0x00000011

CKR_ATTRI BUTE_TYPE_| NVALI D
0x00000012

CKR_ATTRI BUTE_VALUE_| NVALI D
0x00000013

CKR_DATA_| NVALI D
0x00000020
CKR_DATA_LEN_RANGE
0x00000021

CKR_DEVI CE_ERROR
0x00000030
CKR_DEVI CE_ MEMORY
0x00000031

CKR_DEVI CE_REMOVED
0x00000032
CKR_ENCRYPTED_DATA | NVALI D
0x00000040

Copyright © 1994-1999 RSA Laboratories

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

Page 63

CKR_ENCRYPTED_DATA_LEN_RANGE
0x00000041

CKR_FUNCTI ON_CANCELED
0x00000050

CKR_FUNCTI ON_NOT_PARALLEL
0x00000051

CKR_FUNCTI ON_NOT_SUPPORTED
0x00000054
CKR_KEY_HANDLE_| NVALI D
0x00000060

CKR_KEY_SI| ZE_RANGE
0x00000062
CKR_KEY_TYPE_| NCONSI STENT
0x00000063
CKR_KEY_NOT_NEEDED
0x00000064

CKR_KEY_CHANGED

0x00000065

CKR_KEY_NEEDED

0x00000066
CKR_KEY_| NDI GESTI BLE
0x00000067

CKR_KEY_FUNCTI ON_NOT_PERM TTED
0x00000068
CKR_KEY_NOT_WRAPPABLE
0x00000069
CKR_KEY_UNEXTRACTABLE
0x0000006A
CKR_MECHANI SM | NVALI D
0x00000070

CKR_MECHANI SM_PARAM | NVALI D
0x00000071
CKR_OBJECT_HANDLE_I NVALI D
0x00000082

CKR_OPERATI ON_ACTI VE
0x00000090
CKR_OPERATI ON_NOT_I NI TI ALI ZED
0x00000091
CKR_PI N_| NCORRECT
0x000000A0

CKR_PI N_|I NVALI D

0x000000A1

CKR_PI N_LEN RANGE
0x000000A2

CKR_PI N_EXPI RED

0x000000A3

CKR_PI N_LOCKED

0x000000A4

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

CKR_SESSI ON_CLOSED

0x000000B0

CKR_SESSI ON_COUNT

0x000000B1

CKR_SESSI ON_HANDLE_| NVALI D
0x000000B3

CKR_SESSI ON_PARALLEL_NOT_SUPPORTED
0x000000B4

CKR_SESSI ON_READ_ONLY

0x000000B5

CKR_SESSI ON_EXI STS

0x000000B6
CKR_SESSI ON_READ ONLY_EXI STS
0x000000B7
CKR_SESSI ON_READ WRI TE_SO EXI STS
0x000000B8

CKR_SI GNATURE_| NVALI D

0x000000C0

CKR_SI GNATURE_LEN_RANGE
0x000000C1

CKR_TEMPLATE_| NCOVPLETE
0x000000D0
CKR_TEMPLATE_| NCONSI STENT
0x000000D1

CKR_TOKEN_NOT_PRESENT

0x000000EQ

CKR_TOKEN_NOT_RECOGNI ZED
0x000000E1

CKR_TOKEN_WRI TE_PROTECTED
0x000000E2
CKR_UNWRAPPI NG _KEY_HANDLE_| NVALI D
0x000000F0

CKR_UNWRAPPI NG_KEY_SI ZE_RANGE
0x000000F1
CKR_UNWRAPPI NG _KEY_TYPE_| NCONSI STENT
0x000000F2
CKR_USER_ALREADY_ LOGGED | N
0x00000100

CKR_USER_NOT LOGGED | N
0x00000101
CKR_USER_PI N_NOT I NI TI ALI ZED
0x00000102

CKR_USER_TYPE_I NVALI D

0x00000103
CKR_USER_ANOTHER ALREADY_ LOGGED | N
0x00000104
CKR_USER _TOO MANY_ TYPES
0x00000105

Copyright © 1994-1999 RSA Laboratories

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

#def i

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

ne

Page 65

CKR_WRAPPED KEY_| NVALI D
0x00000110
CKR_V\RAPPED KEY LEN RANGE
0x00000112

CKR_V\RAPPI NG_KEY_HANDLE_| NVALI D
0x00000113
CKR_V\RAPPI NG _KEY_SI ZE_RANGE
0x00000114

CKR_\RAPPI NG_KEY_TYPE_| NCONSI STENT
0x00000115
CKR_RANDOM SEED NOT SUPPORTED
0x00000120

CKR_RANDOM NO_RNG

0x00000121

CKR_BUFFER_TOO SMALL

0x00000150

CKR_SAVED STATE_| NVALI D
0x00000160

CKR_| NFORMATI ON_SENSI TI VE
0x00000170

CKR_STATE_UNSAVEABLE

0x00000180
CKR_CRYPTOKI _NOT | NI TI ALI ZED
0x00000190

CKR_CRYPTOKI _ALREADY_| NI TI ALI ZED
0x00000191

CKR_MUTEX_BAD

0x000001A0

CKR_MUTEX_NOT_LOCKED

0x000001A1

CKR_VENDOR_DEFI NED

0x80000000

Section 11.1 defines the meaning of each CK_RV vdue Reun vdues
CKR_VENDOR_DEFINED and above are permanently reserved for token vendors. For
interoperability, vendors should register their return vaues through the PK CS process.

CK_NOTIFY

CK_NOTIFY is the type of a pointer to a function used by Cryptoki to perform notification
calbacks. It isdefined asfollows:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 66

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_NOTI FY) (
CK_SESSI ON_HANDLE hSessi on,
CK_NOTI FI CATI ON event,
CK_ VO D_PTR pApplication

);

The arguments to a natification callback function have the following meanings:
hSession ~ Thehandle of the sesson performing the callback
event The type of natification calback

pApplication An application-defined vaue. Thisisthe samevdue as
was passed to C_OpenSession to open the session
performing the calback

CK_C_XXX

Cryptoki also defines an entire family of other function pointer types. For each function

| C_XXX in the Cryptoki API (there are 68 such functions in Cryptoki Verson 2:0812.1; see
Section 11 for detailed information about each of them), Cryptoki defines atype CK_C_XXX,
which is a pointer to a function with the same arguments and return vaue as C_XXX has. An
appropriately-set variable of type CK_C_ XXX may be used by an application to cal the
Cryptoki function C_XXX.

CK_FUNCTION_LIST; CK_FUNCTION_LIST PTR;
CK_FUNCTION_LIST PTR_PTR

CK_FUNCTION_LIST is a gructure which contains a Cryptoki verson and a function
pointer to each function in the Cryptoki API. It is defined asfollows:

typedef struct CK _FUNCTI ON_LI ST {
CK_VERSI ON versi on;
CK Clnitialize Clnitialize;
CK C Finalize C Finalize;
CK C GetInfo C Getlnfo;
CK_C Get Functi onLi st C_Get Functi onLi st;
CK C GetSlotList C GetSlotlList;
CK C GetSlotlnfo C GetSlotlnfo;
CK_C Get Tokenl nfo C_Get Tokenl nf o;
CK_C Get Mechani snLi st C_Get Mechani snili st
CK_C Get Mechani smi nfo C_Get Mechani snl nf o;
CK _C InitToken C_InitToken;
CK. CInitPIN C_InitPIN,;
CK_C _SetPIN C_Set PIN;

Copyright © 1994-1999 RSA Laboratories

Page 67

CK_C _OpenSessi on C OpenSessi on;

CK _C Cl oseSession C Cl oseSessi on;

CK_C Cl oseAl | Sessions C_Cl oseAl | Sessi ons;
CK_C Get Sessi onl nfo C_Get Sessi onl nf o;
CK C GetQOperationState C Get OperationState;
CK _C Set OperationState C_Set OperationStat e;
CK_C_Login C_Logi n;

CK_C Logout C_Logout;

CK _C CreateObject C CreateOnject;

CK_C CopyObj ect C _CopyObj ect;

CK _C DestroyOhject C DestroyObject;
CK _C Get Obj ect Size C CGet Obj ect Si ze;
CK C GetAttributevValue C GetAttri buteVal ue;
CK C SetAttributeVal ue C_Set Attri buteVal ue;
CK_C FindObjectslnit C FindObjectslnit;
CK_C Fi ndObj ects C _FindOhjects;

CK_C _Fi ndObj ect sFi nal C_Fi ndObj ect sFi nal ;
CK_C Encryptinit C Encryptlnit;

CK_C _Encrypt C_Encrypt;

CK_C Encrypt Update C _Encrypt Updat e;

CK_C Encrypt Final C_EncryptFinal;

CK_C Decryptlinit C Decryptlnit;

CK_C Decrypt C_Decrypt;

CK_C Decrypt Update C Decrypt Updat e;

CK_C Decrypt Final C _DecryptFinal;

CK C Digestlnit C Digestlnit;

CK_C Digest C Digest;

CK_C Di gest Updat e C _Di gest Updat e;

CK_C Di gest Key C _Di gest Key;

CK_C Di gest Fi nal C_Di gest Fi nal ;

CK_ C Signlnit C.Signlnit;

CK _C Sign C_Sign;

CK_C_Si gnUpdat e C_Si gnUpdat e;

CK_C_Si gnFi nal C_Si gnFi nal ;

CK_C _SignRecoverlnit C_SignRecoverlnit;
CK_C _Si gnRecover C_SignRecover;

CK_ C Verifylnit C Verifylnit;

CK_C Verify C Verify;

CK _C VerifyUpdate C VerifyUpdate;

CK _C VerifyFinal C VerifyFinal;

CK _C VerifyRecoverlnit C VerifyRecoverlnit;
CK_C VerifyRecover C VerifyRecover;

CK_C _Di gest Encrypt Updat e C _Di gest Encr ypt Updat e;
CK_C Decrypt Di gest Updat e C Decrypt Di gest Updat e;
CK_C_Si gnEncrypt Updat e C_Si gnEncr ypt Updat e;
CK_C Decrypt VerifyUpdate C _Decrypt Veri fyUpdat e;
CK_C _Gener at eKey C_Gener at eKey;

CK_C Gener at eKeyPair C _Gener at eKeyPai r;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 68

CK_C W apKey C W apKey;
CK_C_Unwr apKey C_Unwr apKey;
CK _C DeriveKey C DeriveKey;
CK_C _SeedRandom C_SeedRandom
CK_C _Gener at eRandom C_Gener at eRandom
CK _C Get FunctionStatus C _Get FunctionSt at us;
CK_C Cancel Function C_Cancel Functi on;
CK_C Wi t For Sl ot Event C_ Wit For Sl ot Event ;
} CK_FUNCTI ON_LI ST;

Each Cryptoki library hasagtatic CK_FUNCTION_LIST sructure, and a pointer to it (or to
acopy of it which is aso owned by the library) may be obtained by the C_GetFunctionList
function (see Section 11.2). The vaue that this pointer points to can be used by an application
to quickly find out where the executable code for each function in the Cryptoki AP is located.
Every function in the Cryptoki APl must have an entry point defined in the Cryptoki
library's CK_FUNCTION_LIST structure. If a particular function in the Cryptoki AF is
not supported by a library, then the function pointer for that function in the library's
CK_FUNCTION_LIST dructure should point to a function sub which smply returns
CKR_FUNCTION_NOT_SUPPORTED.

An agpplication may or may not be ade to modify a Cryptoki library’'s détic
CK_FUNCTION_LIST dructure. Whether or not it can, it should never attempt to do so.

CK_FUNCTION_LIST_PTR isapointer toaCK_FUNCTION_LIST.

CK_FUNCTION_LIST_PTR_PTR isapointer toaCK_FUNCTION_LIST_PTR.

9.7 Locking-related types

The types in this section are provided soldly for applications which need to access Cryptoki
from multiple threads smultaneoudy. Applications which will not do this need not use any
of these types.

CK_CREATEMUTEX

CK_CREATEMUTEX is the type of a pointer to an gpplication-supplied function which
creates anew mutex object and returns a pointer to it. It is defined asfollows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_CREATEMUTEX) (
CK_VO D_PTR_PTR ppMut ex

)

Copyright © 1994-1999 RSA Laboratories

Page 69

Cdlinga CK_CREATEMUTEX function returns the pointer to the new mutex object in the
location pointed to by ppMutex. Such a function should return one of the following vaues
CKR_OK, CKR_GENERAL ERROR, CKR_HOST MEMORY.

CK_DESTROYMUTEX

CK_DESTROYMUTEX is the type of a pointer to an gpplication-supplied function which
destroys an existing mutex object. It is defined asfollows:

typedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_DESTROYMUTEX) (
CK_VO D_PTR pMit ex

)i

The argument to a CK_DESTROYMUTEX function is a pointer to the mutex object to be
destroyed. Such a function should return one of the following vaues CKR _OK,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_MUTEX_BAD.

CK_LOCKMUTEX and CK_UNLOCKMUTEX

CK_LOCKMUTEX isthetype of apointer to an application-supplied function which locks an
exising mutex object. CK_UNLOCKMUTEX is the type of a pointer to an application-
supplied function which unlocks an existing mutex object. The proper behavior for these types
of functionsis asfollows:

If a CK_LOCKMUTEX function is cdled on a mutex which is not locked, the caling
thread obtains alock on that mutex and returns.

If a CK_LOCKMUTEX function is cdled on a mutex which is locked by some thread
other than the cdling thread, the cadling thread blocks and waits for that mutex to be
unlocked.

If a CK_LOCKMUTEX function is cdled on a mutex which is locked by the cdling
threed, the behavior of the function call is undefined.

If a CK_UNLOCKMUTEX function is cdled on a mutex which is locked by the cdling
thread, that mutex is unlocked and the function call returns. Furthermore:

If exactly one thread was blocking on that particular mutex, then that thread stops
blocking, obtains alock on that mutex, and its CK_L OCKMUTEX cdll returns,

If more than one thread was blocking on that particular mutex, then exactly one of the
blocking threadsis selected somehow. That lucky thread stops blocking, obtains alock
on the mutex, and its CK_LOCKMUTEX cal returns. All other threads blocking on
that particular mutex continue to block.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 70

If a CK_UNLOCKMUTEX function is cdled on a mutex which is not locked, then the
function call returnsthe error code CKR_MUTEX_NOT _LOCKED.

If aCK_UNLOCKMUTEX function is caled on a mutex which is locked by some thread
other than the calling threed, the behavior of the function cal is undefined.

CK_LOCKMUTEX isdefined asfollows

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_LOCKMUTEX) (
CK_VOl D_PTR pMit ex

)

TheargumenttoaCK_LOCKMUTEX function is a pointer to the mutex object to be locked.
Such a function should retun one of the following vdues CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD.

CK_UNLOCKMUTEX isdefined asfollows:

t ypedef CK_CALLBACK_FUNCTI ON(CK_RV, CK_UNLOCKMUTEX) (
CK_VOl D_PTR pMit ex

)

The argument to a CK_UNLOCKMUTEX function is a pointer to the mutex object to be
unlocked. Such a function should return one of the following vaues. CKR_OK,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MUTEX_BAD,
CKR_MUTEX_NOT_LOCKED.

CK_C_INITIALIZE_ARGS; CK_C_INITIALIZE_ARGS PTR

CK_C_INITIALIZE_ARGS is a dructure contaning the optiond arguments for the
C_Initialize function. For this verson of Cryptoki, these optional arguments are al concerned
with the way the library deds with threads. CK_C _INITIALIZE_ARGS is defined as
follows

typedef struct CK C IN TIALI ZE ARGS {
CK_CREATEMUTEX Cr eat eMut ex;
CK_DESTROYMUTEX Dest r oyMit ex;
CK_LOCKMUTEX LockMut ex;
CK_UNLOCKMUTEX Unl ockMut ex;
CK_FLAGS fl ags;
CK VO D_PTR pReserved,;

} CK_C_INITIALI ZE_ARGS;

Thefields of the sructure have the following meanings

Copyright © 1994-1999 RSA Laboratories

CreateMutex
DestroyMutex
LockMutex
UnlockMutex

flags

pReserved

Page 71

pointer to afunction to use for creating mutex objects
pointer to afunction to use for destroying mutex objects
pointer to afunction to use for locking mutex objects
pointer to afunction to use for unlocking mutex objects

bit flags specifying optionsfor C_lI nitialize; theflags are
defined below

reserved for future use. Should be NULL_PTR for this
verson of Cryptoki

Thefollowing table defines the flags fidd:

Table 1413131313, C_Initialize Parameter Flags

Bit Flag

M ask Meaning

CKF_LIBRARY_CANT CREATE OS THREADS | 0x00000001 | TRUE if

goplication
threads which are
executing cdlsto
the library may
not use native
operating system
calsto spawn
new threads;
FALSE if they

may

CKF_OS_LOCKING_OK

0x00000002 | TRUE if the
library can usethe
native operation
system threading
modd for locking;
FALSE otherwise

CK_C_INITIALIZE_ARGS PTR isapointer toaCK_C_INITIALIZE_ARGS,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 72

10. Objects

Cryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS
data type. An object conssts of a set of attributes, each of which has a given vadue. Each
atribute that an object possesses has precisely one vaue. The following figure illustrates the
high-leve hierarchy of the Cryptoki objects and some of the attributes they support:

Object
Class
Storage HW Feature

Token Feature Type

Private

Label

Modifiable

Data Certificate Key

Application
Object Identifier
Value

Figure5, Object Attribute Hierarchy

Cryptoki provides functions for creating, destroying, and copying objects in genera, and for
obtaining and modifying the values of their attributes. Some of the cryptographic functions (e.g.,
C_GenerateK ey) dso create key objectsto hold their results.

Objects are dways “wdl-formed” in Cryptoki—that is, an object dways contains al required
attributes, and the attributes are aways consistent with one another from the time the object is
created. This contrasts with some object-based paradigms where an object has no attributes
other than perhaps a class when it is created, and is uninitidized for some time. In Cryptoki,
objects are aways initidized.

Tables throughout most of Section 10 define each Cryptoki attribute in terms of the data type of
the atribute value and the meaning of the atribute, which may include a default initid vaue.
Some of the data types are defined explicitly by Cryptoki €.9., CK_OBJECT_CLASS).
Attribute values may dso take the following types:

Copyright © 1994-1999 RSA Laboratories

Page 73

Bytearay anarbitrary string (array) of CK_BYTES

Biginteger adring of CK_BY TEsrepresenting an unsigned integer of
arbitrary sze, most-sgnificant bytefirs (e.g., the integer
32768 is represented as the 2-byte string 0x80 0x00)

Locd gring an unpadded string of CK_CHARS (see Table 3Table
3Table 3Table-3) with no null-termination

RFC2279 string an unpadded string of CK - UTF8CH ARS with no null-
termination

A token can hold severd identical objects, i.e., it is permissible for two or more objects to have
exactly the same vauesfor dl ther attributes.

With the exception of RSA private key objects (see Section 10.9.146.9.410.9.110.7.1), each |
type of object in the Cryptoki specification possesses a completely well-defined set of Cryptoki
attributes. For example, an X.509 public key certificate object (see Section
10.6.110:6:110.6.110.4.1) has precisely the following Cryptoki atributess CKA CLASS,
CKA_TOKEN, CKA_PRIVATE, CKA_MODIFIABLE, CKA _LABEL,
CKA_CERTIFICATE_TYPE, CKA_SUBJECT, CKA_ID, CKA_ISSUER,
CKA_SERIAL_NUMBER, CKA VALUE. Some of these attributes possess default
vaues, and need not be specified when creating an object; some of these default values may
even be the empty string (“7). Nonetheless, the object possesses these attributes. A given
object has a single value for each attribute it possesses, even if the attribute is a vendor-specific
attribute whose meaning is outside the scope of Cryptoki.

In addition to possessing Cryptoki attributes, objects may possess additiona vendor-specific
attributes whose meanings and vaues are not specified by Cryptoki.

10.1 Creating, modifying, and copying objects

All Cryptoki functions that create, modify, or copy objects teke a template as one of their
arguments, where the template specifies attribute vaues. Cryptographic functions that create
objects (see Section 11.14) may aso contribute some additiond attribute vaues themsdves,
which attributes have vaues contributed by a cryptographic function cal depends on which
cryptographic mechanism is being performed (see Section 12). In any case, dl the required
attributes supported by an object class that do not have default values must be specified when
an object is created, ether in the template or by the function itself.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 74

10.1.1 Creating objects

Objects may be created with the Cryptoki functions C_CreateObject (see Section 11.7),
C_GenerateKey, C_GenerateKeyPair, C_UnwrapKey, and C_DeriveKey (see Section
11.14). Inaddition, copying an exigting object (with the function C_CopyObject) aso creates
anew object, but we consider thistype of object creation separately in Section 10.1.3.

Attempting to create an object with any of these functions requires an appropriate template to
be supplied.

1.

If the supplied template Specifies a vaue for an invdid atribute, then the attempt should fail
with the error code CKR_ATTRIBUTE _TYPE INVALID. An atribute is vdid if it is
either one of the attributes described in the Cryptoki specification or an additiona vendor-
specific attribute supported by the library and token.

If the supplied template specifies an invdid vaue for a vdid attribute, then the attempt
should fail with the error code CKR_ATTRIBUTE VALUE INVALID. Thevdid vdues
for Cryptoki attributes are described in the Cryptoki specification.

If the supplied template specifies a value for a read-only étribute, then the attempt should

fal with the error code CKR_ATTRIBUTE READ_ONLY. Whether or not a given
Cryptoki attribute is read-only is explicitly stated in the Cryptoki specification; however, a
particular library and token may be even more restrictive than Cryptoki specifies. In other
words, an attribute which Cryptoki says is not read-only may nonetheless be read-only

under certain circumstances (i.e., in conjunction with some combinations of other attributes)

for a particular library and token. Whether or not a given non-Cryptoki attribute is read-

only is obvioudy outsde the scope of Cryptoki.

If the attribute values in the supplied template, together with any default attribute values and
any attribute values contributed to the object by the object-creation function itsdlf, are
insufficient to fully specify the object to create, then the attempt should fail with the error
code CKR_TEMPLATE_INCOMPLETE.

If the attribute values in the supplied template, together with any default attribute values and
any attribute values contributed to the object by the object-creation function itsdlf, are
incondstent, then the attempt should fal with the eror code
CKR_TEMPLATE _INCONSISTENT. A st of attribute valuesisinconsistent if not al of
its members can be satisfied smultaneoudy by the token, athough each vaue individudly is
vaid in Cryptoki. One example of an ireorplete-inconsstent template would be using a
template which specifies two different values for the same dtribute. Another example
would be trying to create an RC4 secret key object (see Section
10.10.316-16:316-10.310.8.3) with a CKA_MODULUS attribute (which is appropriate
for various types of public keys (see Section 10.810-810.810.6) or private keys (see
Section 10.926:910.910.7), but not for RC4 keys). A finad example would be a template

Copyright © 1994-1999 RSA Laboratories

Page 75

for creating an RSA public key with an exponent of 17 on a token which requires al RSA
public keys to have exponent 65537. Note that this find example of an inconsstent
template is token-dependent—on a different token (one which permits the vaue of 17 for
an RSA public key exponent), such atemplate would not be inconsistent.

6. If the supplied template specifies the same value for a particular attribute more than once (or
the template specifies the same vaue for a particular attribute that the object-creation
function itself contributes to the object), then the behavior of Cryptoki is not completely
specified. The attempt to create an object can either succeed—thereby creating the same
object that would have been created if the multiply-specified attribute had only appeared
once—or it can fal with error code CKR_ TEMPLATE INCONSISTENT. Library
developers are encouraged to make their libraries behave as though the attribute had only
appeared once in the template; gpplication developers are strongly encouraged never to put
apaticular atribute into a particular template more than once.

If more than one of the situations listed above applies to an attempt to create an object, then the
error code returned from the attempt can be any of the error codes from above that applies.

10.1.2 Modifying objects

Objects may be modified with the Cryptoki function C_SetAttributeValue (see Section 11.7).
The template supplied to C_SetAttributeValue can contain new vaues for atributes which the
object aready possesses; values for attributes which the object does not yet possess; or both.

Some attributes of an object may be modified after the object has been created, and some may
not. In addition, atributes which Cryptoki specifies are modifiable may actudly not be
modifiable on sometokens. That is, if a Cryptoki attribute is described as being modifigble, that
redly means only that it is modifiable insofar as the Cryptoki specification is concerned. A
particular token might not actualy support modification of some such attributes. Furthermore,
whether or not a particular atribute of an object on a particular token is modifiable might
depend on the values of certain attributes of the object. For example, a secret key object’s
CKA_SENSITIVE attribute can be changed from FALSE to TRUE, but not the other way
around.

All the scenarios in Section 10.1.1—and the error codes they return—apply to modifying
objectswith C_SetAttributeValue, except for the possibility of atemplate being incomplete.
10.1.3 Copying objects

Objects may be copied with the Cryptoki function C_CopyObject (see Section 11.7). Inthe
process of copying an object, C_CopyObject also modifies the attributes of the newly-created
copy according to an application-supplied template.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 76

The Cryptoki attributes which can be modified during the course of a C_CopyObject operation
are the same as the Cryptoki attributes which are described as being modifiable, plus the three
gpecid attributes CKA_TOKEN, CKA_PRIVATE, and CKA_MODIFIABLE. To be
more precise, these attributes are modifiable during the course of a C_CopyObject operation
insofar as the Cryptoki specification is concerned. A particular token might not actualy
support modification of some such attributes during the course of a C_CopyObject operation.
Furthermore, whether or not a particular attribute of an object on a particular token is
modifiable during the course of a C_CopyObject operation might depend on the vaues of
certain atributes of the object. For example, a secret key objects CKA_SENSITIVE
attribute can be changed from FALSE to TRUE during the course of a C_CopyObject
operation, but not the other way around.

All the scenariosin Section 10.1.1—and the error codes they return—apply to copying objects
with C_CopyODbject, except for the possibility of atemplate being incomplete.

10.2 Common attributes

The following table defines the attributes common to al objects

Table 14, Common Object Attributes

Attribute Data Type M eaning
CKA CLASS! CK OBJECT CLASS | Object class (type)

"Must be specified when object is crested

Cryptoki Verson 2.1 supports the following values for CKA CLASS (i.e, the following
classes (types) of objects): CKO HW FEATURE, CKO DATA, CKO CERTIFICATE,
CKO PUBLIC KEY,CKO PRIVATE KEY,and CKO SECRET KEY.

10.3 Hardwar e Feature Objects

Hardware feature objects CKO HW FEATURE) represent features of the device. They
provide an easly expandable method for introducing new value-based features to the cryptoki
interface. Thefollowing figure illudraes the hierarchy of hardware feature objects and some of
the attributes they support:

Copyright © 1994-1999 RSA Laboratories

Page 77

HW Feature

Feature Type

/\

Monotonic Clock
nter
Counte Value
Reset by Init
Has Been Reset
Value

Figure 6, Hardwar e Feature Object Attribute Hierarchy

When searching for objects usng C FindObjedsinit and C FindObjects, hardware feature
objects are not returned unless the CKA CLASS atribute in the templaie has the vaue
CKO HW FEATURE. This protects applications written to previous versons of cryptoki
from finding objects that they do not understand.

Table 15, Hardwar e Feature Common Attributes

Attribute Data Type M eaning

CKA HW FEATURE TYPE |CK HW FEATURE | Hardware festure (type)

Cryptoki Verson 2.1 supports the following vdues for CKA FEATURE TYPE:
CKH MONOTONIC COUNTER, and CKH CLOCK.

10.3.1 Clock Objects

Clock objects represent red-time clocks that exist on the device. This represents the same
clock source asthe utcTime fiddinthe CK. TOKEN INFO dstructure.

Table 16, Clock Object Attributes

Attribute Data Type M eaning

CKA VALUE | CK CHAR[16] | Current time as acharacter-string of length 16,
represented in theformat YYYY MMDDhhmmssxx (4
charactersfor the year; 2 characters each for the
month, the day, the hour, the minute, and the second;
and 2 additiona reserved ‘O’ characters).

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 78

The CKA VALUE atribute may be st usng the C_SetAttributeValue function if permitted
by the device. The session used to et the time must be logged in. The device may require the
SO to be the user logged in to modify the time vdue. C SetAttributevValue will return the
error CKR USER NOT LOGGED |IN to indicate that adifferent user type is required to set
the vaue.

10.3.2 Monotonic Counter Objects

Monotonic counter objects represent hardware counters that exist on the device. The counter is
guaranteed to increase each timeits value is read, but not necessarily by one.

Table 17, Monotonic Counter Attributes

Attribute Data Type M eaning

CKA RESET ON INIT* | CK BBOOL | Thevaue of the counter will reset to a
previoudy returned vaueif thetokenis
initidized udng C I nitializeT oken.

CKA HAS RESET! CK BBOOL | Thevalue of the counter has been reset at least
once at some point in time.
CKA VALUE! Byte Array The current verson of the monaotonic counter.

Thevalueisreturned in big endian order.

'Read Only

The CKA VAL UE attribute may not be set by the dient.

10.4 Storage Objects

Table 1818181814, Common Stor age Object Attributes

Copyright © 1994-1999 RSA Laboratories

Page 79

Attribute Data Type M eaning

CKA_CLASS S ORJECT CLASS | Shinshaloss oy

CKA_TOKEN CK_BBOOL TRUE if object isatoken object; FALSE
if object isa sesson object (default
FALSE)

CKA_PRIVATE CK_BBOOL TRUE if object isaprivate object;

FALSE if object isapublic object.
Default vaue is token-specific, and may
depend on the values of other atributes

of the object.
CKA_MODIFIABLE | CK_BBOOL TRUE if object can be modified (default
TRUE)
CKA LABEL Loecd-gringRFC2279 Description of the object (default empty)
string
Py I T — I

Only the CKA_LABEL atribute can be modified &fter the object is created. (The
CKA_TOKEN, CKA PRIVATE, and CKA_MODIFIABLE atributes can be changed in
the process of copying an object, however.)

The CKA_TOKEN attribute identifies whether the object is a token object or a sesson object.

When the CKA_PRIVATE attribute is TRUE, a user may not access the object until the user
has been authenticated to the token.

Thevdue of the CKA_MODIFIABLE attribute determines whether or not an object is read-
only. It may or may not be the case that an unmodifiable object can be deleted.

The CKA_LABEL atribute isintended to assst usersin browsing.

10.5 Dataobjects

Data objects (object class CKO_DATA) hold information defined by an gpplication. Other
than providing access to it, Cryptoki does not attach any specid meaning to a data object. The
following table ligts the attributes supported by data objects, in addition to the common
atributesligted in Table 14Fable-14Table14 and Table 18Table 18Table 18Fable 14:

Table 1919191915, Data Object Attributes

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 80

Attribute Datatype | Meaning
CKA_APPLICATION | Leed Description of the application that manages the
gringRFC2 | object (default empty)
279 gring
CKA OBJECT ID Byte Array | DER-encoding of the object identifier indicating the
data object type (default empty)
CKA_VALUE Bytearay | Vdueof the object (default empty)

Both of these attributes may be modified after the object is created.

The CKA_APPLICATION dtribute provides a means for applications to indicate ownership
of the data objects they manage. Cryptoki does not provide a means of ensuring tha only a
particular application has access to a data object, however.

The CKA OBJECT ID attribute provides an application independent and expandable way to
indicate the type of the data object vdue. Cryptoki does not provide a means of insuring that
the data object identifier matches the data vdue.

The following is a sample template containing attributes for creating a data object:

CK_OBJECT_CLASS cl ass = CKO_DATA;

CK_UTF8CHAR | abel [] = “A data object”;
CK_UTF8CHAR application[] = “An application”;
CK_BYTE data[] = “Sanple data”;

CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA_LABEL, | abel, sizeof (| abel)-1},
{ CKA_APPLI CATI ON, application, sizeof(application)-
1},
{CKA VALUE, data, sizeof(data)}

Copyright © 1994-1999 RSA Laboratories

Page 81

10.6 Certificate objects

Thefollowing figure illustrates detals of cartificate objects:

Certificate
Certificate Type
X
X.509 Public X.509 Attribute
Key Certificate Certificate
Subject Owner
ID Issuer
Issuer Serial Number
Serial Number Attribute Types
Value Value

Figure 7, Certificate Object Attribute Hier ar chy

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute
certificates. Other than providing access to certificate objects, Cryptoki does not atach any
gpecid meaning to certificates. The following table defines the common certificate object
attributes, in addition to the common attributes listed in Table 14Fable 14T able-14Fable-14 and
Table 18Table 18Table 18Table 14:

Table 2020202016, Common Certificate Object Attributes

Attribute Data type M eaning
CKA_CERTIFICATE_TYPE' | CK_CERTIFICATE_TYPE | Typeof certificate
"Must be specified when the object is created.

The CKA_CERTIFICATE_TYPE datribute may not be modified after an object is created.

10.6.1 X.509 public key certificate objects

X.509 certificate objects (certificate type CKC_X_509) hold X.509 public key certificates.
The following table defines the X.509 certificate object attributes, in addition to the common
atributes liged in Table 14Table 14 Table 14, Table 18Table-18Table 18Table-14 and Table
20Fable 20T able 20T able 16:

Table 2121212117, X.509 Certificate Object Attributes

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 82

Attribute Datatype | Meaning

CKA_SUBJECT* Bytearay | DER-encoding of the certificate subject
name

CKA_ID Bytearray | Key identifier for public/private key pair
(default empty)

CKA_ISSUER Bytearray | DER-encoding of the certificate issuer
name (default empty)

CKA_SERIAL_NUMBER | Bytearray | DER-encoding of the certificate serid
number (default empty)

CKA_VALUE! Bytearray | BER-encoding of the certificate

Must be specified when the object is crested.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be
modified after the object is created.

The CKA_ID dttribute is intended as a means of distinguishing multiple public-key/private-key
pairs held by the same subject (whether stored in the same token or not). (Since the keys are
distinguished by subject name as wdl as identifier, it is possble that keys for different subjects
may have the same CK A_ID vaue without introducing any ambiguity.)

It is intended in the interests of interoperability that the subject name and key identifier for a
certificate will be the same as those for the corresponding public and private keys (though it is
not required that al be stored in the same token). However, Cryptoki does not enforce this
associdion, or even the uniqueness of the key identifier for a given subject; in particular, an
goplication may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with
PKCS #7 and Privacy Enhanced Mail (RFC1421). Note that with the verson 3 extensions to
X.509 certificates, the key identifier may be carried in the certificate. It is intended that the
CKA _1D vdue beidenticd to the key identifier in such a certificate extenson, dthough this will
not be enforced by Cryptoki.

The following is a sample template for creating a certificate object:

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;
CK_CERTI FI CATE_TYPE cert Type = CKC_X 5009;
CK_UTFBCHAR | abel [] = “A certificate object”;
CK_BYTE subject[] = {...};
CK BYTE id[] = {123};
CK_BYTE certificate[] {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{ CKA_CERTI FI CATE_TYPE, &certType, sizeof(certType)};

Copyright © 1994-1999 RSA Laboratories

{CKA_TOKEN, &true,

{ CKA_LABEL, |
{ CKA_SUBJECT,
{CKA_ID, id,

i

Page 83

si zeof (true)},

abel , sizeof (| abel)-1},

subj ect,

si zeof (subj ect)},

sizeof (id)},
{CKA VALUE, certificate, sizeof(certificate)}

10.6.2 X.509 attribute certificate objects

X.509 attribute certificate objects (certificate type CKC X 509 ATTR CERT) hold X.509

attribute certificates. The following table defines the X.509 attribute certificate object attributes,

in addition to the common attributes lised in Table 14Fable-14Fable 14, Table 18Fable

18 | and Teble20Fable20

Table 22, X.509 Attribute Certificate Object Attributes

Attribute

Data Type

M eaning

CKA OWNER!

Byte Array

DER-encoding of the attribute certificate's subject

fidd. Thisisdigtinct from the CKA SUBJECT

attribute contained in CKC X 509 certificates

because the ASN.1 syntax and encoding are

different.

CKA AC ISSUER

Byte Array

DER-encoding of the attribute certificate's issuer

fidd. Thisisdiginct from the CKA ISSUER

attribute contained in CKC X 509 certificates

because the ASN.1 syntax and encoding are

different. (default empty)

CKA SERIAL NUMBER

Byte Array

DER-encoding of the certificate seria number.

(default empty)

CKA ATTR TYPES

Byte Array

BER-encoding of an-unerdered satquence of object

identifier vaues ideatifyingcorresponding to the

attribute types contained in the certtificate. When

present, thisfied offers an opportunity for

applications to search for a particular attribute

certificate without fetching and parang the

cartificate itself. (default empty)

CKA VALUE!

Byte Array

BER-encoding of the cartificate.

"Must be specified when the object is created

Only the CKA AC ISSUER and CKA SERIAL NUMBER attributes may be modified

dfter the object is created.

Thefollowing is a sample template for creating an X.509 attribute certificate object:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 84

CK_OBJECT_CLASS cl ass = CKO_CERTI FI CATE;
CK_CERTI FI CATE_TYPE certType = CKC X 509 ATTR_CERT

CK UTF8CHAR | abel[] = "An attribute certificate
obj ect”;
CK BYTE owner[] = {...

CK BYTE certificate[] = {...};
CK BBOOL true = TRUE;
CK ATTRI BUTE tenplate[] = {
{ CKA CLASS, &cl ass, sizeof(class)},
{ CKA CERTI FI CATE TYPE, &certType, sizeof(certType)};

{CKA TOKEN, &true, sizeof(true)},

{CKA LABEL, | abel, sizeof(label)-1},

{ CKA OANER, owner, si zeof (owner)},

{CKA VALUE, certificate, sizeof(certificate)}

3

Copyright © 1994-1999 RSA Laboratories

Page 85

10.7 Key objects

The following figure illustrates details of key objects:

Key
Key Type
ID
Start Date
End Date
Derive
Local
Public Key Private Key Secret Key
Subject Subject Sensitive
Encrypt Sensitive Encrypt
Verify Decrypt Decrypt
Verify Recover Sign Sign
Wrap Sign Recover Verify
Unwrap Wrap
Extractable Unwrap
Always Sensitive Extractable
Never Extractable Always Sensitive
Never Extractable

Figure 8886, Key Attribute Detail

Key objects hold encryption or authentication keys, which can be public keys, private keys, or
secret keys. The following common footnotes apply to al the tables describing attributes of
keys.

Table 2323232318, Common footnotesfor key attribute tables

! Must be specified when object is created with C_CreateObj ect.
2 Must not be specified when object is created with C_CreateObject.

® Must be specified when object is generated with C_GenerateKey or
C_GenerateK eyPair.

* Must not be specified when object is generated with C_GenerateKey or

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 86

C_GenerateKeyPair.
®> Must be specified when object is unwrapped with C_UnwrapK ey.
® Must not be specified when object is unwrapped with C_Unwr ap.

" Cannot be revedled if object has its CKA_SENSITIVE attribute set to TRUE or its
CKA _EXTRACTABLE attribute set to FALSE.

8 May be modified after object is created with a C_SetAttributeValue cdl, or in the
process of copying object withaC_CopyObject cdl. As mentioned previoudy, however, it
is possble that a particular token may not permit modification of the attribute, or may not
permit modification of the attribute during the course of aC_CopyObject cal.

° Default value is token-specific, and may depend on the values of other attributes.

The following table defines the attributes common to public key, private key and secret key
classes, in addition to the common attributes listed in Table 14T able-14Table-14 and Table
18Table 18Table 18Table 14:

Table 2424242419, Common Key Attributes

Attribute Data Type M eaning

CKA_KEY_TYPE*®*® | CK_KEY_TYPE | Typeof key

CKA_ID® Byte array Key identifier for key (default empty)

CKA_START DATE® | CK_DATE Start date for the key (default empty)

CKA_END DATE® CK_DATE End date for the key (default empty)

CKA_DERIVE® CK_BBOOL TRUE if key supports key derivetion (i.e.,
if other keys can be derived from this one
(default FALSE)

CKA_LOCAL?*® CK_BBOOL TRUE only if key was either

- generated locdly (i.e., on the token)
withaC_GenerateKey or
C_GenerateKeyPair cdl
created withaC_CopyObject cdl as
acopy of akey which had its
CKA_LOCAL attribute set to TRUE

The CKA_ID fidd is intended to distinguish among multiple keys. In the case of public and
private keys, this fiedld assgs in handling multiple keys held by the same subject; the key

Copyright © 1994-1999 RSA Laboratories

Page 87

identifier for a public key and its corresponding private key should be the same. The key
identifier should aso be the same as for the corresponding certificate, if one exigts. Cryptoki
does not enforce these associations, however. (See Section 10.610-610.610-4 for further
commentary.)

In the case of secret keys, the meaning of the CKA_ID attribute is up to the application.

Note that the CKA_START _DATE and CKA_END_DATE dtributes are for reference
only; Cryptoki does not attach any specia meaning to them. In particular, it does not restrict
usage of akey according to the dates; doing thisis up to the application.

The CKA_DERIVE détribute has the vdue TRUE if and only if it is possible to derive other
keys from the key.

The CKA_LOCAL atribute has the vdue TRUE if and only if the vdue of the key was
origindly generated on thetoken by aC_GenerateK ey or C_GenerateK eyPair cdl.

10.8 Public key objects

Public key objects (object class CKO_PUBLIC_KEY) hold public keys. This verson of
Cryptoki recognizes five types of public keys. RSA, DSA, ECDSA, Diffie-Hdlman, and KEA.
The following table defines the attributes common to dl public keys, in addition to the common
atributeslisted in Table 14Fable-14Table 14Fable14, Table 18Table-18Table-18Table-14 and
Teble 24Table 24 -0l e 2/ able19:

Table 2525252520, Common Public Key Attributes

Attribute Datatype Meaning

CKA_SUBJECT® Byte array DER-encoding of the key subject name
(default empty)

CKA_ENCRYPT® CK_BBOOL | TRUE if key supports encryptior®

CKA_VERIFY® CK_BBOOL | TRUE if key supports verification where

the signature is an appendix to the date’
CKA_VERIFY_RECOVER? | CK_BBOOL | TRUE if key supports verification where
the data is recovered from the signature’

CKA_WRAP? CK_BBOOL | TRUE if key supports wrapping (i.e., can
be used to wrap other keys)°

It is intended in the interests of interoperability that the subject name and key identifier for a
public key will be the same as those for the corresponding certificate and private key.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 88

However, Cryptoki does not enforce this, and it is not required that the certificate and private
key aso be stored on the token.

To map between |SO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS
#11 attributes for public keys, use the following table.

Table 26, Mapping of X.509 key usage flags to cryptoki attributesfor public keys

Key usage flagsfor public keysin X.509 | Corresponding cryptoki attributes for
public key certificates public keys.

dataEncipherment CKA ENCRYPT

digitd Sgnature, keyCertSign, cRLSign CKA VERIFY

digital Signature, keyCertSign, cRLSign CKA VERIFY RECOVER
keyAgreement CKA DERIVE

keyEncipherment CKA WRAP

nonRepudiation CKA VERIFY

nonRepudiation CKA VERIFY RECOVER

10.8.1 RSA public key objects

RSA public key objects (object class CKO_PUBLIC _KEY, key type CKK_RSA) hold
RSA public keys. The following table defines the RSA public key object attributes, in addition
to the common attributes listed in Table 14Table 14 Table 14, Table 18Fable 18Table 18Table
14, Table 24Table 24 Table 24T able 19, and Table 25Table 25Table 25Table 20:

Table 272#272721, RSA Public Key Object Attributes

Attribute Data type Meaning
CKA_MODULUS"*® Big integer Modulus n
CKA_MODULUS BITS**® CK_ULONG | Lengthin bits of modulus n
CKA_PUBLIC_EXPONENT"*° | Biginteger Public exponent e

Depending on the token, there may be limits on the length of key components. See PKCS #1
for more information on RSA keys.

The following is a sample template for creating an RSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_UTFB8CHAR | abel [] “An RSA public key object”;

Copyright © 1994-1999 RSA Laboratories

Page 89

CK_BYTE nodulus[] = {...};

CK_BYTE exponent[] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {
{CKA_CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof (Il abel)-1},
{CKA _WRAP, &true, sizeof(true)},
{ CKA_ENCRYPT, &true, sizeof(true)},
{ CKA_MODULUS, nodul us, sizeof (nmodulus)},
{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}

3
10.8.2 9.6.2. DSA public key objects

DSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_DSA) hald
DSA public keys. The following table defines the DSA public key object attributes, in addition
to the common attributes listed in Table 14T able-14Table-14, Table 18Table-18Table- 18Table
14, Table 24Table 24Table 24Table 19, and Table 25Table 25Table 25T able 20:

Table 2828282822 DSA Public Key Object Attributes

Attribute Datatype | Meaning

CKA_PRIME"-*® Biginteger | Primep (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME"*® | Biginteger | Subprime q (160 bits)

CKA_BASE-** Biginteger | Baseg

CKA_VALUE'***® Biginteger | Publicvduey

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE dtribute vaues are collectively
the “DSA parameters’. See FIPS PUB 186 for more information on DSA keys.

The following is a sample template for creating a DSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY,;
CK_KEY_TYPE keyType = CKK_DSA;
CK_UTF8CHAR | abel [] = “A DSA public key object”;
CK_BYTE prinme[] ={...};
CK_BYTE subprinme[] = {...};
CK_BYTE base[] ={...};
CK_BYTE value[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof (| abel)-1},

{CKA PRI ME, prine, sizeof(prinme)},

{ CKA_SUBPRI ME, subprinme, sizeof (subprinme)},
{CKA_BASE, base, sizeof(base)},

{CKA_VALUE, val ue, sizeof(value)}

b
10.8.3 ECDSA public key objects

90

ECDSA public key objects (object class CKO_PUBLIC_KEY, key type CKK_ECDSA)
hold ECDSA public keys. See Section 12.3 for more information about ECDSA. The
following table defines the ECDSA public key object attributes, in addition to the common
atributes liged in Table 14Fable-14Table-14, Table 18Table-18Table-18Table-14, Table

24Teble24 Tabled9, and Table 25Fable25 | Table20:

Table 2929292923 ECDSA Public Key Object Attributes

Attribute Datatype | Meaning

CKA_ECDSA PARAMS"*® | Bytearray | DER-encoding of an X9.62
ECPar amet er s vdue

P

CKA_EC _POINT"*® Bytearray | DER-encoding of X9.62 ECPoi nt vaue

The CKA_ECDSA_PARAM Sattribute value is known asthe “ECDSA parameters’.

Thefollowing is a sample template for creating an ECDSA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_ECDSA;

CK_UTF8CHAR | abel [] = “An ECDSA public key object”;

CK_BYTE ecdsaParans[] = {...};
CK_BYTE ecPoint[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA _CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof(label)-1},

{ CKA_ECDSA PARAMS, ecdsaParans,

si zeof (ecdsaPar ans) },
{CKA_EC PO NT, ecPoint, sizeof(ecPoint)}

};

Copyright © 1994-1999 RSA Laboratories

Page 91

10.8.4 Diffie-Hellman public key objects

DiffieeHdlman public key objects (object class CKO_PUBLIC _KEY, key type CKK_DH)
hold DiffieeHelman public keys. The following table defines the RSA public key object
atributes, in addition to the common attributes lisged in Table 14Table-14Table-14, Table
18Table-18Table 18Table- 14, Table 24Table-24Table 24Table-19, and Table 25Table
25Table 25T able 20:

Table 3030303024, Diffie-Hellman Public Key Object Attributes

Attribute Datatype Meaning
CKA_PRIME-*® Biginteger | Primep
CKA_BASE-**® Biginteger | Baseg
CKA_VALUE'***® Biginteger | Public vduey

The CKA_PRIME and CKA_BASE datribute vaues are collectively the “Diffie-Hdlman
parameters’. Depending on the token, there may be limits on the length of the key components.
See PKCS #3 for more information on Diffie-Helman keys.

The fallowing is asample template for creating a Diffie-Helman public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType CKK_DH,;
CK_UTF8CHAR | abel [] “A Diffie-Hellmn public key
obj ect”;
CK_BYTE prinme[] ={...};
CK_BYTE base[] ={...};
CK _BYTE value[] ={...};
CK _BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{ CKA_LABEL, | abel, sizeof (| abel)-1},
{CKA PRI ME, prine, sizeof(prime)},
{ CKA BASE, base, sizeof (base)},
{CKA VALUE, val ue, sizeof(value)}

b
10.8.5 KEA public key objects

KEA public key objects (object class CKO_PUBLIC_KEY, key type CKK_KEA) hold
KEA public keys. The following table defines the KEA public key object attributes, in addition

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 92

to the common attributes listed in Table 14¥Fable-14Table-14, Table 18Fable-18Table 18T able
14, Table 24Fable 24T able 24Fable-19, and Table 25Fable 25T able 25T able 20:

Table 3131313125, KEA Public Key Object Attributes

Attribute Datatype Meaning

CKA_PRIME-*® Biginteger | Primep (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME"*® | Biginteger | Subprime g (160 bits)

CKA_BASE-**® Biginteger | Base g (512 to 1024 bits, in steps of 64 bits)
CKA_VALUE'***® Biginteger | Public vduey

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE attribute vaues are collectively
the“KEA parameters’.

The following is a sample template for cresting a KEA public key object:

CK_OBJECT_CLASS cl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_KEA;
| CK_UTF8CHAR | abel [] “A KEA public key object”;
CK_ BYTE prime[] ={...};
CK_BYTE subprinme[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{ CKA_CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
{ CKA_LABEL, | abel, sizeof (| abel)-1},
{CKA PRI ME, prine, sizeof(prine)},
{ CKA_SUBPRI ME, subprinme, sizeof (subprinme)},
{ CKA _BASE, base, sizeof(base)},
{CKA VALUE, val ue, sizeof(value)}

3
10.9 Private key objects

Private key objects (object class CKO_PRIVATE_KEY) hold private keys. This verson of
Cryptoki recognizes five types of private key: RSA, DSA, ECDSA, Diffie-Hdlman, and KEA.
The following table defines the attributes common to al private keys, in addition to the common
atributes lisged in Table 14¥Fable-14Table-14, Table 18Table-18Table-18Table-14 and Table
24T able 24 Table 24Table 19:

Copyright © 1994-1999 RSA Laboratories

Table 3232323226, Common Private Key Attributes

Page 93

Attribute

Datatype

Meaning

CKA_SUBJECT®

Byte array

DER-encoding of certificate
subject name (default empty)

CKA_SENSITIVE® (see below)

CK_BBOOL

TRUE if key is sensitive’

CKA SECONDARY AUTH

CK _BBOOL

TRUE isthe key reguires a

secondary authentication to take
place before its useit alowed.
(default FALSE)

CKA AUTH PIN FLAGS**®

CK_FLAGS

Mask indicating the current Sate

of the secondary authentication
PIN. If

CKA SECONDARY AUTH s
FALSE, then this atribute is
ZExo.

CKA_DECRYPT®

CK_BBOOL

TRUE if key supports
decryptior’

CKA_SIGN®

CK_BBOOL

TRUE if key supports Sgnatures
where the Sgnatureis an
appendix to the data’

CKA_SIGN_RECOVER®

CK_BBOOL

TRUE if key supports Sgnatures
where the data can be recovered
from the signature’

CKA_UNWRAP?

CK_BBOOL

TRUE if key supports
unwragpping (i.e., can be used to
unwrap other keys)®

CKA EXTRACTABLE?® (see below)

CK_BBOOL

TRUE if key is extractable’

CKA_ALWAYS SENSITIVE**®

CK_BBOOL

TRUE if key has always had the
CKA_SENSITIVE attribute set
to TRUE

CKA NEVER EXTRACTABLE?**®

CK_BBOOL

TRUE if key has never had the
CKA_EXTRACTABLE
atribute set to TRUE

After an object is created, the CKA_SENSITIVE attribute may be changed, but only to the
vdue TRUE. Smilarly, after an object is created, the CKA_EXTRACTABLE attribute may
be changed, but only to the value FALSE. Attempts to make other changes to the vaues of
these attributes should return the error code CKR_ATTRIBUTE_READ_ONLY.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 94

If the CKA_SENSITIVE atribute is TRUE, or if the CKA_EXTRACTABLE dtribute is
FALSE, then certain attributes of the private key cannot be reveded in plaintext outside the
token. Which attributes these are is specified for each type of private key in the atribute table
in the section describing thet type of key.

If the CKA_EXTRACTABLE attribute is FALSE, then the key cannot be wrapped.

It is intended in the interests of interoperability that the subject name and key identifier for a
private key will be the same as those for the corresponding certificate and public key.

However, this is not enforced by Cryptoki, and it is not required that the certificate and public

key aso be stored on the token.

If the CKA SECONDARY_ AUTH attribute is TRUE, then the Cryptoki implementation will
associate the new private key object with a PIN that is gathered from a protected path. The
new PIN must be presented to the token through a protected path each time the key is used for
a_ cryptographic _ operation. See section 6.7 for the complete usage modd. If
CKA SECONDARY AUTH isTRUE, then CKA EXTRACTABLE mus be FALSE and
CKA PRIVATE must be TRUE. Attempts to copy privae keys with
CKA SECONDARY AUTH st to TRUE in a manne that would violate the above
conditions mus fal. An aoplication can deermine whether the sdting the
CKA SECONDARY AUTH attribute to TRUE is supported by checking to see if the
CKF SECONDARY AUTHENTICATION flagissetinthe CK. TOKEN INFO flags.

The CKA AUTH PIN FLAGS dtribute indicates the current state of the secondary
authentication PIN. This vaue is only vdid if the CKA SECONDARY AUTH atribute is
TRUE. The vdid flags for this atribute ae CKF USER PIN COUNT LOW,
CKF USER PIN FINAL TRY, CKFEF USER PIN LOCKED, and
CKF USER PIN TO BE CHANGED ddined in Table 10Fable10Table10 for the
CK TOKEN INFO flags fidd. CKF USER PIN COUNT LOW and
CKF USER PIN FINAL TRY may aways be set to FALSE if the token does not support
the functiondity or will not reved the information because of its security policy. The
CKF USER PIN TO BE CHANGED flag may dways be FALSE if the token does not
support the functiondity.

To map between |SO/IEC 9594-8 (X.509) keyUsage flags for public keys and the PKCS
#11 attributes for public keys, use the following table.

Copyright © 1994-1999 RSA Laboratories

Page 95

Table 33, Mapping of X.509 key usage flags to cryptoki attributesfor private keys

Key usage flagsfor public keysin X.509 | Corresponding cryptoki attributes for
public key certificates private keys.

dataEncipherment CKA DECRYPT

digital Signature, keyCertSign, cRLSign CKA SIGN

digitd Sgnature, keyCertSign, cRLSign CKA SIGN RECOVER
keyAgreement CKA DERIVE

keyEncipherment CKA UNWRAP

nonRepudiation CKA SIGN

nonRepudiation CKA SIGN RECOVER

10.9.1 RSA privatekey objects

RSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_RSA) hold
RSA private keys. The following table defines the RSA private key object attributes, in
addition to the common attributes listed in Table 14Fable-14Table-14, Table 18Table-18Table
18Table 14, Table 24Table 24 Table 24Table 19, and Table 32T able 32Table 32Table 26:

Table 3434343427, RSA Private Key Object Attributes

Attribute Datatype | Meaning
CKA_MODULUS"*® Biginteger | Modulusn
CKA_PUBLIC_EXPONENT*® Biginteger | Public exponent e
CKA_PRIVATE_EXPONENT**®" | Biginteger | Private exponent d
CKA_PRIME_1*®7 Biginteger | Primep

CKA_PRIME_2*®7 Biginteger | Pimeq
CKA_EXPONENT_1%87 Biginteger | Private exponent d modulo p-1
CKA_EXPONENT_2*%7 Biginteger | Private exponent d modulo g-1
CKA_COEFFICIENT*®’ Biginteger | CRT coefficient g™ mod p

Depending on the token, there may be limits on the length of the key components. See PKCS
#1 for more information on RSA keys.

Tokens vary in what they actudly store for RSA private keys. Some tokens store dl of the
above attributes, which can assst in performing rgpid RSA computations. Other tokens might
gore only the CKA_MODULUS and CKA_PRIVATE_EXPONENT vdues.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 96

Because of this, Cryptoki is flexible in dedling with RSA private key objects. When a token
generates an RSA private key, it stores whichever of the fidds in Table 34T able-341able
34Table 27 it keeps track of. Later, if an application asks for the values of the key's various
attributes, Cryptoki supplies vaues only for attributes whose vaues it can obtain (i.e., if
Cryptoki is asked for the vaue of an atribute it cannot obtain, the request fails). Note that a
Cryptoki implementation may or may not be able and/or willing to supply various attributes of
RSA private keys which are not actually stored on the token. E.g., if a particular token stores
vadues only for the CKA_PRIVATE_EXPONENT, CKA_PRIME_1, and
CKA_PRIME_2 attributes, then Cryptoki is certainly able to report vaues for dl the attributes
above (since they can dl be computed efficiently from these three vaues). However, a
Cryptoki implementation may or may not actualy do this extra computation. The only attributes
from Table 34Table-34Table-34Table-27 for which a Cryptoki implementation is required to
be able to return valuesare CKA_MODULUS and CKA_PRIVATE_EXPONENT.

If an RSA private key object is created on a token, and more attributes from Table 34¥Fable
34Table 34Table 27 are supplied to the object creation call than are supported by the token,
the extra attributes are likely to be thrown away. If an attempt is made to create an RSA
private key object on a token with insufficient attributes for that particular token, then the object
cregtion cal faillsand returns CKR_TEMPLATE_INCOMPLETE.

Note that when generating an RSA private key, thereisno CKA_MODULUS BITS dttribute
specified. Thisis because RSA private keys are only generated as part of an RSA key pair,
and the CKA_MODULUS BITS attribute for the pair is specified in the template for the RSA

public key.
The following is a sample template for cregting an RSA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_UTF8CHAR | abel [] = “An RSA private key object”;
CK_BYTE subject[] = {...};
CK BYTE id[] = {123};
CK_BYTE nodulus[] = {...};
CK_BYTE publ i cExponent[]
CK_BYTE privat eExponent [
CK_BYTE prinmel[] = {...};
CK_BYTE prime2[] ={...}
CK_BYTE exponent 1]]
CK_BYTE exponent 2[]
CK_BYTE coefficient[]
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA_CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof(keyType)},

{CKA TOKEN, &true, sizeof(true)},

Copyright © 1994-1999 RSA Laboratories

Page 97

{CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI Tl VE, &true, sizeof(true)},
{ CKA_DECRYPT, &true, sizeof(true)},
{CKA_SIGN, &true, sizeof(true)},
{ CKA_MODULUS, nodul us, sizeof (nodulus)},
{ CKA_PUBLI C_EXPONENT, publi cExponent,
si zeof (publ i cExponent) },
{ CKA_PRI VATE_EXPONENT, privateExponent,
si zeof (privat eExponent)},
{CKA PRIME_ 1, prinmel, sizeof(prinel)},
{CKA PRI ME_2, prinme2, sizeof(prine2)},
{ CKA_EXPONENT_1, exponentl, sizeof(exponentl)},
{ CKA_EXPONENT_2, exponent2, sizeof (exponent?2)},
{ CKA_COEFFI Cl ENT, coefficient, sizeof(coefficient)}

3
10.9.2 DSA private key objects

DSA private key objects (object class CKO_PRIVATE _KEY, key type CKK_DSA) hald
DSA private keys. The following table defines the DSA private key object attributes, in
addition to the common attributes listed in Table 14Fable 14 Table 14, Table 18Table18Table
18Table 14, Table 24Table 24Table 24Table 19, and Table 32T able 32T able 32Fable 26:

Table 3535353528, DSA Private Key Object Attributes

Attribute Data type Meaning

CKA_PRIME"*® Biginteger | Primep (512 to 1024 bits, in steps of 64 bits)
CKA_SUBPRIME"*® | Biginteger | Subprimeq (160 bits)

CKA_BASE"*® Biginteger | Baseg

CKA_VALUE*®7 Biginteger | Private value x

The CKA_PRIME, CKA_SUBPRIME and CKA_BASE dtribute vaues are collectively
the “DSA parameters’. See FIPS PUB 186 for more information on DSA keys.

Note that when generating a DSA private key, the DSA parameters are not specified in the
key's template. This is because DSA private keys are only generated as part of a DSA key
pair, and the DSA parametersfor the pair are specified in the template for the DSA public key.

The following is a sample template for creating a DSA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_DSA;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 98

CK_UTF8CHAR | abel [] = “A DSA private key object”;
CK_BYTE subject[] = {...};
CK BYTE id[] = {123};
CK_ BYTE prime[] ={...};
CK_BYTE subprinme[] = {...};
CK_BYTE base[] = {...};
CK_BYTE value[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA_CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI TI VE, &true, sizeof(true)},
{CKA _SIGN, &true, sizeof(true)},
{CKA PRI ME, prinme, sizeof(prinme)},
{ CKA_SUBPRI ME, subprinme, sizeof(subprinme)},
{ CKA BASE, base, sizeof (base)},
{CKA _VALUE, val ue, sizeof(value)}

}
10.9.3 ECDSA private key objects

ECDSA private key objects (object class CKO_PRIVATE_KEY, key type CKK_ECDSA)
hold ECDSA private keys. See Section 12.3 for more information about ECDSA. The
following table defines the ECDSA private key object attributes, in addition to the common
dtributes liged in Table 14Table14Table-14, Table 18Table-18Table-18Table-14, Table
24T able 24 Table 24T able 19, and Table 32Fable 32T cble 32T able 26!

Table 3636363629, ECDSA Private Key Object Attributes

Attribute Datatype | Meaning

CKA_ECDSA PARAMS'*® | Bytearray | DER-encoding of an X9.62
ECPar amet er s vdue

CKA_VALUE*®’ Biginteger | X9.62 private vaued

The CKA_ECDSA_PARAM Sattribute value is known asthe “ECDSA parameters’.

Note that when generating an ECDSA private key, the ECDSA parameters are not Soecified in
the key’s template. This is because ECDSA private keys are only generated as part of an
ECDSA key pair, and the ECDSA parameters for the pair are specified in the template for the
ECDSA public key.

Copyright © 1994-1999 RSA Laboratories

Page 99

The following is a sample template for cregting an ECDSA private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_ECDSA;
CK_UTF8CHAR | abel [] = “An ECDSA private key object”;
CK_BYTE subject[] = {...};
CK BYTE id[] = {123};
CK_BYTE ecdsaParanms[] = {...};
CK_BYTE value[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{ CKA_LABEL, | abel, sizeof (| abel)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI Tl VE, &true, sizeof(true)},
{CKA _DERI VE, &true, sizeof(true)},
{ CKA_ECDSA PARAMS, ecdsaParans,
si zeof (ecdsaPar ans) },
{CKA_VALUE, val ue, sizeof(value)}

b
10.9.4 Diffie-Hdlman private key objects

DiffieHedlman private key objects (object cdass CKO_PRIVATE_KEY, key type
CKK_DH) hold DiffieeHdlman private keys. The following table defines the Diffie-Hdlman
private key object atributes, in addition to the common datributes listed in Table 14Fable
I4Table 14, Table 18Table-18Table 15T able-14, Table 24Table 24 7:0lc 24T able-19, and
Table 32T able 32T able 32Fable 26:

Table 373#373730, Diffie-Hellman Private Key Object Attributes

Attribute Data type M eaning

CKA_PRIME"*® Big integer Primep

CKA_BASE"*® Big integer Base g

CKA_VALUE*®7 Big integer Private value x

CKA_VALUE BITS?*® | CK_ULONG | Lengthin bits of private vaue x

The CKA_PRIME and CKA_BASE dtribute vaues are collectively the “Diffie-Hdlman
parameters’. Depending on the token, there may be limits on the length of the key components.
See PKCS #3 for more information on Diffie-Hellman keys.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 100

Note that when generating an Diffie-Hellman private key, the Diffie-Hellman parameters are not
specified in the key’ s template. This is because Diffie-Hellman private keys are only generated
as pat of a DiffieHdlman key pair, and the DiffieHellman parameters for the par ae
specified in the template for the Diffie-Hellman public key.

The following is a sample template for creating a Diffie-Hellman private key object:

CK_OBJECT_CLASS cl ass = CKO_PRI VATE_KEY;

CK_KEY_TYPE keyType CKK_DH,;

CK_UTF8CHAR | abel [] “A Diffie-Hellman private key

obj ect”;

CK_BYTE subject[] = {...};

CK_BYTE id[] = {123};

CK_BYTE prime[] = {...};

CK_BYTE base[] = {...};

CK_BYTE value[] = {...};

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {
{CKA_CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI TI VE, &true, sizeof(true)},
{CKA _DERI VE, &true, sizeof(true)},
{CKA PRI ME, prinme, sizeof(prinme)},
{ CKA_BASE, base, sizeof(base)},
{CKA VALUE, val ue, sizeof(value)}

3
10.9.5 KEA private key objects

KEA private key objects (object class CKO_PRIVATE_KEY, key type CKK_KEA) hald
KEA private keys. The following table defines the KEA private key object attributes, in
addition to the common attributes listed in Table 14Fable 14 Table 14, Table 18Table18Table
18Table 14, Table 24Table 24Table 24Table 19, and Table 32T able 32Table 32Fable 26:

Table 3838383831, KEA Private Key Object Attributes

Copyright © 1994-1999 RSA Laboratories

Page 101

Attribute Datatype | Meaning

CKA_PRIME"*® Biginteger | Primep (512 to 1024 bits, in steps of
64 bits)

CKA_SUBPRIME"*® | Biginteger | Subprime g (160 bits)

CKA_BASE“*® Biginteger | Baseg (512 to 1024 bits, in steps of
64 bits)

CKA_VALUE"*®’ Biginteger | Private vauex

The CKA_PRIME, CKA_SUBPRIME and CKA_ BASE atribute vdues are collectively
the “KEA parameters’.

Note that when generating a KEA private key, the KEA parameters are not pecified in the
key's template. This is because KEA private keys are only generated as part of a KEA key
pair, and the KEA parameters for the pair are specified in the template for the KEA public key.

The following is a sample template for creating a KEA private key object:

= CKO_PRI VATE_KEY;
CK_KEY_TYPE keyType = CKK_KEA;
CK_UTF8CHAR | abel [] “A KEA private key object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE prime[] = {...};
CK_BYTE subprinme[] = {...};
CK_BYTE base[] ={...};
CK _BYTE value[] ={...};
CK _BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{ CKA_LABEL, | abel, sizeof (| abel)-1},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI Tl VE, &true, sizeof(true)},
{CKA _DERI VE, &true, sizeof(true)},
{CKA PRI ME, prine, sizeof(prime)},
{ CKA_SUBPRI ME, subprinme, sizeof(subprinme)},
{ CKA BASE, base, sizeof(base)},
{CKA_VALUE, val ue, sizeof(value)}

CK_OBJECT_CLASS cl ass

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

10.10 Secret key objects

102

Secret key objects (object class CKO_SECRET_KEY) hold secret keys. This verson of
Cryptoki recognizes the following types of secret key: generic, RC2, RC4, RC5, DES, DES2,
DES3, CAST, CAST3, CAST128 (also known as CASTS), IDEA, CDMF, SKIPJACK,
BATON, and JUNIPER. The following table defines the attributes common to al secret keys,
in addition to the common dtributes listed in Table 14Table 14Table 14, Table 18Table
18Table 18Fable-14 and Table 24T able 24 Tcble 24T able 19:

Table 3939393932, Common Secret Key Attributes

Attribute Datatype Meaning

CKA_SENSITIVE® (see below) CK_BBOOL | TRUE if object is senstive (default
FALSE)

CKA_ENCRYPT® CK_BBOOL | TRUE if key supports encryptior?

CKA_DECRYPT® CK_BBOOL | TRUE if key supports decryptior?

CKA_SIGN® CK_BBOOL | TRUE if key supports sgnatures
(i.e., authentication codes) where
the Sgnature is an gppendix to the
data’

CKA_VERIFY?® CK_BBOOL | TRUE if key supports verification
(i.e., of authentication codes)
where the Sgnature is an appendix
to the data’

CKA WRAP? CK_BBOOL | TRUE if key supports wrapping
(i.e., can be used to wrap other
keys)®

CKA_UNWRAP? CK_BBOOL | TRUE if key supports unwrapping
(i.e., can be used to unwrap other
keys)®

CKA EXTRACTABLE® (seebdow) | CK_BBOOL | TRUE if key is extractable’

CKA_ALWAYS SENSITIVE**® CK_BBOOL | TRUE if key hes always had the
CKA_SENSITIVE attribute set
to TRUE

CKA NEVER EXTRACTABLE?**® | CK_BBOOL | TRUE if key has never had the

CKA_EXTRACTABLE dtribute
st to TRUE

After an object is created, the CKA_SENSITIVE attribute may be changed, but only to the
vdue TRUE. Smilarly, after an object is created, the CKA_EXTRACTABLE attribute may

Copyright © 1994-1999 RSA Laboratories

Page 103

be changed, but only to the value FALSE. Attempts to make other changes to the vaues of
these attributes should return the error code CKR_ATTRIBUTE_READ_ONLY.

If the CKA_SENSITIVE atribute is TRUE, or if the CKA_EXTRACTABLE dtribute is
FALSE, then certain attributes of the secret key cannot be reveded in plaintext outsde the
token. Which attributes these are is specified for each type of secret key in the atribute table in
the section describing that type of key.

If the CKA_EXTRACTABLE attribute is FALSE, then the key cannot be wrapped.

10.10.1 Generic secret key objects

Generic secret key objects (object class CKO_SECRET_KEY, key type
CKK_GENERIC_SECRET) hold generic secret keys. These keys do not support
encryption, decryption, signatures or verification; however, other keys can be derived from
them. The following table defines the generic secret key object attributes, in addition to the
common attributes listed in Table 14Table-14Table 14, Table 18Table-18Table- 18Table-14,
Table 24Table 24 Feble 24T able 19, and Table 39Fable 39 eble 29T ahble 32:

Table 4040404033, Generic Secret Key Object Attributes

Attribute Datatype Meaning

CKA_VALUE*®’ Byte array Key vaue (arbitrary
length)

CKA_VALUE LEN?*® | CK_ULONG | Lengthin bytes of key
vaue

The following is a sample template for creating a generic secret key object:

= CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_GENERI C_SECRET;
CK_UTFBCHAR | abel [] “A generic secret key object”;
CK_BYTE value[] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA_ CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof(keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA_LABEL, | abel, sizeof(label)-1},

{CKA _DERI VE, &true, sizeof(true)},

{CKA_VALUE, val ue, sizeof(value)}

CK_OBJECT_CLASS cl ass

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 104

10.10.2 RC2 secret key objects

RC2 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC2) hold
RC2 keys. The following table defines the RC2 secret key object attributes, in addition to the
common éttributes liged in Table 14Table-14Table 14, Table 18Table-18Table 18Table- 14,
Table 24Fable 24 Table 24Fable 19, and Table 39T able 39T able 39T able 32:

Table 4141414134, RC2 Secret Key Object Attributes

Attribute Datatype Meaning

CKA_VALUE"*®’ Byte array Key value (1to 128
bytes)

CKA_VALUE LEN%3*® | CK_ULONG | Length in bytes of key
vdue

The following is a sample template for creating an RC2 secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_RC2;
| CK_UTFB8CHAR | abel [] = “An RC2 secret key object”;
CK_BYTE value[] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},
| { CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

b
10.10.3 RC4 secret key objects

RC4 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC4) hold
RCA4 keys. The following table defines the RC4 secret key object attributes, in addition to the
common attributes listed in Table 14Table-14Table-14, Table 18Table-18Table- 18Table-14,
Table 24T able 24Table 24Table 19, and Table 39Table 39T able 39Table 32:

Table 4242424235, RC4 Secret Key Object

Copyright © 1994-1999 RSA Laboratories

Page 105

Attribute Datatype Meaning

CKA_VALUE"*®’ Byte array Key value (1 to 256
bytes)

CKA VALUE LEN#®*® | CK_ULONG | Lengthin bytes of key
vdue

The following is a sample template for creating an RC4 secret key object:

CK_OBJECT_CLASS cl ass

CK_KEY_TYPE keyType

CK_UTF8CHAR | ab
CK_BYTE val ue[]
CK_BBOOL true =

el []
=1..
TRUE;

CKO_SECRET_KEY;

CKK_RCA;

“An RC4 secret key object”;
1

CK_ATTRI BUTE tenpl ate[]
{CKA CLASS, &cl ass,
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},

{CKA_TOKEN, &true,
{ CKA_LABEL, | abel,

{ CKA_ENCRYPT,

};

&rue,

10.10.4 RC5 secret key objects

Si

= {

zeof (cl ass) },

si zeof (true)},
si zeof (|1 abel) -1},

sizeof (true)},

{CKA VALUE, val ue, sizeof(value)}

RC5 secret key objects (object class CKO_SECRET_KEY, key type CKK_RC5) hold
RC5 keys. The following table defines the RC5 secret key object attributes, in addition to the
common attributes listed in Table 14T able-14Table-14, Table 18Table-18Table- 18Table-14,

Table 24Fable24 1 -0ic 21 Fable 19, and Table 39Fable39 1 -1l 2T able 32

Table 4343434336, RC4 Secret Key Object

Attribute Data type M eaning

CKA_VALUE"*®’ Byte array Key value (0to 255
bytes)

CKA_VALUE_LEN?*® | CK_ULONG | Lengthin bytes of key
vdue

The following is a sample template for creating an RC5 secret key object:

CK_OBJECT_CLASS

CK_KEY_TYPE keyType
CK_UTF8CHAR | abel []

CK_BYTE val ue[]

cl ass

={..

CKO_SECRET_KEY:

CKK_RC5;
“An RC5 secret key object”;

-}

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 106

CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA_CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
| { CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

} 1
10.10.5 DESsecret key objects

DES secret key objects (object class CKO_SECRET_KEY, key type CKK_DES) hald
snglellength DES keys. The following table defines the DES secret key object attributes, in
addition to the common attributes listed in Table 14T able-14Table-14, Table 18Table-18Table
18Table 14, Table 24Table 24Table 24Table 19, and Table 39T able 39 Table 39Table-32:

Table 4444444437, DES Secret Key Object

Attribute Data type M eaning
CKA_VALUEY*®" | Bytearray | Key vaue (dways 8 bytes
long)

DES keys must dways have their parity bits properly set as described in FIPS PUB 46-2.
Attempting to create or unwrap a DES key with incorrect parity will return an error.

The following is a sample template for creating a DES secret key object:

= CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;
| CK_UTFBCHAR | abel [] “A DES secret key object”;
CK_BYTE value[8] ={...};
CK _BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
| { CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

b

CK_OBJECT_CLASS cl ass

Copyright © 1994-1999 RSA Laboratories

Page 107

10.10.6 DES2 secret key objects

DES2 secret key objects (object class CKO_SECRET_KEY, key type CKK_DES2) hold
double-length DES keys. The following table defines the DES2 secret key object attributes, in
addition to the common attributes listed in Table 14Fable-14Table-14Table-14, Table 18Table
18Table 18Table-14, Table 24Table 24Table 24Table-19, and Table 39Table-39Table
39T able 32:

Table 4545454538, DES2 Secret Key Object Attributes

Attribute Datatype | Meaning
CKA VALUE*®" | Bytearray | Key vaue (aways 16 bytes
long)

DES2 keys must always have their parity bits properly set as described in FIPS PUB 46-2
(i.e., ech of the DES keys comprisng a DES2 key must have its parity bits properly set).
Attempting to creste or unwrap a DES2 key with incorrect parity will return an error.

The following is a sample template for creating a double-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES2:
CK_UTF8CHAR | abel [] “A DES2 secret key object”;
CK_BYTE value[16] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof(value)}

};

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 108

10.10.7 DES3 secret key objects

DESS secret key objects (object class CKO_SECRET_KEY, key type CKK_DES3) hold
triple-length DES keys. The following table defines the DES3 secret key object attributes, in
addition to the common attributes listed in Table 14Fable-14Table 14, Table 18Table 18Table
18Table 14, Table 24Table 24Table 24Table 19, and Table 39T able 39T able 39Table 32:

Table 4646464639, DES3 Secret Key Object Attributes

Attribute Datatype | Meaning
CKA_VALUE"®" | Bytearay | Key vaue (aways 24 bytes
long)

DES3 keys must aways have their parity bits properly set as described in FIPS PUB 46-2
(i.e., each of the DES keys comprisng a DES3 key must have its parity bits properly set).
Attempting to create or unwrap a DES3 key with incorrect parity will return an error.

Thefollowing is asample template for cregting atriple-length DES secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_DESS3;

CK_UTFB8CHAR | abel [] = “A DES3 secret key object”;
CK_BYTE val ue[24] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof (| abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof(value)}

b
10.10.8 CAST secret key objects

CAST secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST) hald
CAST keys. The following table defines the CAST secret key object attributes, in addition to
the common attributes listed in Table 14Fable 14Fable 14, Table 18T able18Table 18Table 14,
Table 24Table 24Table 24Table 19, and Table 39Table 39T able 39Table 32:

Table 4744474740, CAST Secret Key Object Attributes

Copyright © 1994-1999 RSA Laboratories

Attribute Datatype Meaning

CKA_VALUE"*®’ Byte array Key value (1 to 8 bytes)

CKA_VALUE LEN?*® | CK_ULONG | Lengthin bytes of key
vdue

The following is a sample template for creating a CAST secret key object:

CK_KEY_TYPE keyType

CK_OBJECT_CLASS cl ass

CK_UTF8CHAR | abel []

CK_BYTE val ue[]

={..

CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

= CKO_SECRET_KEY;
CKK_CAST;
“A CAST secret

1

key object”

{CKA_CLASS, &cl ass,

{CKA _KEY_TYPE, &keyType,

{CKA _TOKEN, &true,
{ CKA_LABEL, | abel,

si zeof (cl ass) },

sizeof (true)},
si zeof (I abel) -1},

si zeof (keyType)},

{ CKA_ENCRYPT,

};

&true,

10.10.9 CAST 3 secret key objects

sizeof (true)},

{CKA_VALUE, val ue, sizeof(value)}

Page 109

CAST3 secret key objects (object class CKO_SECRET_KEY, key type CKK_CAST3)
hold CAST3 keys. The following table defines the CAST3 secret key object attributes, in
addition to the common éttributes listed in Table 14Fable-14Table 14, Table 18Table 18Table
18Table 14, Table 24Table 24 Table 24Table 19, and Table 39Fable 39 Table 39T able 32:

Table 4848484841, CAST 3 Secret Key Object Attributes

Attribute Data type M eaning

CKA_VALUE*®’ Byte array Key vaue (1 to 8 bytes)

CKA_VALUE_LEN?*® | CK_ULONG | Lengthin bytes of key
vdue

The following is a sample template for creating a CAST 3 secret key object:

CK_OBJECT_CLASS cl ass

CK_KEY_TYPE keyType
CK_UTF8CHAR | abel []

CK_BYTE val ue[]
CK_BBOOL true =

={..
TRUE;

= CKO_SECRET_KEY;
CKK_CAST3;
“A CAST3 secret

-}

key object”;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 110

CK_ATTRI BUTE tenplate[] = {
{CKA_CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
{CKA_LABEL, | abel, sizeof(label)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof(value)}

} 1
10.10.10 CAST128 (CAST5) secret key objects

CAST128 (also known as CAST5) secret key objects (object class CKO_SECRET_KEY,
key type CKK_CAST128 or CKK_CAST5) hold CAST128 keys. The following table
defines the CAST 128 secret key object attributes, in addition to the common attributes listed in
Table 14Table-14Table 14, Table 18Table-18Table 18Table-14, Table 24Table 24Table
24Table 19, and Table 39T able 39Table 39T able 32:

Table 4949494942 CAST 128 (CAST5) Secret Key Object Attributes

Attribute Datatype Meaning

CKA_VALUE*®’ Byte array Key vaue (1 to 16 bytes)

CKA VALUE LEN#®*® | CK_ULONG | Lengthin bytes of key
vdue

Thefollowing is a sample template for creating a CAST128 (CAST5) secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CAST128;
CK_UTF8CHAR | abel [] = “A CAST128 secret key object”;
CK_BYTE value[] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof (| abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

b
10.10.11 IDEA secret key objects

IDEA secret key objects (object class CKO_SECRET_KEY, key type CKK_IDEA) hold
IDEA keys. The following table defines the IDEA secret key object attributes, in addition to

Copyright © 1994-1999 RSA Laboratories

Page 111

the common attributes listed in Table 14Fable 14T able 14, Table 18Table18Table 18Table 14,
Table 24Table 24T able 24Fable19, and Table 39Fable 39T able 39T able-32:

Table 5050505043, IDEA Secret Key Object

Attribute Datatype | Meaning
CKA VALUE'*®" | Bytearray | Key vaue (aways 16 bytes
long)

The following is a sample template for creating an IDEA secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_| DEA;

CK_UTF8CHAR | abel [] = “An | DEA secret key object”;
CK_BYTE val ue[16] = {...};

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},

{CKA _TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof (| abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA_VALUE, val ue, sizeof(value)}

b
10.10.12 CDMF secret key objects

CDMF secret key objects (object class CKO_SECRET_KEY, key type CKK_CDMF)
hold single-length CDMF keys. The following table defines the CDMF secret key object
attributes, in addition to the common attributes lised in Table 14Table-14Table-14, Table
18Table-18Table 18Table- 14, Table 24Table 24Table 24Table-19, and Table 39Table
39Table 39T able32:

Table 5151515144, CDMF Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE®" | Bytearray | Key vaue (dways 8 byteslong)

CDMF keys must dways have their parity bits properly set in exactly the same fashion
described for DES keys in FIPS PUB 46-2. Attempting to create or unwrap a CDMF key
with incorrect parity will return an error.

The following is a sample template for creating a CDMF secret key object:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 112

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_CDMF;

CK_UTF8CHAR | abel [] = “A CDMF secret key object”;
CK_BYTE value[8] ={...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA_ CLASS, &cl ass, sizeof(class)},

{CKA KEY_TYPE, &keyType, sizeof(keyType)},

{CKA TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof (| abel)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA VALUE, val ue, sizeof(value)}

} 1
10.10.13 SKIPJACK secret key objects

SKIPJACK secret key objects (object class CKO _SECRET_KEY, key type
CKK_SKIPJACK) holds a sngle-length MEK or a TEK. The following table defines the
SKIPJACK secret key object attributes, in addition to the common attributes listed in Table
14Tabledd o Table18Tabled8 | Febledd, Table24Table 24 Fabledl,
and Table 39Fable 39Table 39Fable-32:

Table 5252525245, SKIPJACK Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE*®" | Bytearray | Key vaue (adways 12 bytes
long)

SKIPJACK keys have 16 checksum hits, and these bits must be properly set. Attempting to
create or unwrap a SKIPJACK key with incorrect checksum bitswill return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to cregte a
SKIPJACK key with a specified value. Nonetheless, we provide templates for doing so.

The following is a sample template for creating a SKIPJACK MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY,;
CK_KEY_TYPE keyType CKK_SKI PJACK;
CK_UTF8CHAR | abel [] “A SKI PJACK MEK secret key
obj ect”;
CK_BYTE val ue[12] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},

Copyright © 1994-1999 RSA Laboratories

Page 113

{CKA TOKEN, &true, sizeof(true)},

{ CKA_LABEL, | abel, sizeof (| abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

} H
The following is a sample template for creating a SKIPJACK TEK secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType CKK_SKI PJACK
CK_UTFBCHAR | abel [] “A SKI PJACK TEK secret key
obj ect”;
CK _BYTE value[12] = {...};
CK BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA CLASS, &cl ass, sizeof(class)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_TOKEN, &true, sizeof(true)},
{ CKA_LABEL, | abel, sizeof (| abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{ CKA_WRAP, &true, sizeof(true)},
{CKA_VALUE, val ue, sizeof(value)}

b
10.10.14 BATON secret key objects

BATON secret key objects (object class CKO_SECRET_KEY, key type CKK_BATON)
hold single-length BATON keys. The following table defines the BATON secret key object
atributes, in addition to the common attributes lisged in Table 14Table-14Table-14, Table
18Table-18Table 18Table- 14, Table 24Table-24Table 24Table 19, and Table 39Fable
39 Teblesz

Table 5353535346, BATON Secret Key Object

Attribute Datatype | Meaning
CKA_VALUE®" | Bytearray | Key vaue (always 40 bytes
long)

BATON keys have 160 checksum bits, and these bits must be properly set. Attempting to
create or unwrgp aBATON key with incorrect checksum bitswill return an error.

It is not clear that any tokens exist (or will ever exist) which permit an application to create a
BATON key with a specified vaue. Nonethdless, we provide templates for doing so.

The following is a sample template for creating aBATON MEK secret key object:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_OBJECT_CLASS cl ass
CK_KEY_TYPE keyType
CK_UTF8CHAR | abel []

CK_BYTE val ue[40]
CK_BBOOL true

{CKA KEY_TYPE, &keyType,

= TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA_CLASS, &cl ass,

{CKA_TOKEN, &true,

{ CKA_LABEL,
{ CKA_ENCRYPT, &true,
{CKA VALUE, val ue, sizeof(value)}

b

| abel ,

= CKO_SECRET_KEY;
CKK_BATON;

“A BATON MEK secr et
={...}

si zeof (cl ass) },

sizeof (true)},

114

key object”;

si zeof (keyType)},
sizeof (true)},
si zeof (1 abel) -1},

The following is a sample template for creating aBATON TEK secret key object:

CK_OBJECT_CLASS cl ass
CK_KEY_TYPE keyType
CK_UTF8CHAR | abel []

CK_BYTE val ue[40]
CK_BBOOL true

{CKA KEY_TYPE, &keyType,

= TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA_CLASS, &cl ass,

{CKA_TOKEN, &true,

{ CKA_LABEL,
{ CKA_ENCRYPT, &true,

| abel ,

{ CKA_W\RAP, &true,
{ CKA_VALUE, val ue,

}i

= CKO_SECRET_KEY;
CKK_BATON;

“A BATON TEK secr et
={...};

si zeof (cl ass) },

sizeof (true)},

si zeof (true)},

si zeof (val ue) }

10.10.15 JUNIPER secret key objects

key object”;

si zeof (keyType)},
sizeof (true)},
si zeof (1 abel) -1},

JUNIPER secret key objects (object class CKO_SECRET_KEY, key type
CKK_JUNIPER) hold snglelength JUNIPER keys. The following table defines the
JUNIPER secret key object atributes, in addition to the common attributes listed in Table
14Table 14Table 14, Table 18Table 18Table 18Table 14, Table 24Table 24Table 24Table 19,

Table39Fable3d9 Fable3z:

Table 5454545447, JUNIPER Secret Key Object

Attribute Datatype | Meaning
CKA VALUEY®" | Bytearray | Key vaue (always40 bytes
long)

Copyright © 1994-1999 RSA Laboratories

Page 115

JUNIPER keys have 160 checksum hits, and these bits must be properly set. Attempting to
create or unwrap a JUNIPER key with incorrect checksum bits will return an error.

It is not clear that any tokens exist (or will ever exist) which permit an gpplication to cregte a
JUNIPER key with a specified value. Nonetheless, we provide templates for doing so.

Thefollowing is a sample template for creating a JUNIPER MEK secret key object:

CK_OBJECT_CLASS cl ass = CKO_SECRET_KEY,;

CK_KEY_TYPE keyType CKK_JUNI PER

CK_UTF8CHAR | abel [] “A JUNI PER MEK secret key
obj ect”;

CK_BYTE val ue[40] = {...};

CK_BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA_CLASS, &cl ass, sizeof(class)},

{CKA _KEY_TYPE, &keyType, sizeof(keyType)},

{CKA TOKEN, &true, sizeof(true)},

{CKA_LABEL, | abel, sizeof(label)-1},

{ CKA_ENCRYPT, &true, sizeof(true)},

{CKA_VALUE, val ue, sizeof(value)}

};

Thefollowing is a sample template for cresting a JUNIPER TEK secret key object:

= CKO_SECRET_KEY:
CKK_JUNI PER;
“A JUNI PER TEK secret key

CK_KEY_TYPE keyType
CK_UTF8CHAR | abel []
obj ect”;
CK_BYTE val ue[40] = {...};
CK_BBOOL true = TRUE;
CK_ATTRI BUTE tenplate[] = {
{CKA_CLASS, &cl ass, sizeof(class)},
{CKA KEY_TYPE, &keyType, sizeof(keyType)},
{CKA TOKEN, &true, sizeof(true)},
{ CKA_LABEL, | abel, sizeof (| abel)-1},
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA VALUE, val ue, sizeof(value)}

CK_OBJECT_CLASS cl ass

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 116

11. Functions
Cryptoki's functions are organized into the following categories:
generd-purpose functions (4 functions)
dot and token management functions (9 functions)
sesson management functions (8 functions)
object management functions (9 functions)
encryption functions (4 functions)
decryption functions (4 functions)
message digesting functions (5 functions)
sggning and MACing functions (6 functions)
functions for verifying sgnatures and MACs (6 functions)
dud-purpose cryptographic functions (4 functions)
key management functions (5 functions)
random number generation functions (2 functions)
pardle function management functions (2 functions)

| In addition to these 68 functionsin the Cryptoki Verson 2:012.1 API proper, Cryptoki can use
gpplication-supplied calback functions to notify an application of certain events, and can dso
use agpplication-supplied functions to handle mutex objects for safe multi-threaded library
access.

Execution of a Cryptoki function cdl is in generd an dl-or-nothing &ffair, i.e., a function cal
accomplishes ether its entire god, or nothing at al.

If aCryptoki function executes successfully, it returns the value CKR_OK.

If a Cryptoki function does not execute successfully, it returns some vaue other than
CKR_OK, and the token is in the same date as it was in prior to the function call. If the
function cal was supposed to modify the contents of certain memory addresses on the host
computer, these memory addresses may have been modified, despite the falure of the
function.

Copyright © 1994-1999 RSA Laboratories

Page 117

In unusua (and extremely unpleasant!) circumstances, a function can fal with the return
vadue CKR_GENERAL_ERROR. When this happens, the token and/or host computer
may be in an incondstent date, and the gods of the function may have been patidly
achieved.

There are a smal number of Cryptoki functions whose return vaues do not behave precisdy as
described above; these exceptions are documented individualy with the description of the
functions themsdlves.

A Cryptoki library need not support every function in the Cryptoki APl. However, even an
unsupported function must have a “dub’ in the libray which smply returns the vaue
CKR_FUNCTION_NOT_SUPPORTED. The function's entry in the library’'s
CK_FUNCTION_LIST gructure (as obtained by C_GetFunctionList) should point to this
stub function (see Section 9.6).

11.1 Function return values

The Cryptoki interface possesses a large number of functions and return values. In Section
11.1, we enumerate the various possible return vaues for Cryptoki functions, most of the
remainder of Section 11 details the behavior of Cryptoki functions, including what vaues each
of them may return.

Because of the complexity of the Cryptoki specification, it is recommended that Cryptoki

goplicaions attempt to give some leeway when interpreting Cryptoki functions return vaues.

We have attempted to specify the behavior of Cryptoki functions as completely as was feasble;

nevertheless, there are presumably some gaps. For example, it is possible that a particular error
code which might apply to a particular Cryptoki function is unfortunately not actudly listed in the
description of that function as a possible error code. It is concelvable that the developer of a
Cryptoki library might nevertheless permit hisher implementation of that function to return that
error code. It would clearly be somewhat ungraceful if a Cryptoki gpplication usng thet library
were to terminate by abruptly dumping core upon receiving that error code for that function. It
would be far preferable for the gpplication to examine the function’s return value, see that it

indicates some sort of error (even if the application doesn’'t know precisely what kind of error),

and behave accordingly.

See Section 11.1.8 for some specific details on how a developer might attempt to make an
gpplication that accommodates a range of behaviors from Cryptoki libraries.

1111 Universal Cryptoki function return values

Any Cryptoki function can return any of the following vaues:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 118

CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the
worg casg, it is possible that the function only partialy succeeded, and that the computer
and/or token isin an incongstent state.

CKR_HOST _MEMORY: The computer that the Cryptoki library is running on has
insufficient memory to perform the requested function.

CKR_FUNCTION_FAILED: The requested function could not be performed, but detailed
information about why not is not available in this error return. If the failed function uses a
sesson, it is possible that the CK_SESSION_INFO sructure that can be obtained by
cdling C_GetSessioninfo will hold ussful information about what heppened in its
ulDeviceError fidd. In any event, dthough the function cdl faled, the Studion is not
necessaxrily totaly hopeless, as it is likdy to be when CKR_GENERAL_ERROR is
returned. Depending on what the root cause of the error actudly was, it is possible that an
attempt to make the exact same function call again would succeed.

CKR_OK: The function executed successfully. Technicdly, CKR_OK is not quite a
“universal” return vaue, in paticular, the legacy functions C_GetFunctionStatus and
C_CanceFunction (see Section 11.16) cannot return CKR_OK.

The relative priorities of these erors are in the order listed above, e.g., if ether of
CKR_GENERAL_ERROR or CKR HOST MEMORY would be an appropriate error
return, then CKR_GENERAL_ERROR should be returned.

11.1.2 Cryptoki function return values for functionsthat use a sesson handle

Any Cryptoki function that takes a sesson handle as one of its arguments (.e., any Cryptoki
function except for C Initialize, C _Finalize, C_Getlnfo, C_GetFunctionLig,
C _GetSotLigt, C_GetSlotlnfo, C_GetTokenlnfo, C_WaitFor SotEvent,
C_GetMechanismList, C_GetMechanisminfo, C_InitToken, C_OpenSession, and
C_CloseAllSessions) can return the following vaues:

CKR_SESSION_HANDLE INVALID: The specified sesson handle was invaid at the
time that the function was invoked. Note that this can happen if the sesson’s token is
removed before the function invocation, snce removing atoken closes dl sessonswithiit.

CKR_DEVICE_REMOVED: The token was removed from its dot during the execution
of the function.

CKR_SESSION_CLOSED: The sesson was closed during the execution of the
function. Note that, as stated in Section 6.6.6, the behavior of Cryptoki is undefined if
multiple threads of an gpplication attempt to access a common Cryptoki sesson
smultaneoudy. Therefore, there is actudly no guarantee that a function invocation could
ever return the vaue CKR_SESSION_CLOSED—if one thread is using a sesson when

Copyright © 1994-1999 RSA Laboratories

Page 119

another thread closes that sesson, that is an ingance of multiple threads accessng a
common session Smultaneoudy.

The relative priorities of these erors are in the order listed above, e.g., if ether of
CKR_SESSION_HANDLE_INVALID or CKR_DEVICE REMOVED would be an
appropriate error return, then CKR_SESSION_HANDLE_INVALID should be returned.

In practice, it is often not crucia (or possble) for a Cryptoki library to be able to make a
distinction between a token being removed before a function invocation and a token being
removed during afunction execution.

11.1.3 Cryptoki function return valuesfor functionsthat use a token

Any Cryptoki function that uses a particular token (i.e.,, any Cryptoki function except for
C_Initialize, C_Finalize, C_Getlnfo, C_GetFunctionList, C_GetSotList,
C_GetSotInfo, or C_WaitFor SlotEvent) can return any of the following values:

CKR _DEVICE_MEMORY: The token does not have sufficient memory to perform the
requested function.

CKR_DEVICE_ERROR: Some problem has occurred with the token and/or dot. This
error code can be returned by more than just the functions mentioned above; in particular, it
ispossible for C_GetSlotInfo to return CKR_DEVICE_ERROR.

CKR_TOKEN_NOT_PRESENT: The token was not present in its dot at the time that
the function was invoked.

CKR_DEVICE_REMOVED: The token was removed from its dot during the execution
of the function.

The rdative priorities of these errors are in the order liged above, eqg., if ather of
CKR_DEVICE_MEMORY or CKR_DEVICE ERROR would be an appropriate error
return, then CKR_DEVICE_MEMORY should be returned.

In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a
diginction between a token being removed before a function invocation and a token being
removed during afunction execution.

11.1.4 Special return value for application-supplied callbacks

There is a gpecid-purpose return vaue which is not returned by any function in the actud
Cryptoki API, but which may be returned by an application-supplied cdlback function. Itis:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 120

CKR_CANCEL: When afunction executing in seria with an application decides to give the
goplication a chance to do some work, it cals an gpplication-supplied function with a
CKN_SURRENDER callback (see Section 11.17). If the cdlback returns the vaue
CKR_CANCEL, then the function aborts and returns CKR_FUNCTION_CANCELED.

1115 Special return values for mutex-handling functions

There are two other specia-purpose return values which are not returned by any actud
Cryptoki functions. These vaues may be returned by application-supplied mutex-handling
functions, and they may safely be ignored by application developers who are not using their own
threading moddl. They are:

CKR_MUTEX_BAD: This error code can be returned by mutex-handling functions who
are pased a bad mutex object as an argument. Unfortunately, it is possible for such a
function not to recognize a bad mutex object. There is therefore no guarantee that such a
function will successfully detect bad mutex objects and return this vaue.

CKR_MUTEX_NOT_LOCKED: This error code can be returned by mutex-unlocking
functions. It indicates that the mutex supplied to the mutex-unlocking function was not
locked.

11.1.6 All other Cryptoki function return values

Descriptions of the other Cryptoki function return vaues follow. Except as mentioned in the
descriptions of particular error codes, there are in genera no particular priorities anong the
erorslisted below, i.e., if more than one error code might apply to an execution of a function,
then the function may return any applicable error code.

CKR_ARGUMENTS BAD: This is a rather generic error code which indicates that the
arguments supplied to the Cryptoki function were in some way not appropriate.

CKR_ATTRIBUTE _READ_ONLY: An atempt was made to set a vaue for an attribute
which may not be set by the application, or which may not be modified by the application.
See Section 10.1 for more information.

CKR_ATTRIBUTE_SENSITIVE: An attempt was made to obtain the value of an attribute
of an object which cannot be satisfied because the object is either sensitive or unextractable.

CKR_ATTRIBUTE_TYPE_INVALID: An invadid atribute type was specified in a
template. See Section 10.1 for more information.

CKR_ATTRIBUTE_VALUE_INVALID: An invaid vaue was specified for a particular
attribute in atemplate. See Section 10.1 for more information.

Copyright © 1994-1999 RSA Laboratories

Page 121

CKR_BUFFER TOO_SMALL: The output of the function istoo large to fit in the supplied
buffer.

CKR_CANT_LOCK: This vaue can only be returned by C_Initialize. It means that the
type of locking requested by the gpplication for thread-safety is not avallable in this library,
and o the application cannot make use of this library in the specified fashion.

CKR_CRYPTOKI_ALREADY _INITIALIZED: This vaue can only be returned by
C_Initialize. It means that the Cryptoki library has dready been initidized (by a previous
cdl to C_Initialize which did not have amatching C_Finalize cal).

CKR_CRYPTOKI_NOT_INITIALIZED: This vadue can be returned by any function
other than C_Initialize and C_GetFunctionLigt. It indicates that the function cannot be
executed because the Cryptoki library has not yet been initidized by acdl to C_Initialize.

CKR _DATA_INVALID: The plaintext input data to a cryptographic operation is invalid.
At present, this error only gpplies to the CKM_RSA_X_509 mechaniam; it is returned
when plaintext is supplied that has the same number of bytes as the RSA modulus and is
numericaly & least as large as the modulus. This return value has lower priority than
CKR_DATA_LEN_RANGE.

CKR _DATA_LEN_RANGE: The plaintext input data to a cryptographic operation has a
bad length. Depending on the operation’s mechanism, this could mean that the plaintext
data is too short, too long, or is not a multiple of some particular blocksize. This return
vaue has higher priority than CKR_DATA_INVALID.

CKR_ENCRYPTED_DATA_INVALID: The encrypted input to a decryption operation
has been determined to be invalid ciphertext. This return vaue has lower priority than
CKR_ENCRYPTED DATA_LEN_RANGE.

CKR_ENCRYPTED _DATA LEN RANGE: The ciphertext input to a decryption
operation has been determined to be invaid ciphertext solely on the bass of its length.
Depending on the operation’s mechanism, this could mean that the ciphertext is too short,
too long, or is not a multiple of some particular blocksze. This return vaue has higher
priority than CKR_ENCRYPTED_DATA_INVALID.

CKR_FUNCTION_CANCELED: The function was cancded in mid-execution. This
happens to a cryptographic function if the function makes a CKN_SURRENDER
application callback which returns CKR_CANCEL (see CKR_CANCEL).

CKR_FUNCTION_NOT_PARALLEL: Thereis currently no function executing in parald
in the specified sesson. This is a legacy error code which is only returned by the legacy
functions C_GetFunctionStatus and C_CancelFunction.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 122

CKR_FUNCTION_NOT_SUPPORTED: The requested function is not supported by this
Cryptoki library. Even unsupported functions in the Cryptoki APl should have a“stub” in
the library; this sub should amply return the vaue
CKR_FUNCTION_NOT_SUPPORTED.

CKR_INFORMATION_SENSITIVE: The information requested could not be obtained
because the token congders it sensitive, and is not able or willing to reved it.

CKR_KEY_CHANGED: This vaue is only returned by C_SetOperationState. It
indicates that one of the keys specified is not the same key that was being used in the
origind saved sesson.

CKR_KEY_FUNCTION_NOT_PERMITTED: An atempt has been made to use a key
for a cryptographic purpose that the key's attributes are not set to allow it to do. For
example, to use a key for performing encryption, that key must haveits CKA_ENCRYPT
attribute set to TRUE (the fact that the key must have a CKA_ENCRYPT aitribute implies
that the key cannot be a private key). This return vaue has lower priority than
CKR_KEY_TYPE INCONSISTENT.

CKR_KEY_HANDLE INVALID: The specified key handle is not vaid. It may be the
case that the specified handle is a valid handle for an object which is not a key. We
reiterate here that 0 is never avalid key handle.

CKR_KEY_INDIGESTIBLE: This error code can only bereturned by C_DigestKey. It
indicates that the value of the specified key cannot be digested for some reason (perhaps
the key isn't a secret key, or perhaps the token smply can't digest thiskind of key).

CKR_KEY_NEEDED: Thisvaueisonly returned by C_SetOperationState. It indicates
that the session state cannot be restored because C_SetOperationState needs to be
supplied with one or more keys that were being used in the origind saved session.

CKR_KEY_NOT_NEEDED: An extraneous key was supplied to C_SetOper ationState.
For example, an attempt was made to restore a session that had been performing a message
digesting operation, and an encryption key was supplied.

CKR_KEY_NOT_WRAPPABLE: Although the specified private or secret key does not
have its CKA_UNEXTRACTABLE attribute set to TRUE, Cryptoki (or the token) is
unable to wrap the key as requested (possibly the token can only wrap a given key with
certain types of keys, and the wrapping key specified is not one of these types). Compare
with CKR_KEY_UNEXTRACTABLE.

CKR_KEY_SIZE RANGE: Although the requested keyed cryptographic operation could
in principle be carried out, this Cryptoki library (or the token) is unable to actudly do it
because the supplied key's Sizeis outsde the range of key sizesthat it can handle.

Copyright © 1994-1999 RSA Laboratories

Page 123

CKR_KEY_TYPE_INCONSISTENT: The specified key is not the correct type of key to
use with the specified mechanism. This return vaue has a higher priority than
CKR_KEY_FUNCTION_NOT_PERMITTED.

CKR_KEY_UNEXTRACTABLE: The specified private or secret key can't be wrapped
because its CKA_UNEXTRACTABLE dttribute is set to TRUE. Compare with
CKR_KEY_NOT_WRAPPABLE.

CKR_MECHANISM_INVALID: An invaid mechanisn was specified to the
cryptographic operation. This error code is an gppropriate return vaue if an unknown
mechanism was specified or if the mechanism specified cannot be used in the selected token
with the selected function.

CKR_MECHANISM_PARAM_INVALID: Invdid parameters were supplied to the
mechanism specified to the cryptogrephic operation. Which parameter vaues are
supported by a given mechanism can vary from token to token.

CKR _NEED TO CREATE THREADS. This vadue can only be returned by
C_Initialize. It isreturned when two conditions hold:

1. The gpplication cdled C_Initialize in a way which tells the Cryptoki library that
gpplication threads executing cals to the library cannot use native operating system
methods to spawn new threads.

2. Thelibrary cannot function properly without being able to spawn new threads in the
above fashion.

CKR_NO_EVENT: Thisvdue can only be returned by C_GetSlotEvent. It is returned
when C_GetSotEvent is cdled in non-blocking mode and there are no new dot events to
return.

CKR_OBJECT_HANDLE INVALID: The specified object handle is not valid. We
reiterate here that O is never avalid object handle.

CKR_OPERATION_ACTIVE: There is dready an active operation (or combination of
active operations) which prevents Cryptoki from activating the specified operation. For
example, an active object-searching operation would prevent Cryptoki from activating an
encryption operation with C_Encryptinit. Or, an active digesting operation and an active
encryption operation would prevent Cryptoki from activating a Sgnature operation. Or, on
a token which doesn't support smultaneous dud cryptographic operations in a sesson (see
the description of the CKF_DUAL_CRYPTO _OPERATIONS flag in the
CK_TOKEN_INFO dructure), an active sgnature operation would prevent Cryptoki
from activating an encryption operation.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 124

CKR_OPERATION_NOT _INITIALIZED: There is no active operation of an appropriate
type in the specified sesson. For example, an gpplication cannot cal C_Encrypt in a
sesson without having called C_Encryptinit first to activate an encryption operation.

CKR_PIN_EXPIRED: The specified PIN has expired, and cannot be used to authenticate
the user to the token. Whether or not the normal user’s PIN on atoken ever expires varies
from token to token.

CKR_PIN_INCORRECT: The specified PIN is incorrect, i.e., does not match the PIN
gtored on the token. More generaly-- when authentication to the token involves something
other than a PIN-- the attempt to authenticate the user hasfailed.

CKR_PIN_INVALID: The specified PIN hasinvalid charactersin it. This return code only
gppliesto functions which attempt to set aPIN.

CKR_PIN_LEN_ RANGE: The specified PIN is too long or too short. This return code
only applies to functions which attempt to set aPIN.

CKR_PIN_LOCKED: The specified PIN is “locked”, and cannot be used. That is,
because some particular number of failed authentication attempts has been reached, the
token is unwilling to permit further attempts a authentication. Depending on the token, the
gpecified PIN may or may not remain locked indefinitely.

CKR_RANDOM_NO RNG: This vdue can be returned by C_SeedRandom and
C_GenerateRandom. It indicates that the specified token doesn’t have a random number
generdor. This return vaue has higher priority than
CKR_RANDOM_SEED NOT_SUPPORTED.

CKR_RANDOM_SEED NOT_SUPPORTED: This vaue can only be returned by
C_SeedRandom. It indicates that the token’s random number generator does not accept
seeding from an application. This return vadue has lower priority than
CKR_RANDOM_NO_RNG.

CKR _SAVED STATE INVALID: This vadue can only be returned by
C_SetOperationState. It indicates that the supplied saved cryptographic operations state
isinvalid, and so0 it cannot be restored to the specified session.

CKR_SESSION_COUNT: This value can only be returned by C_OpenSession. It
indicates that the attempt to open a session failed, either because the token has too many
sessions dready open, or because the token has too many read/write sessons aready

open.

CKR_SESSION_EXISTS: Thisvaue can only be returned by C_InitToken. It indicates
that a sesson with the token is dready open, and so the token cannot be initidized.

Copyright © 1994-1999 RSA Laboratories

Page 125

CKR_SESSION_PARALLEL_NOT_SUPPORTED: The specified token does not
support pardld sessons. Thisis a legacy error code—in Cryptoki Version 2.01 and up,
no token supports parallel sessons. CKR_SESSION_PARALLEL_NOT_SUPPORTED
can only bereturned by C_OpenSession, and it isonly returned when C_OpenSession is
cdled in aparticular [deprecated] way.

CKR _SESSION_READ_ONLY: The specified sesson was unable to accomplish the
desred action because it is a read-only sesson. This return value has lower priority than
CKR_TOKEN_WRITE_PROTECTED.

CKR_SESSION_READ_ONLY_EXISTS: A read-only session dready exigts, and so the
SO cannot be logged in.

CKR_SESSION_READ_WRITE_SO_EXISTS: A read/write SO sesson aready exists,
and so aread-only session cannot be opened.

CKR_SIGNATURE_LEN_RANGE: The provided sgnature/MAC can be seen to be
invadid soldy on the bass of its length. This return vaue has higher priority than
CKR_SIGNATURE_INVALID.

CKR_SIGNATURE_INVALID: The provided sgnatureMAC isinvdid. This return vaue
has lower priority than CKR_SIGNATURE _LEN_RANGE.

CKR_SLOT _ID_INVALID: The specified dot ID isnot vaid.

CKR_STATE UNSAVEABLE: The cryptographic operations dsate of the specified
session cannot be saved for some reason (possibly the token is smply unable to save the
current date). This retun vdue has lower priority than
CKR_OPERATION_NOT_INITIALIZED.

CKR_TEMPLATE_INCOMPLETE: The template specified for cresting an object is
incomplete, and lacks some necessary attributes. See Section 10.1 for more information.

CKR_TEMPLATE_INCONSISTENT: The template specified for creating an object has
conflicting attributes. See Section 10.1 for more information.

CKR_TOKEN_NOT_RECOGNIZED: The Cryptoki library and/or dot does not
recognize the token in the dot.

CKR_TOKEN_WRITE_PROTECTED: The requested action could not be performed
because the token is write-protected. This return vaue has higher priority than
CKR_SESSION_READ ONLY.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 126

CKR_UNWRAPPING_KEY_HANDLE_INVALID: This vaue can only be returned by
C_UnwrapKey. It indicates that the key handle specified to be used to unwrap another
key isnot vdid.

CKR_UNWRAPPING KEY_SIZE RANGE: This vaue can only be returned by
C_UnwrapKey. It indicates that athough the requested unwrapping operation could in
principle be carried out, this Cryptoki library (or the token) is unable to actudly do it
because the supplied key' s Sizeis outsde the range of key sizesthat it can handle.

CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT: This value can only be returned
by C_UnwrapKey. It indicates that the type of the key specified to unwrap another key is
not congstent with the mechanism specified for unwrapping.

CKR_USER_ALREADY_LOGGED_IN: Thisvaue can only bereturned by C_L ogin. It
indicates that the specified user cannot be logged into the sesson, because it is aready
logged into the sesson. For example, if an application has an open SO sesson, and it
attemptsto log the SO into it, it will receive this error code.

CKR_USER ANOTHER ALREADY_LOGGED _IN: Thisvaue can only be returned by
C _Login. It indicates that the specified user cannot be logged into the session, because
another user is dready logged into the sesson. For example, if an application has an open
SO session, and it atempts to log the normal user into it, it will receive this error code.

CKR_USER NOT_LOGGED _IN: The desired action cannot be performed because the
appropriate user (or an appropriate user) is not logged in. One example is that a session
cannot be logged out unlessit islogged in. Another example is that a private object cannot
be created on a token unless the session attempting to creete it is logged in as the norma
user. A find example is that cryptographic operations on certain tokens cannot be
performed unless the norma user islogged in.

CKR_USER PIN_NOT _INITIALIZED: Thisvaue can only bereturned by C_Login. It
indicates that the norma user’s PIN has not yet been initidized with C_InitPIN.

CKR_USER TOO MANY _TYPES: An atempt was made to have more distinct users
smultaneoudy logged into the token than the token and/or library permits. For example, if
some application has an open SO session, and another application attempts to log the
normal user into a session, the attempt may return this error. 1t is not required to, however.
Only if the amultaneous distinct users cannot be supported does C_L ogin have to return
thisvaue. Note that this error code generalizes to true multi-user tokens.

CKR USER TYPE_INVALID: An invalid value was specified as a CK_USER_TYPE.
Vaid typesare CKU_SO and CKU_USER.

CKR_WRAPPED_KEY_INVALID: This value can only be returned by C_UnwrapKey.
It indicates that the provided wrapped key isnot vadid. If acal ismadeto C_UnwrapKey

Copyright © 1994-1999 RSA Laboratories

Page 127

to unwrap a particular type of key (i.e., some particular key type is specified in the template
provided to C_UnwrapKey), and the wrapped key provided to C_UnwrapKey is
recognizably not a wrapped key of the proper type, then C_UnwrapKey should return
CKR_WRAPPED_KEY_INVALID. This return vadue has lower priority than
CKR_WRAPPED_KEY LEN RANGE.

CKR WRAPPED KEY_LEN RANGE: This vdue can only be returned by
C_UnwrapKey. It indicates that the provided wrapped key can be seen to be invalid
soldy on the bads of its length. This return vadue has higher priority than
CKR_WRAPPED_KEY_INVALID.

CKR_WRAPPING_KEY_HANDLE INVALID: This vadue can only be returned by
C_WrapKey. It indicates that the key handle specified to be used to wrap another key is
not vaid.

CKR_WRAPPING _KEY_SIZE RANGE: This vaue can only be returned by
C WrapKey. It indicates that dthough the requested wrapping operation could in
principle be carried out, this Cryptoki library (or the token) is unable to actudly do it
because the supplied wrapping key’s Sze is outside the range of key szesthat it can handle.

CKR_WRAPPING_KEY_TYPE_INCONSISTENT: This vaue can only be returned by
C_WrapKey. It indicates tha the type of the key specified to wrap another key is not
cong stent with the mechanism specified for wrapping.

11.1.7 Moreon relative priorities of Cryptoki errors

In generd, when a Cryptoki cdl is made, eror codes from Section 11.1.1 (other than
CKR_OK) take precedence over error codes from Section 11.1.2, which take precedence
over error codes from Section 11.1.3, which take precedence over error codes from Section
11.1.6. One minor implication of this is that functions that use a sesson handle {.e.,, most
functions!) never return the eror code CKR _TOKEN_NOT_PRESENT (they return
CKR_SESSION_HANDLE INVALID ingtead). Other than these precedences, if more than
one error code applies to the result of a Cryptoki cal, any of the applicable error codes may be
returned. Exceptionsto this rule will be explicitly mentioned in the descriptions of functions.

11.1.8 Error code “gotchas’

Hereisashort ligt of afew particular things about return values that Cryptoki developers might
want to be aware of:

1. Asmentioned in Sections11.1.2 and 11.1.3, a Cryptoki library may not be able to make a
distinction between a token being removed before a function invocation and a token being
removed during afunction invocation.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 128

2. As mentioned in Section 11.1.2, an gpplication should never count on getting a
CKR_SESSION_CLOSED error.

3. The difference between CKR_DATA_INVALID and CKR_DATA_LEN_RANGE can
be somewhat subtle. Unless an application needs to be able to distinguish between these
return values, it is best to aways treat them equivaently.

4. Smilaly, the difference between CKR_ENCRYPTED_DATA_INVALID and
CKR_ENCRYPTED _DATA_LEN_RANGE, and between
CKR_WRAPPED_KEY_INVALID and CKR_WRAPPED_KEY_LEN_RANGE, can
be subtle, and it may be best to treat these return values equivaently.

5. Even with the guidance of Section 10.1, it can be difficult for a Cryptoki library developer
to know which of CKR_ATTRIBUTE VALUE_INVALID,
CKR_TEMPLATE_INCOMPLETE, or CKR_TEMPLATE_INCONSISTENT to
return. When possible, it is recommended that application developers be generous in their
interpretations of these error codes.

11.2 Conventionsfor functionsreturning output in a variable-length buffer

A number of the functions defined in Cryptoki return output produced by some cryptographic
mechanism. The amount of output returned by these functions is returned in a varigble-length
goplication-supplied buffer. An example of a function of this sort is C_Encrypt, which takes
some plaintext as an argument, and outputs a buffer full of ciphertext.

These functions have some common cdling conventions, which we describe here. Two of the
arguments to the function are a pointer to the output buffer (say pBuf) and a pointer to a
location which will hold the length of the output produced (say pulBufLen). There are two
ways for an gpplication to cdl such afunction:

1. If pBuf isNULL_PTR, then dl that the function doesis return (in * pul BufLen) a number of
bytes which would suffice to hold the cryptographic output produced from the input to the
function. This number may somewhat exceed the precise number of bytes needed, but
should not exceed it by alarge amount. CKR_OK is returned by the function.

2. If pBuf is not NULL_PTR, then *pulBufLen must contain the Sze in bytes of the buffer
pointed to by pBuf. If that buffer islarge enough to hold the cryptographic output produced
from the input to the function, then that cryptographic output is placed there, and CKR_OK
is retuned by the function. If the buffer is not large enough, then
CKR_BUFFER TOO_SMALL isreturned. In either case, *pulBufLen is set to hold the
exact number of bytes needed to hold the cryptographic output produced from the input to
the function.

All functions which use the above convention will explicitly say so.

Copyright © 1994-1999 RSA Laboratories

Page 129

Cryptographic functions which return output in a variable-length buffer should dways return as
much output as can be computed from what has been passed in to them thus far. As an
example, consder a sesson which is performing a multiple-part decryption operation with DES
in cipher-block chaining mode with PKCS padding. Suppose that, initidly, 8 bytes of
ciphertext are passed to the C_DecryptUpdate function. The blocksize of DES is 8 bytes, but
the PKCS padding makes it unclear at this stage whether the ciphertext was produced from
encrypting a O-byte string, or from encrypting some string of length at least 8 bytes. Hence the
cdl to C_DecryptUpdate should return O bytes of plaintext. If a sngle additiond byte of
ciphertext is supplied by a subsequent cdl to C_DecryptUpdate, then that cdl should return 8
bytes of plaintext (one full DES block).

11.3 Disclaimer concer ning sample code

For the remainder of Section 11, we enumerate the various functions defined in Cryptoki. Most
functions will be shown in use in at least one sample code snippet. For the sake of brevity,
sample code will frequently be somewhat incomplete. In particular, sample code will generdly
ignore possible error returns from C library functions, and aso will not ded with Cryptoki error
returnsin aredidic fashion.

114 General-purposefunctions

Cryptoki provides the following genera-purpose functions.

C _Initialize

CK_DEFI NE_FUNCTI ON(CK_RV, C_Initialize)(
CK VO D_PTR plnitArgs
) ;

C_Initialize initidizes the Cryptoki library. plnitArgs either has the vdue NULL_PTR or
pointsto a CK_C_INITIALIZE_ARGS dructure containing information on how the library
should ded with multi-threaded access. If an gpplication will not be accessing Cryptoki through
multiple threads smultaneoudy, it can generdly supply the vaue NULL_PTR to C_Initialize
(the consequences of supplying this vaue will be explained below).

If plnitArgs is non-NULL_PTR, C_Initialize should cast it to a
CK_C_ INITIALIZE_ARGS PTR and then dereference the resulting pointer to obtain the
CK_C_INITIALIZE_ARGS fidds CreateMutex, DestroyMutex, LockMutex,
UnlockMutex, flags, and pReserved. For this verson of Cryptoki, the vaue of pReserved
thereby obtained must be NULL_PTR; if it's not, then C_I nitialize should return with the value
CKR_ARGUMENTS BAD.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 130

If the CKF_LIBRARY_CANT_CREATE_OS THREADSflagintheflags field is s, thet
indicates that application threads which are executing cdls to the Cryptoki library are not
permitted to use the native operation system cdls to spawn off new threads. In other words,
the library’s code may not create its own threads. If the library is unable to function properly
under this redriction, C_Initialize shoud regun with the vdue
CKR_NEED TO_CREATE THREADS.

A cdl to C_Initialize specifies one of four different ways to support multi-threaded access via
the vdue of the CKF_OS LOCKING_OK flag in the flags fidd and the vaues of the
CreateMutex, DestroyMutex, LockMutex, and UnlockMutex function pointer fields:

1. Iftheflag isn't sat, and the function pointer fidds aren't supplied (.e., they dl have the
vadue NULL_PTR), that means that the application won’t be accessing the Cryptoki library
from multiple threeds smultaneoudly.

2. Iftheflag is s, and the function pointer fidds aren’'t supplied (i.e., they dl have the vaue
NULL_PTR), that means that the application will be performing multi-threaded Cryptoki
access, and the library needs to use the native operating system primitives to ensure safe
multi-threaded access. If the library is unable to do this, C_Initialize should return with the
value CKR_CANT_LOCK.

3. If theflag isn't s, and the function pointer fids are supplied (.e., they dl have non-
NULL_PTR vaues), that means that the gpplication will be performing multi-threaded
Cryptoki access, and the library needs to use the supplied function pointers for mutex-
handling to ensure safe multi-threaded access If the library is unable to do this
C_Initialize should return with the value CKR_CANT _LOCK.

4. If theflag is s, and the function pointer fidds are supplied (i.e., they dl have non-
NULL_PTR vdues), tha means tha the application will be peforming multi-threaded
Cryptoki access, and the library needs to use either the native operating system primitives or
the supplied function pointers for mutex-handling to ensure safe multi-threaded access. If
the library is unable to do this C_Initialize should retun with the vaue
CKR_CANT_LOCK.

If some, but not dl, of the supplied function pointersto C_Initialize are non-NULL_PTR, then
C_Initialize should return with the vdue CKR_ARGUMENTS BAD.

A cdl to C_Initialize with pInitArgs set to NULL_PTR is treated like acall to C_Initialize
with plnitArgs pointing to a CK_C _INITIALIZE_ARGS which has the CreateMutex,
DestroyMutex, LockMutex, UnlockMutex, and pReserved fidds set to NULL_PTR, and has
theflags field set to O.

C_Initialize should be the firs Cryptoki cal made by an application, except for cals to
C_GetFunctionList. What this function actudly does is implementation-dependent; typicaly,

Copyright © 1994-1999 RSA Laboratories

Page 131

it might cause Cryptoki to initidize its internd memory buffers, or any other resources it
requires.

If severd applications are usng Cryptoki, each one should cal C_lInitialize. Every cdl to
C_Initialize should (eventudly) be succeeded by asingle cdl to C_Finalize. See Section 6.5
for more details.

Return values CKR_ARGUMENTS BAD, CKR_CANT_LOCK,
CKR_CRYPTOK|_ALREADY_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_NEED_TO CREATE_THREADS, CKR_OK.

Example see C_Getlnfo.

C _Finalize

CK_DEFI NE_FUNCTI ON(CK_RV, C_Finalize)(
CK VO D_PTR pReserved

)

C _Finalize is cdled to indicate that an gpplication is finished with the Cryptoki library. It
should be the last Cryptoki call made by an application. The pReserved parameter is reserved
for future versons, for thisverson, it should be set to NULL_PTR (if C_Finalize is caled with
a non-NULL_PTR vaue for pReserved, it shoud reun the vdue
CKR_ARGUMENTS BAD.

If severa gpplications are using Cryptoki, each one should call C_Finalize. Each agpplication’s
cdl to C_Finalize should be preceded by asingle cdl to C_Initialize; in between the two cdls,
an gpplication can make calsto other Cryptoki functions. See Section 6.5 for more details.

Despite the fact that the parameters supplied to C_Initialize can in general allow for
safe multi-threaded access to a Cryptoki library, the behavior of C_Finalize is
nevertheless undefined if it is called by an application while other threads of the
application are making Cryptoki calls. The exception to this exceptional behavior of
C_Finalize occurs when a thread calls C_Finalize while another of the application’s
threadsis blocking on Cryptoki’s C_WaitF or SlotEvent function. When this happens, the
blocked thread becomes unblocked and returns the value
CKR_CRYPTOKI_NOT _INITIALIZED. See C_WaitForSlotEvent for more information.

Return values CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK.

Example see C_GetlInfo.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 132

C_Getlnfo

CK_DEFI NE_FUNCTI ON(CK_RV, C _Get I nf 0) (
CK_I NFO_PTR pl nf o

)

C_GetInfo returns generd information about Cryptoki. plnfo points to the location that
receives the information.

Retun values CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK.

Example

CK_I NFO i nf o;
CK_RV rv;
CK_C INTIALI ZE_ARGS I ni t Args;

I nitArgs. CreateMiutex = &WCreat eMut ex;

I ni t Args. DestroyMiut ex = &WDestroyMit ex;
I nitArgs. LockMutex = &WLockMit ex;

I nitArgs. Unl ockMiut ex = &WUnl ockMit ex;
InitArgs. flags = CKF_OS LOCKI NG OK;

I nitArgs. pReserved = NULL_PTR;

rv = Clnitialize((CK_ VO D _PTR) &l nitArgs);
assert(rv == CKR_(K);

rv = C_Getlnfo(& nfo);
assert(rv == CKR_OK);
if(info.version.mgjor == 2) {
/* Do lots of interesting cryptographic things with
the token */

}

rv = C Finalize(NULL_PTR);
assert(rv == CKR_OX);

Copyright © 1994-1999 RSA Laboratories

Page 133

C_GetFunctionList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cet Functi onLi st) (
CK_FUNCTI ON_LI ST_PTR_PTR ppFuncti onLi st

)

C_GetFunctionList obtains a pointer to the Cryptoki library’s list of function pointers.
ppFunctionList points to a vaue which will receive a pointer to the library's
CK_FUNCTION_LIST gructure, which in turn contains function pointers for dl the Cryptoki
AP routines in the library. The pointer thus obtained may point into memory which is
owned by the Cryptoki library, and which may or may not be writable. Whether or not this
isthe case, no attempt should be made to write to this memory.

C_GetFunctionList is the only Cryptoki function which an gpplication may cdl before cdling
C Initialize. Itisprovided to make it easer and faster for gpplications to use shared Cryptoki
libraries and to use more than one Cryptoki library smultaneoudly.

Return vaues CKR ARGUMENTS BAD, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example

CK_FUNCTI ON_LI ST_PTR pFuncti onLi st;

CK Clnitialize pC.lnitialize;

CK_ RV rv;

/* 1t’s OK to call C_GetFunctionList before calling
Clnitialize */

rv = C_Get Functi onLi st (&pFunctionLi st);

assert(rv == CKR_OK);

pC Initialize = pFunctionList -> C_lInitialize;

/* Call the C_Initialize function in the library */
rv = (*pC_Initialize)(NULL_PTR);

11.5 Sot and token management functions

Cryptoki provides the following functions for dot and token management:

C_GetSlotList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Sl ot Li st) (
CK_BBOOL tokenPresent,
CK_SLOT_I D_PTR pSl ot Li st ,
CK_ULONG_PTR pul Count

)

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 134

C_GetSlotList is used to obtain alist of dots in the sysem. tokenPresent indicates whether
the ligt obtained includes only those dots with a token present (TRUE), or dl dots (FALSE);
pul Count points to the location that receives the number of dots.

There are two ways for an gpplicationto cal C_GetSlotList:

1. If pSotList isNULL_PTR, then dl that C_GetSlotList doesis return (in *pul Count) the
number of dots, without actualy returning alist of dots. The contents of the buffer pointed
to by pulCount on entry to C_GetSlotL ist has no meaning in this case, and the call returns
thevalue CKR_OK.

2. If pSotList is not NULL_PTR, then *pulCount must contain the sze (in terms of
CK_SLOT_ID dements) of the buffer pointed to by pSotList. If that buffer is large
enough to hold the list of dots, then the ligt is returned in it, and CKR_OK is returned. If
not, then the call to C_GetSlotL ist returns the vadue CKR_BUFFER_TOO _SMALL. In
ether case, the value * pul Count is set to hold the number of dots.

Because C_GetSlotL ist does not dlocate any space of its own, an gpplication will often cal
C_GetSlotList twice (or sometimes even more times—if an gpplication istrying to get alist of
al dots with atoken present, then the number of such dots can (unfortunately) change between
when the gpplication asks for how many such dots there are and when the gpplication asks for
the dots themsdlves). However, multiple cdlsto C_GetSlotL ist are by no means required.

All dots which C_GetSlotList reports must be able to be queried as vaid dots by
C_GetSlotInfo. Furthermore, the set of dots accessible through a Cryptoki library is fixed a
the time that C_Initialize is cdled. If an gpplication cals C_Initialize and C_GetSlotL i,
and then the user hooks up a new hardware device, that device cannot suddenly appear as a
new dotif C_GetSlotList iscaled again. To recognize the new device, C_Initialize needs to
be caled again (and to be ableto cal C_Initialize successfully, C_Finalize needs to be called
fird). Evenif C_Initialize is successfully cdled, it may or may not be the case that the new
device will then be successfully recognized. On some platforms, it may be necessary to restart
the entire system.

Retun values CKR_ARGUMENTS BAD, CKR_BUFFER TOO _SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK.

Example:

CK_ULONG ul Sl ot Count, ul SI ot Wt hTokenCount;
CK_SLOT_ID PTR pSlotList, pSlotWthTokenLi st;
CK_RV rv;

/* Get list of all slots */
rv = C _GetSlotList(FALSE, NULL_ PTR, &ul Sl ot Count);

Copyright © 1994-1999 RSA Laboratories

Page 135

if (rv == CKR_OK) {
pSl ot Li st =
(CK_SLOT_I D_PTR)
mal | oc(ul Sl ot Count *si zeof (CK_SLOT_I D)) ;

rv = C GetSlotList(FALSE, pSlotList, &ulSlotCount);
if (rv == CKR_OK) {
/* Now use that list of all slots */
}
free(pSlotlList);
}
/* Get list of all slots with a token present */

pSlI ot Wt hTokenList = (CK_SLOT _ID PTR) mall oc(0);
ul SI ot WthTokenCount = O;
while (1) {
rv = C _Get Sl otlList(
TRUE, pSIotWthTokenList, ul Sl otWthTokenCount);
if (rv = CKR_BUFFER _TOO SMALL)
br eak;
pSl ot Wt hTokenLi st = real |l oc(
pSl ot Wt hTokenLi st
ul SI ot Wt hTokenLi st*si zeof (CK_SLOT_ID));

}

if (rv == CKR_OK) {
/* Now use that list of all slots with a token
present */

}
free(pSl ot WthTokenLi st);

C_GetSotinfo

CK_DEFI NE_FUNCTI ON(CK_RV, C Get Sl ot | nf 0) (
CK_SLOT_I D sl ot D,
CK_SLOT_I NFO _PTR plnfo

)

C_GetSlotl nfo obtainsinformation about a particular dot in the syslem. dotID isthe ID of the
dot; plnfo points to the location that recaives the dot information.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 136

Return values CKR_ ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR,
CKR_HOST _MEMORY, CKR_OK, CKR_SLOT ID_INVALID.

Example see C_GetTokenlnfo.

C_GetTokeninfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Tokenl nf 0) (
CK_SLOT_I D sl ot D,
CK_TOKEN_| NFO_PTR pl nf o

)

C_GetTokenlnfo obtains information about a particular token in the sysem. dotID isthe ID
of the token’s dot; plnfo points to the location that receives the token information.

Return vaues: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR OK,
CKR_SLOT_ID_INVALID, CKR_ TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR ARGUMENTS BAD.

Example

CK_ULONG ul Count;
CK_SLOT_I D _PTR pSl ot Li st;
CK _SLOT_I NFO sl ot I nf o;
CK_TOKEN_I NFO t okenl nf o;
CK_RV rv;

= C GetSlotList(FALSE, NULL_PTR, &ul Count);
((rv == CKR_OK) && (ul Count > 0)) {
pSlotList = (CK_SLOT_I D_PTR)
mal | oc(ul Count *si zeof (CK_SLOT_I D)) ;
rv = C_Get Sl otList(FALSE, pSlotlList, &ul Count);
assert(rv == CKR_(XK);

rv
i f

/* Get slot information for first slot */
rv = C GetSlotlnfo(pSlotList[0], &slotlnfo);
assert(rv == CKR_(XK);

[* Get token information for first slot */

rv = C_Get Tokenl nfo(pSlotList[0], &tokenlnfo);
if (rv == CKR_TOKEN_NOT_PRESENT) {

Copyright © 1994-1999 RSA Laboratories

Page 137

i‘ree(pSI ot Li st);
}

C_WaitFor SotEvent

CK_DEFI NE_FUNCTI ON(CK_RV, C Wit For Sl ot Event) (
CK_FLAGS f I ags,
CK_SLOT_I D_PTR pSl ot ,
CK VO D_PTR pReserved

)

C_WaitForSotEvent waits for a dot event, such as token insertion or token removd, to
occur. flags determines whether or not the C_WaitFor SotEvent cal blocks (i.e., waits for a
dot event to occur); pSot points to alocation which will receive the ID of the dot that the event
occurred in. pReserved is reserved for future versons, for this version of Cryptoki, it should be
NULL_PTR.

At present, the only flag defined for use in the flags argument isCKF_DONT_BL OCK:

#defi ne CKF_DONT_BLOCK 1
Interndly, each Cryptoki application has a flag for each dot which is used to track whether or
not any unrecognized events involving that dot have occurred. When an application initidly cals
C_Initialize, every dot's event flag is cleared. Whenever a dot event occurs, the flag
corresponding to the dot in which the event occurred is .

If C_WaitForSlotEvent is cdled with the CKF_DONT_BLOCK flag st in the flags
argument, and some dot’s event flag is set, then that event flag is cleared, and the cal returns
with the ID of that dot in the location pointed to by pSot. If more than one dot’s event flag is
st at thetime of the call, one such dot is chosen by the library to have its event flag cleared and
to haveitsdot ID returned.

If C_WaitForSlotEvent is cdled with the CKF_DONT_BLOCK flag sst in the flags
argument, and no dot’s event flag is s, then the call returns with the value CKR_NO_EVENT.
In this case, the contents of the location pointed to by pSot when C_WaitFor SotEvent are
undefined.

If C_WaitForSotEvent is cdled with the CKF_DONT_BLOCK flag dear in the flags
argument, then the call behaves as above, except that it will block. That is, if no dot's event flag
is st a the time of the cdl, C_WaitForSotEvent will wat untii some dot's event flag
becomes set. If athread of an application has a C_WaitFor SotEvent cdl blocking when
another thread of that gpplication cals C_Finalize, the C_WaitFor SotEvent cadl returns with
thevdue CKR_CRYPTOKI_NOT _INITIALIZED.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 138

Although the parameters supplied to C_Initialize can in general allow for safe multi-
threaded access to a Cryptoki library, C_WaitForSlotEvent is exceptional in that the
behavior of Cryptoki is undefined if multiple threads of a single application make
simultaneous callsto C_WaitFor SlotEvent.

Return values CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_NO_EVENT, CKR_OK.

Example

CK_FLAGS flags = 0;
CK _SLOT_ID slotl D
CK _SLOT_I NFO sl ot I nfo;

/* Block and wait for a slot event */
rv = C WaitForSlotEvent(flags, &slotlD NULL _PTR);
assert(rv == CKR_OK);

/* See what’s up with that slot */

rv = C GetSlotInfo(slotlD, &slotlnfo);
assert(rv == CKR_OK);

C_GetMechanismList

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Mechani smlLi st) (
CK_SLOT I D slotlD,
CK_MECHANI SM _TYPE_PTR pMechani smii st
CK_ULONG_PTR pul Count

),

C_GetMechanismList is used to obtain a list of mechanism types supported by a token.
SotID isthe ID of the token's dot; pul Count points to the location that receives the number of
mechanisms,

There are two ways for an gpplication to cal C_GetM echanismL ist:

1. If pMechanismList isNULL_PTR, then dl that C_GetM echanismL ist does is return (in
* pul Count) the number of mechanisms, without actudly returning alist of mechanisms. The
contents of *pulCount on entry to C_GetM echanismList has no meaning in this case,
and the cdll returns the value CKR_OK.

Copyright © 1994-1999 RSA Laboratories

2.

Page 139

If pMechanismList is not NULL_PTR, then *pulCount must contain the Sze (in terms of
CK_MECHANISM_TYPE dements) of the buffer pointed to by pMechanismList. If
that buffer is large enough to hold the list of mechaniams, then the lis is returned in it, and
CKR_OK is returned. If not, then the call to C_GetM echanismList returns the vaue
CKR_BUFFER_TOO_SMALL. In ether case, the value *pulCount is set to hold the
number of mechanisms.

Because C_GetM echanismList does not alocate any space of its own, an application will
oftencal C_GetMechanismList twice. However, this behavior is by no means required.

Return values CKR_BUFFER_TOO _SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_SLOT_ID_INVALID, CKR_ TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR ARGUMENTS BAD.

Example

CK_SLOT_ID slotl D

CK_ULONG ul Count;

CK_MECHANI SM _TYPE_PTR pMechani smii st ;
CK_RV rv;

rv = C_Get Mechani snList(slotlD, NULL PTR, &ul Count);
if ((rv == CKR_OK) && (ul Count > 0)) {
pMechani smii st =
(CK_MECHANI SM _TYPE_PTR)
mal | oc(ul Count *si zeof (CK_MECHANI SM TYPE)) ;
rv = C_Get Mechani sniist(slotlD, pMechanismnii st,
&ul Count) ;
if (rv == CKR_OK) {

}
free(pMechani snLi st) ;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 140

C_GetMechanismlnfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Mechani sm nf o) (
CK_SLOT_ID sl ot D,
CK_MECHANI SM _TYPE t ype,
CK_MECHANI SM_| NFO_PTR pl nf o

)

C_GetMechanisminfo obtains information about a particular mechanism possibly supported
by atoken. dotID isthe ID of the token's dot; type is the type of mechanism; plnfo points to
the location that receives the mechanism information.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_OK, CKR SLOT _ID_INVALID, CKR_ TOKEN _NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR ARGUMENTS BAD.

Example

CK_SLOT_ID slotl D
CK_MECHANI SM | NFO i nf o;
CK_ RV rv;

/* Get information about the CKM MD2 nechani sm for
this token */

= C _Get Mechani sm nfo(slotl D, CKM MD2, & nfo);

(rv == CKR_OK) {

if (info.flags & CKF_DI GEST) {

rv
| f

Copyright © 1994-1999 RSA Laboratories

Page 141

C_InitToken

CK_DEFI NE_FUNCTI ON(CK_RV, C_InitToken) (
CK_SLOT_ID slotlD,
CK_CHAR_PTR pPi n,
CK_ULONG ul Pi nLen,
CK_UTF8CHAR _PTR pLabel

)

C_InitToken initidizes atoken. dotID isthe ID of the token's dot; pPin points to the SO's
initia PIN (which need not be null-terminated); ulPinLen is the length in bytes of the PIN;
pLabel points to the 32-byte labd of the token (which must be padded with blank characters,
and which mugt not be null-terminated).

If the token has not been initidized (i.e. new from the factory), then the pPin parameter
becomestheinitid vaue of the SO PIN. If the token is being renitidized, the pPin parameter is
checked againg the existing SO PIN to authorize the initidization operation. In both cases, the
SO PIN isthe vdue pPin after the function completes successfully. If the SO PIN is logt, then
the card must be renitidized usng a mechanism outsde the scope of this sandard. The
CKE TOKEN INITIALIZED flagintheCK TOKEN INFO sructure indicates the action
that will result from cdling C InitToken. If sat, the token will be ranitidized, and the dient
must supply the existing SO password in pPin.

When atoken is initidized, all objects that can be destroyed are destroyed (i.e., al except for
“indegtructible’ objects such as keys built into the token). Also, access by the normal user is
disabled until the SO sets the norma user's PIN. Depending on the token, some “default”
objects may be created, and attributes of some objects may be set to default vaues.

If the token has a “protected authentication path’, as indicaed by the
CKF_PROTECTED_AUTHENTICATION_PATH flaginits CK_TOKEN_INFO being
s, then that means that there is some way for a user to be authenticated to the token without
having the gpplication send a PIN through the Cryptoki library. One such possibility is thet the
user enters a PIN on a PINpad on the token itsdf, or on the dot device. To initialize a token
with such a protected authentication path, the pPin parameter to C_InitToken should be
NULL_PTR. Duringthe execution of C_InitToken, the SO's PIN will be entered through the
protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_I nitToken can be used to initidize the token.

A token cannot beinitidized if Cryptoki detects that any gpplication has an open sesson with it;
when a cdl to C_InitToken is made under such circumstances, the cdl fals with error
CKR_SESSION_EXISTS. Unfortunately, it may happen when C_InitToken is cdled that
some other gpplication does have an open session with the token, but Cryptoki cannot detect

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 142

this, because it cannot detect anything about other gpplications using the token. If this is the
case, then the consequences of the C_InitToken cal are undefined.

The C InitToken function may not be sufficient to properly initidize complex tokens. In these
gtuations, an initidization mechaniam outsde the scope of Cryptoki must be employed. The
definition of “ complex token” is product specific.

Return values CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_PIN_INCORRECT, CKR_PIN_LOCKED, CKR_SESSION_EXISTS,
CKR_SLOT_ID_INVALID, CKR_ TOKEN_NOT_PRESENT,
CKR_TOKEN_NOT_RECOGNIZED, CKR_ TOKEN_WRITE_PROTECTED,

CKR ARGUMENTS BAD.

Example:

CK _SLOT_ID slotl D
CK_CHAR PTR pin = “MyPIN’;
CK_UTF8CHAR | abel [32];

CK_ RV rv;

ﬁerrset(label, ‘7, sizeof(label));

mencpy(l abel, “My first token”, strlen(“My first
t oken”));

rv = C_InitToken(slotlID, pin, strlen(pin), |abel);
if (rv == CKR_OK) {

}
C_InitPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C InitPIN)(
CK_SESSI ON_HANDLE hSessi on,
CK_CHAR _PTR pPi n,
CK_ULONG ul Pi nLen

)

C_InitPIN initidizes the normd user's PIN. hSession is the sesson’s handle; pPin points to
the norma user’s PIN; ulPinLen is the length in bytes of the PIN.

Copyright © 1994-1999 RSA Laboratories

Page 143

C_InitPIN can only be cdled in the “R/W SO Functions’ state. An attempt to cdl it from a
sesson in any other state failswith error CKR_USER _NOT_LOGGED _IN.

If the token has a “protected authentication path”, as indicaed by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO being
&, then that means that there is some way for a user to be authenticated to the token without
having the gpplication send a PIN through the Cryptoki library. One such possibility is thet the
user enters a PIN on a PINpad on the token itsdlf, or on the dot device. To initidize the normal
user’s PIN on a token with such a protected authentication path, the pPin parameter to
C_InitPIN should be NULL_PTR. During the execution of C_InitPIN, the SO will enter the
new PIN through the protected authentication path.

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_InitPIN can be used to initidize the norma user’ s token access.

Return vaues: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK, CKR_PIN_INVALID,
CKR_PIN_LEN_RANGE, CKR_SESSION_CLOSED, CKR_SESSION_READ_ONLY,
CKR_SESSION_HANDLE INVALID, CKR_ TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED _IN, CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_CHAR newPi n[]= {“NewPI N'};
CK_RV rv;

rv = C_InitPIN(hSession, newPin, sizeof(newkPin));
if (rv == CKR_OK) {

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 144

C_SetPIN

CK_DEFI NE_FUNCTI ON(CK_RV, C_SetPI N) (

CK_SESSI ON_HANDLE hSessi on,
CK_CHAR_PTR pd dPi n,
CK_ULONG ul A dLen,
CK_CHAR_PTR pNewpPi n,
CK_ULONG ul NewLen

) ;

C_SetPIN modifies the PIN of the user that is currently logged in. hSession is the sesson’s
handle; pOIdPin points to the old PIN; ulOldLen is the length in bytes of the old PIN;
pNewPin pointsto the new PIN; ulNewLen isthe length in bytes of the new PIN.

C_SetPIN can only be called in the “R/W SO Functions’ gtate or “R/W User Functions’ dtate.
An atempt to cdl it from a sesson in awy othe dae fals with eror
CKR_SESSION_READ_ONLY.

If the token has a “protected authentication path”, as indicaed by the
CKF_PROTECTED_AUTHENTICATION_PATH flag in its CK_TOKEN_INFO beng
s, then that means that there is some way for a user to be authenticated to the token without
having the gpplication send a PIN through the Cryptoki library. One such possibility is thet the
user entersa PIN on a PINpad on the token itself, or on the dot device. To modify the current
user's PIN on a token with such a protected authentication path, the pOldPin and pNewPin
paametersto C_SetPIN should be NULL_PTR. During the execution of C_SetPIN, the
current user will enter the old PIN and the new PIN through the protected authentication path.
It is not specified how the PINpad should be used to enter two PINS; this varies.

If the token has a protected authentication path other than a PINpad, then it is token-dependent
whether or not C_SetPIN can be used to modify the current user’s PIN.

Return values CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR OK,
CKR_PIN_INCORRECT, CKR_PIN_INVALID, CKR_PIN_LEN_RANGE,
CKR_PIN_LOCKED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TOKEN_WRITE_PROTECTED, CKR ARGUMENTS BAD.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_CHAR ol dPi n[] {“A dPI N };
CK_CHAR newPi n[] {“NewPI N" };
CK_RV rv;

Copyright © 1994-1999 RSA Laboratories

Page 145

rv = C_Set Pl N(
hSessi on, ol dPin, sizeof(oldPin), newPin,
Si zeof (newPi n));
if (rv == CKR_OK) {

}

11.6 Sesson management functions

A typicd application might perform the following series of steps to make use of a token (note
that there are other reasonable sequences of events that an gpplication might perform):

1. Sdlect atoken.
2. Make one or more calsto C_OpenSession to obtain one or more sessions with the token.

3. Cdl C_Login to log the user into the token. Since al sessons an gpplication has with a
token have a shared login state, C_L ogin only needs to be called for one of the sessions.

4. Perform cryptographic operations using the sessions with the token.

5. Cdl C_CloseSession once for each session that the application has with the token, or call
C_CloseAllSessions to close dl the application’ s sessons Smultaneoudly.

As has been observed, an gpplication may have concurrent sessons with more than one token.
It isaso possible for atoken to have concurrent sessions with more than one application.

Cryptoki provides the following functions for sesson management:

C_OpenSession

CK_DEFI NE_FUNCTI ON(CK_RV, C_OpenSessi on) (
CK_SLOT_ID sl otlD,
CK_FLAGS f 1 ags,
CK_ VO D_PTR pApplication,
CK_NOTI FY Noti fy,
CK_SESSI ON_HANDLE_PTR phSessi on

)

C_OpenSession opens a sesson between an gpplication and a token in a particular dot.
dotID is the dot's ID; flags indicates the type of sesson; pApplication is an gpplicaion-
defined pointer to be passed to the notification callback; Notify is the address of the notification
calback function (see Section 11.17); phSession points to the location that receives the handle
for the new session.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 146

When opening asesson with C_OpenSession, the flags parameter consists of the logica OR
of zero or more hit flags defined in the CK_SESSION_INFO data type. For legacy reasons,
the CKF_SERIAL_SESSION hit must dways be s&t; if acdl to C_OpenSession does not
have this bit s, the cdl should return unsuccessfully with the eror code
CKR_PARALLEL_NOT_SUPPORTED.

There may be a limit on the number of concurrent sessons an gpplication may have with the
token, which may depend on whether the sesson is*“read-only” or “read/write’. An attempt to
open a session which does not succeed because there are too many existing sessions of some
type should return CKR_SESSION_COUNT.

If the token is write-protected (as indicated in the CK_TOKEN_INFO dructure), then only
read-only sessons may be opened with it.

If the application caling C_OpenSession dready has a R/W SO session open with the token,
then any atempt to open a R/O sesson with the token fals with error code
CKR_SESSION_READ_WRITE_SO_EXISTS (see Section 6.6.7).

The Notify calback function is used by Cryptoki to notify the gpplication of certain events. If
the application does not wish to support calbacks, it should pass avaue of NULL_PTR asthe
Notify parameter. See Section 11.17 for more information about application callbacks.

Return values CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_COUNT, CKR_SESSION_PARALLEL_NOT_SUPPORTED,
CKR_SESSION_READ_WRITE_SO_EXISTS, CKR_SLOT_ID_INVALID,
CKR_TOKEN_NOT_PRESENT, CKR TOKEN_NOT_RECOGNIZED,
CKR_TOKEN_WRITE_PROTECTED, CKR ARGUMENTS BAD.

Example: see C_CloseSession.

C_CloseSession

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cl oseSessi on) (
CK_SESSI ON_HANDLE hSessi on

)

C_CloseSession closes a sesson between an application and a token. hSession is the
sesson’'shandle.

When asessonisclosed, all session objects created by the session are destroyed automaticaly,
even if the gpplication has other sessons “using” the objects (see Sections 6.6.5-6.6.7 for more
detalls).

Copyright © 1994-1999 RSA Laboratories

Page 147

Depending on the token, when the last open sesson any application has with the token is
closed, the token may be “gected” from its reader (if this capability exists).

Despite the fact this C_CloseSession is supposed to close a sesson, the return vaue
CKR_SESSION_CLOSED isan error return. It actudly indicates the (probably somewhat
unlikely) event that while this function cal was executing, another cadl was made to
C_CloseSession to close this particular sesson, and that cal finished executing firs. Such
uses of sessons are a bad idea, and Cryptoki makes little promise of what will occur in generd
if an gpplication indulgesin this sort of behavior.

Return vaues: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID.

Example:

CK _SLOT_ID slotl D

CK_BYTE application;
CK_NOTI FY MyNoti fy;
CK_SESSI ON_HANDLE hSessi on;
CK_ RV rv;

application = 17;
MyNotify = &Encrypti onSessi onCal | back;
rv = C_OpenSessi on(
sl ot1 D, CKF_RW SESSI ON, (CK_VO D_PTR) &application,
MyNot i fy,
&hSessi on);
if (rv == CKR_OK) {

C_Cl oseSessi on(hSessi on) ;

}
C_CloseAllSessions

CK_DEFI NE_FUNCTI ON(CK_RV, C _Cl oseAl | Sessi ons) (
CK_SLOT_ID slotID

)

C_CloseAllSessions closes dl sessons an gpplication has with a token. dotlD specifies the
token's dot.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 148

When asession is closed, al sesson objects created by the sesson are destroyed automaticaly.

Depending on the token, when the last open sesson any application has with the token is
closed, the token may be “gected” from its reader (if this capability exigts).

Return values CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,

CKR_SLOT ID_INVALID, CKR TOKEN_NOT_PRESENT.

Example

CK_SLOT_ID slotl D
CK_ RV rv;

rv = C_CloseAl |l Sessions(slotlD);

C_GetSessioninfo

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Sessi onl nf o) (
CK_SESSI ON_HANDLE hSessi on,
CK_SESSI ON_| NFO_PTR pl nfo

)

C_GetSessionInfo obtains information about a sesson. hSession is the sesson’s handle;
plnfo points to the location that receives the sesson information.

Return values CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,

CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_SESSI ON_I NFO i nf o;
CK_ RV rv;

.rv = C_Cet Sessi onl nfo(hSessi on, & nfo);
if (rv == CKR_OK) {

Copyright © 1994-1999 RSA Laboratories

Page 149

if (info.state == CKS_RW USER_FUNCTI ONS) {

}

C_GetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cet OperationState) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pOper ati onSt at e,
CK_ULONG_PTR pul Operati onSt at eLen

)

C_GetOperationState obtains a copy of the cryptographic operations dtate of a session,
encoded as a string of bytes. hSession is the sesson’'s handle; pOper ationState points to the
location that receives the state; pul OperationSateLen points to the location that receives the
length in bytes of the State.

Although the saved date output by C_GetOperationState is not redly produced by a
“cryptographic mechanism”, C_GetOper ationState nonethel ess uses the convention described
in Section 11.2 on producing outpt.

Precisely what the “ cryptographic operations state” this function saves is varies from token to
token; however, this sate iswhat is provided asinput to C_SetOper ationState to restore the
cryptographic activities of a sesson.

Congder a session which is performing a message digest operation usng SHA-1 (.e, the
sesson isugng the CKM_SHA _1 mechanism). Suppose that the message digest operation
was initiaized properly, and that precisely 80 bytes of data have been supplied so far asinput to
SHA-1. The gpplication now wants to “save the state” of this digest operation, so that it can
continue it later. Inthis particular case, snce SHA-1 processes 512 hits (64 bytes) of input a a
time, the cryptographic operations state of the sesson most likely congsts of three digtinct parts:
the state of SHA-1's 160-bit internd chaining variable; the 16 bytes of unprocessed input data;
and some adminigtrative data indicating that this saved state comes from a sesson which was
performing SHA-1 hashing. Taken together, these three pieces of information suffice to
continue the current hashing operation at alater time.

Congder next a sesson which is performing an encryption operation with DES (a block cipher
with ablock size of 64 bits) in CBC (cipher-block chaining) mode (i.e., the sesson is using the
CKM_DES CBC mechanism). Suppose that precisaly 22 bytes of data (in addition to an IV
for the CBC mode) have been supplied so far as input to DES, which means that the first two

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 150

8-byte blocks of ciphertext have dready been produced and output. In this case, the
cryptographic operations state of the sesson most likely consists of three or four distinct parts:
the second 8-byte block of ciphertext (thiswill be used for cipher-block chaining to produce the
next block of ciphertext); the 6 bytes of data till awaiting encryption; some adminidretive data
indicating that this saved state comes from a sesson which was performing DES encryption in
CBC mode; and possibly the DES key being used for encryption (see C_SetOperationState
for more information on whether or not the key is present in the saved date).

If asessonis performing two cryptographic operations smultaneoudy (see Section 11.13), then
the cryptographic operations dtate of the sesson will contain al the necessary information to
restore both operations.

An datempt to save the cryptographic operations state of a sesson which does not currently
have some active saveable cryptographic operation(s) (encryption, decryption, digesting, Sgning
without message recovery, verification without message recovery, or some legad combination of
two of these) should fail with the error CKR_OPERATION_NOT _INITIALIZED.

An attempt to save the cryptographic operations state of a sesson which is performing an
gppropriate cryptographic operation (or two), but which cannot be satisfied for any of various
reasons (certain necessary state information and/or key information can’t leave the token, for
example) should fail with the error CKR_STATE _UNSAVEABLE.

Return values CKR_BUFFER_TOO _SMALL, CKR_CRYPTOKI_NOT INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE _INVALID, CKR_STATE_UNSAVEABLE,

CKR ARGUMENTS BAD.

Example: see C_SetOper ationState.

C_SetOperationState

CK_DEFI NE_FUNCTI ON(CK_RV, C_Set Operati onState) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pOQOperati onSt at e,
CK_ULONG ul Oper ati onSt at eLen,
CK_OBJECT_HANDLE hEncrypti onKey,
CK_OBJECT_HANDLE hAut henti cati onKey

)

C_SetOperationState restores the cryptographic operations state of a sesson from a string of
bytes obtaned with C_GetOperationState. hSesson is the sesson's handle
pOper ationState points to the location holding the saved state; ul OperationSatelen holds the

Copyright © 1994-1999 RSA Laboratories

Page 151

length of the saved state; hEncryptionKey holds a handle to the key which will be used for an
ongoing encryption or decryption operation in the restored sesson (or O if no encryption or
decryption key is needed, either because no such operation is ongoing in the stored sesson or
because dl the necessary key information is present in the saved date); hAuthenticationKey
holds a handle to the key which will be used for an ongoing signature, MACing, or verification
operation in the restored sesson (or O if no such key is needed, either because no such
operation is ongoing in the stored session or because dl the necessary key information is present
in the saved dtate).

The dtate need not have been obtained from the same session (the “source sesson”) as it is
being restored to (the “destination sesson”). However, the source session and destination
sesson should have a common sesson dtate €.9., CKS RW_USER_FUNCTIONS), and
should be with a common token. Thereis aso no guarantee that cryptographic operations state
may be carried across logins, or across different Cryptoki implementations.

If C_SetOperationState is supplied with aleged saved cryptographic operations state which it
can determineis not valid saved state (or is cryptographic operations state from a sesson with a
different sesson dtate, or is cryptographic operations sate from a different token), it fails with
theerror CKR_SAVED STATE INVALID.

Saved dtate obtained from calsto C_GetOperationState may or may not contain information
about keys in use for ongoing cryptographic operations. If a saved cryptographic operations
gtate has an ongoing encryption or decryption operation, and the key in use for the operation is
not saved in the date, then it must be supplied to C_SetOperationState in the
hEncryptionKey argument. If it is not, then C_SetOperationState will fall and return the
eror CKR_KEY_NEEDED. |If the key in use for the operation is saved in the dtate, then it
can be supplied in the hEncryptionKey argument, but this is not required.

Smilaly, if a saved cryptographic operations state has an ongoing signature, MACing, or
verification operation, and the key in use for the operation is not saved in the Sate, then it must
be supplied to C_SetOperationState in the hAuthenticationKey argument. If it is not, then
C_SetOperationState will fal with the error CKR_KEY _NEEDED. |If the key in use for the
operation is saved in the gate, then it can be supplied in the hAuthenti cationKey argument, but
thisisnot required.

If an irrelevant key is supplied to C_SetOperationState cal (e.g., a nonzero key handle is
submitted in the hEncryptionKey argument, but the saved cryptographic operations state
supplied does not have an ongoing encryption or decryption operaion, then
C_SetOperationState fails with the error CKR_KEY _NOT_NEEDED.

If akey issupplied as an argument to C_SetOper ationState, and C_SetOper ationState can
somehow detect that this key was not the key being used in the source session for the supplied
cryptographic operations state (it may be able to detect this if the key or a hash of the key is

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 152

present in the saved date, for example), then C_SetOperationState fals with the error
CKR_KEY_CHANGED.

An gpplication can look at the CKF_RESTORE_KEY_NOT_NEEDED flagin theflagsfidd
of the CK_TOKEN_INFO fidd for a token to determine whether or not it needs to supply
key handles to C_SetOperationState cdls If this flag is TRUE, then a cdl to
C_SetOperationState never needs a key handle to be supplied to it. If this flag is FALSE,
then at leest some of the time, C_SetOperationState requires a key handle, and so the
goplication should probably always pass in any rdevant key handles when restoring
cryptographic operations state to a session.

C_SetOperationState can successfully restore cryptographic operations state to a session
even if that sesson has active cryptographic or object search operaions when
C_SetOperationState is caled (the ongoing operations are abruptly cancelled).

Return vaues: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_KEY CHANGED,
CKR_KEY_NEEDED, CKR_KEY_NOT_NEEDED, CKR_OK,

CKR_SAVED STATE INVALID, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_MECHANI SM di gest Mechani sm

CK_ULONG ul St at eLen;

CK_BYTE datal[] = {0x01, 0x03, 0x05, 0x07};
CK_BYTE dat a2[] {0x02, 0x04, 0x08};

CK_BYTE dat a3[] {0x10, OxOF, OxOE, 0x0D, 0xO0C};
CK_BYTE pDi gest[20];

CK_ULONG ul Di gest Len;

CK_ RV rv;

)* Initialize hash operation */
rv = C Digestlnit(hSession, &digestMechanism;
assert(rv == CKR_OK);

/* Start hashing */
rv = C_DigestUpdat e(hSessi on, datal, sizeof(datal));
assert(rv == CKR_OK);

/* Find out how big the state m ght be */

Copyright © 1994-1999 RSA Laboratories

Page 153

rv = C_GetOperationState(hSession, NULL _PTR,
&ul St at eLen);
assert(rv == CKR_OK);

/* Allocate sone nenory and then get the state */
pState = (CK_BYTE_PTR) nml |l oc(ul StatelLen);
rv = C_GetOperationState(hSession, pState,

&ul St at eLen);

/* Continue hashing */
rv = C_Di gestUpdat e(hSessi on, data2, sizeof(data2));
assert(rv == CKR_(K);

/* Restore state. No key handl es needed */

rv = C_Set OperationState(hSession, pState, ul Statelen,
0, 0);

assert(rv == CKR_OK);

/* Continue hashing from where we saved state */
rv = C_Di gest Updat e(hSessi on, data3, sizeof(data3));
assert(rv == CKR_OK);

/* Concl ude hashing operation */
ul Di gest Len = si zeof (pDi gest);
rv = C_DigestFinal (hSessi on, pDigest, &ul Di gestlLen);
if (rv == CKR_OK) {
/* pDigest[] now contains the hash of
0x01030507100FOEODOC */

}
C_Login

CK_DEFI NE_FUNCTI ON(CK_RV, C_Logi n)(
CK_SESSI ON_HANDLE hSessi on,
CK_USER_TYPE user Type,
CK_CHAR_PTR pPi n,

CK_ULONG ul Pi nLen
) ;

C _Login logs a user into a token. hSession is a sesson handle; userType is the user type;
pPin points to the user’s PIN; ulPinLen is the length of the PIN.

Depending on the user type, if the cal succeeds, each of the gpplication’s sessons will enter
ether the “R/W SO Functions’ date, the “R/W User Functions’ date, or the “R/O User
Functions’ dtate.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 154

If the token has a “protected authentication path”, as indicaed by the
CKF_PROTECTED_AUTHENTICATION_PATH flaginits CK_TOKEN_INFO beng
&, then that means that there is some way for a user to be authenticated to the token without
having the application send a PIN through the Cryptoki library. One such possibility is thet the
user enters a PIN on a PINpad on the token itsdlf, or on the dot device. Or the user might not
even use a PIN—authentication could be achieved by some fingerprint-reading device, for
example. To log into a token with a protected authentication path, the pPin parameter to
C_Login should be NULL_PTR. When C_Login returns, whatever authentication method
supported by the token will have been performed; a return value of CKR_OK means that the
user was successfully authenticated, and a return value of CKR_PIN_INCORRECT means
that the user was denied access.

If there are any active cryptographic or object finding operations in an application’s sesson, and
then C_L ogin is successfully executed by that application, it may or may not be the case that
those operations are Hill active. Therefore, before logging in, any active operations should be
finished.

If the application caling C_L ogin has a R/O session open with the token, then it will be unable
to log the SO into a session (see Section 6.6.7). An atempt to do this will result in the error
code CKR_SESSION_READ_ONLY_EXISTS.

Returnvaues CKR_ARGUMENTS BAD, CKR_CRYPTOKI_NOT INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_PIN_EXPIRED, CKR_PIN_INCORRECT, CKR_PIN_LOCKED,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY_EXISTS, CKR_USER_ALREADY_LOGGED _IN,
CKR_USER_ANOTHER ALREADY LOGGED IN,

CKR_USER PIN_NOT_INITIALIZED, CKR_USER TOO MANY_TYPES,
CKR_USER_TYPE_INVALID.

Example: see C_L ogout.

C_Logout

CK_DEFI NE_FUNCTI ON(CK_RV, C_Logout) (
CK_SESSI ON_HANDLE hSessi on
),

C_Logout logsauser out from atoken. hSession isthe sesson’s handle.

Depending on the current user type, if the call succeeds, each of the gpplication’s sessons will
enter either the “R/W Public Sesson” gate or the “R/O Public Session” date.

Copyright © 1994-1999 RSA Laboratories

Page 155

When C_L ogout successfully executes, any of the gpplication’s handles to private objects
become invaid (even if auser is later logged back into the token, those handles remain invalid).
In addition, al private sesson objects from sessions belonging to the application are destroyed.

If there are any active cryptographic or object-finding operations in an application’s session,
andthen C_L ogout is successfully executed by that application, it may or may not be the case
that those operations are ill active. Therefore, before logging out, any active operations should
be finished.

Return values: CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED _IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK _CHAR userPIN] = {“MPIN"};
CK_RV rv;

rv = C_Logi n(hSession, CKU USER, userPIN,

si zeof (userPIN));
if (rv == CKR_OK) {

rv == C_Logout (hSessi on) ;
if (rv == CKR_OK) {

}
}

11.7 Object management functions

Cryptoki provides the following functions for managing objects. Additiona functions provided
specificaly for managing key objects are described in Section 11.14.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 156

C_CreateObject

CK_DEFI NE_FUNCTI ON(CK_RV, C CreateObject)(
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE PTR phObj ect

)

C_CreateObject creates anew object. hSession is the sesson’s handle; pTemplate points to
the object’s template; ulCount is the number of attributes in the template; phObject points to
the location that receives the new object’s handle.

If acdl to C_CreateObject cannot support the precise template supplied to it, it will fal and
return without cresting any object.

If C_CreateObject is used to create a key object, the key object will haveits CKA_LOCAL
attribute set to FALSE.

Only session objects can be created during a read-only sesson. Only public objects can be
crested unless the normd user islogged in.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN, CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE
hDat a,
hCertificate,
hKey;
CK_OBJECT_CLASS
dat aCl ass = CKO_DATA,
certificateClass = CKO_CERTI FI CATE,
keyCl ass = CKO_PUBLI C_KEY;
CK_KEY_TYPE keyType = CKK_RSA;
CK_CHAR application[] = {“"My Application”};
CK_BYTE dataValue[] = {...};
CK_BYTE subject[] = {...};
CK BYTE id[] ={...};

Copyright © 1994-1999 RSA Laboratories

Page 157

CK BYTE certificatevValue[] = {...};
CK_BYTE nodul us[] = {...};
CK_BYTE exponent[] = {...};
CK_BYTE true = TRUE;
CK_ATTRI BUTE dat aTenpl ate[] = {
{CKA_CLASS, &dataCl ass, sizeof(dataClass)},
{CKA _TOKEN, &true, sizeof(true)},
{ CKA_APPLI CATI ON, application, sizeof(application)},
{CKA VALUE, dataVval ue, sizeof (dataVval ue)}

CK_ATTRI BUTE certificateTenplate[] = {
{CKA CLASS, &certificateC ass,
si zeof (certificateCl ass)},
{CKA_TOKEN, &true, sizeof(true)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA VALUE, certificateVal ue,
si zeof (certificateVal ue)}
3

CK_ATTRI BUTE keyTenplate[] = {

{CKA _CLASS, &keyCl ass, sizeof(keyC ass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{CKA_WRAP, &true, sizeof(true)},

{ CKA_MODULUS, nodul us, sizeof (nodul us)},

{ CKA_PUBLI C_EXPONENT, exponent, sizeof (exponent)}

s
CK_ RV rv;

/* Create a data object */

rv = C _CreateObject(hSessi on, &dataTenpl ate, 4,
&hDat a) ;

if (rv == CKR_OK) {

}

/* Create a certificate object */
rv = C_CreateObject(

hSessi on, &certificateTenplate, 5, &hCertificate);
if (rv == CKR_OK) {

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 158

/* Create an RSA public key object */
rv = C_CreateObj ect (hSession, &keyTenplate, 5, &hKey);
if (rv == CKR_OK) {

}
C_CopyObject

CK_DEFI NE_FUNCTI ON(CK_RV, C_CopyObj ect) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,

CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE_PTR phNewObj ect

)

C_CopyObject copies an object, creating anew object for the copy. hSession isthe sesson’s
handle; hObject is the object’s handle; pTemplate points to the template for the new object;
ulCount is the number of attributes in the template; phNewODbject points to the location that
receives the handle for the copy of the object.

The template may specify new vaues for any attributes of the object that can ordinarily be
modified (e.g., in the course of copying a secret key, a key's CKA_EXTRACTABLE
atribute may be changed from TRUE to FALSE, but not the other way around. If this change
is made, the new key's CKA_NEVER_EXTRACTABLE dtribute will have the vaue
FALSE. Smilarly, the template may specify that the new key's CKA_SENSITIVE attribute
be TRUE; the new key will have the same vdue for its CKA_ALWAYS SENSITIVE
dtribute as the origind key). It may dso specify new vaues of the CKA_TOKEN and
CKA_PRIVATE atributes (e.g., to copy a session object to a token object). If the template
specifies avaue of an atribute which is incompatible with other exigting attributes of the object,
the call failswith the return code CKR_TEMPLATE _INCONSISTENT.

If acdl to C_CopyObject cannot support the precise template supplied to it, it will fal and
return without creating any object.

Only session objects can be created during a read-only sesson. Only public objects can be
created unless the norma user islogged in.

Return values CKR_ATTRIBUTE_READ ONLY, CKR_ATTRIBUTE TYPE_INVALID,
CKR_ATTRIBUTE_VALUE INVALID, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OBJECT HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,

Copyright © 1994-1999 RSA Laboratories

Page 159

CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER _NOT_LOGGED_IN, CKR ARGUMENTS BAD.

Example

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey, hNewkKey;
CK_OBJECT_CLASS keyCl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;

CK BYTE id[] ={...};

CK_BYTE keyValue[] = {...};

CK BYTE fal se = FALSE;

CK_BYTE true = TRUE;

CK_ATTRI BUTE keyTenplate[] = {

{CKA CLASS, &keyCl ass, sizeof(keyCl ass)},
{CKA _KEY_TYPE, &keyType, sizeof(keyType)},
{CKA _TOKEN, &fal se, sizeof(false)},

{CKA ID, id, sizeof(id)},

{CKA_VALUE, keyVal ue, sizeof(keyVal ue)}

3
CK_ATTRI BUTE copyTenplate[] = {
{CKA TOKEN, &true, sizeof(true)}

s
CK_ RV rv;

/* Create a DES secret key session object */
rv = C CreateObject(hSession, &eyTenpl ate, 5, &hKey);
if (rv == CKR_OK) {
/* Create a copy which is a token object */
rv = C_CopyObj ect (hSessi on, hKey, ©Tenplate, 1,
&hNewkKey) ;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 160

C_DestroyObject

CK_DEFI NE_FUNCTI ON(CK_RV, C Destroybj ect) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect

)

C_DestroyObject destroys an object. hSession is the sesson’s handle; and hObject is the
object’s handle.

Only session objects can be destroyed during a read-only session. Only public objects can be
destroyed unless the norma user islogged in.

Return vaues: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY,

CKR_OBJECT HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TOKEN_WRITE_PROTECTED.

Example: see C_GetObjectSize.

C_GetObjectSize

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Obj ect Si ze) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hQOnbj ect,

CK_ULONG _PTR pul Si ze

)

C_GetObjectSize gets the Sze of an object in bytes. hSession is the sesson’s handle
hObject is the object’s handle; pul Sze points to the location that receives the size in bytes of
the object.

Cryptoki does not specify what the precise meaning of an object’'ssizeis. Intuitively, it is some
measure of how much token memory the object takes up. If an agpplication deletes (say) a
private object of Sze S, it might be reasonable to assume that the ulFreePrivateMemory fidd
of thetoken's CK_TOKEN_INFO dgructure increases by gpproximately S.

Return vaues: CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_INFORMATION_SENSITIVE, CKR_OBJECT_HANDLE_INVALID, CKR_OK,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,

CKR ARGUMENTS BAD.

Copyright © 1994-1999 RSA Laboratories

Page 161

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect ;

CK_OBJECT_CLASS dat aCl ass = CKO_DATA,
CK_CHAR application[] = {“My Application”};
CK_BYTE dataVval ue[] = {
CK_BYTE value[] = {...}
CK_BYTE true = TRUE;
CK_ATTRI BUTE tenplate[] = {

{CKA_CLASS, &dataCl ass, sizeof(dataClass)},

{CKA TOKEN, &true, sizeof(true)},

{ CKA_APPLI CATI ON, application, sizeof(application)},

{CKA_VALUE, val ue, sizeof(value)}
3
CK_ULONG ul Si ze;
CK_RV rv;

——

rv = C_CreateObj ect(hSession, & enplate, 4, &hObject);
if (rv == CKR_OK) {

rv = C_Get Obj ect Si ze(hSessi on, hObject, &ul Size);

if (rv !'= CKR_I NFORMATI ON_SENSI Tl VE) {

rv = C_DestroyObj ect(hSession, hObject);

}

C_GetAttributevValue

CK_DEFI NE_FUNCTI ON(CK_RV, C GetAttri buteVal ue) (

)

CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

C_GetAttributeValue obtains the vaue of one or more attributes of an object. hSession is
the sesson’s handle; hObject is the object’s handle; pTemplate points to a template that

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 162

Specifies which attribute vaues are to be obtained, and receives the attribute values, ulCount is
the number of attributesin the template.

For each (type, pValue, ulValuelLen) triple in the template, C_GetAttributeValue peforms
the following dgorithm:

1. If the specified attribute (i.e., the attribute specified by the type field) for the object cannot
be reveded because the object is sendtive or unextractable, then the ulValuelLen fidd in
that triple is modified to hold the value -1 (i.e., when it iscast to a CK_LONG, it holds -1).

2. Otherwise, if the specified attribute for the object is invaid (the object does not possess
such an attribute), then the ulValuelLen field in thet triple is modified to hold the vaue -1.

3. Otherwisg, if the pValue field has the vdue NULL_PTR, then the ulValueLen fidd is
modified to hold the exact length of the specified attribute for the object.

4. Otherwisg, if the length specified in ulValueLen is large enough to hold the vaue of the
specified atribute for the object, then that attribute is copied into the buffer located a
pValue, and the ulValuelLen field is modified to hold the exact length of the attribute.

5. Othewise, the ulVValuelen fidd is modified to hold the vaue -1.

If case 1 gpplies to any of the requested attributes, then the cdl should return the vaue
CKR_ATTRIBUTE_SENSITIVE. If case 2 gppliesto any of the requested attributes, then the
cal should return the value CKR_ATTRIBUTE_TYPE INVALID. If case 5 appliesto any of
the requested attributes, then the cal should return the value CKR_BUFFER _TOO_SMALL.
Asusud, if more than one of these error codes is gpplicable, Cryptoki may return any of them.
Only if none of them gpplies to any of the requested attributes will CKR_OK be returned.

Note that the error codes CKR_ATTRIBUTE_SENSITIVE,
CKR_ATTRIBUTE_TYPE_INVALID, and CKR_BUFFER_TOO SMALL do not denote
true errorsfor C_GetAttributeValue. If acdl to C_GetAttributeValue returns any of these
three values, then the call must nonetheless have processed every dtribute in the template
supplied to C_GetAttributeValue. Each attribute in the template whose vaue can be
reuned by the cdl to C_GetAttributeValue will be returned by the cdl to
C_GetAttributevalue.

Return values CKR_ATTRIBUTE_SENSITIVE, CKR_ ATTRIBUTE TYPE_INVALID,
CKR_BUFFER _TOO SMALL, CKR_CRYPTOKI|_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OBJECT HANDLE INVALID, CKR OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example:

Copyright © 1994-1999 RSA Laboratories

Page 163

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hQObj ect ;
CK_BYTE_PTR pModul us, pExponent;
CK_ATTRI BUTE tenplate[] = {

{ CKA_MODULUS, NULL_PTR, 0},

{ CKA_PUBLI C_EXPONENT, NULL_PTR, 0}

¥
CK_RV rv;

rv = C GetAttributeVal ue(hSession, hObject, &tenplate,
2);
if (rv == CKR_OK) {
pModul us = (CK_BYTE_PTR)
mal | oc(tenpl at e[0] . ul Val ueLen);
tenpl at e[0] . pVal ue = pMdul us;
/* tenpl ate[O] .ul Val ueLen was set by
C GetAttributeval ue */

pExponent = (CK_BYTE_PTR)
mal | oc(tenpl at e[1] . ul Val ueLen);
tenpl at e[1] . pVal ue = pExponent;
/* tenpl ate[1] . ul Val ueLen was set by
C GetAttributeVvVal ue */

rv = C _GetAttributeVal ue(hSessi on, hObject,
& enpl ate, 2);
if (rv == CKR_OK) {

}
free(pModul us);

free(pExponent);

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 164

C_SetAttributeValue

CK_DEFI NE_FUNCTI ON(CK_RV, C _Set Attri buteVal ue) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hObj ect,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

),

C_SetAttributeValue modifies the vaue of one or more attributes of an object. hSession is
the sesson’s handle, hObject is the object’s handle; pTemplate points to a template that
specifies which atribute vaues are to be modified and their new vaues, ulCount is the number
of attributes in the template.

Only session objects can be modified during a read-only session.

The template may specify new vaues for any atributes of the object that can be modified. If
the template specifies a vaue of an attribute which is incompatible with other exigting attributes
of the object, the call fails with the return code CKR_TEMPLATE _INCONSISTENT.

Not al attributes can be modified; see Section 9.7 for more detalls.

Return values CKR_ATTRIBUTE READ ONLY, CKR ATTRIBUTE TYPE INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OBJECT HANDLE_INVALID, CKR_OK, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCONSISTENT, CKR_ TOKEN_WRITE_PROTECTED,

CKR ARGUMENTS BAD, CKR USER NOT LOGGED IN.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hObj ect ;
CK_UTF8CHAR | abel [] = {“New | abel "};
CK_ATTRI BUTE tenplate[] = {

CKA_LABEL, | abel, sizeof(label)-1
¥

CK RV rv;

rv = C_SetAttributeVal ue(hSession, hObject, &t enplate,
1);
if (rv == CKR_OK) {

Copyright © 1994-1999 RSA Laboratories

Page 165

}
C_FindObjectd nit

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndObj ectslnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count

)

C_FindObjectd nit initidizes a search for token and sesson objects that match a template.
hSession is the sesson’s handle, pTemplate points to a search template that specifies the
attribute vaues to maich; ulCount is the number of aitributes in the search template. The
meatching criterion is an exact byte-for-byte match with dl attributes in the template. To find all
objects, set ulCount to O.

After cdling C_FindObjectd nit, the gpplication may cal C_FindObjects one or more times
to obtan handles for objects matching the template, and then eventudly cal
C_FindObjectsFinal to finish the active search operation. At most one search operation may
be active & a given timein agiven sesson.

The object search operation will only find objects that the session can view. For example, an
object search in an “R/W Public Sesson” will not find any private objects (even if one of the
atributes in the search template specifies that the search isfor private objects).

If a search operation is active, and objects are created or destroyed which fit the search
template for the active search operation, then those objects may or may not be found by the
search operation. Note that this means that, under these circumstances, the search operation
may return invaid object handles.

Eventhough C_FindObjectd nit can return the values CKR_ATTRIBUTE_TYPE_INVALID
and CKR_ATTRIBUTE_VALUE_INVALID, it isnot required to. For example, if itisgivena
search template with nonexigent dtributes in it, it can retun
CKR_ATTRIBUTE _TYPE INVALID, or it can initidize a search operation which will match
no objects and return CKR_OK.

Return values CKR_ATTRIBUTE_TYPE_INVALID,

CKR_ATTRIBUTE_VALUE INVALID, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 166

Example: see C_FindObjectsFinal.

C_FindObjects

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndObj ects) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE_PTR phOnbj ect,

CK_ULONG ul MaxObj ect Count ,
CK_ULONG_PTR pul Obj ect Count

)

C_FindObjects continues a search for token and sesson objects that match a template,
obtaining additiona object handles. hSession is the sesson’s handle; phObject points to the
location that receives the ligt (array) of additiond object handles, ulMaxObjectCount is the
maximum number of object handles to be returned; pul ObjectCount points to the location that
receives the actual number of object handles returned.

If there are no more objects matching the template, then the location that pul ObjectCount
points to receives the value 0.

The search must have been initidized with C_FindObj ectdl nit.

Return vaues: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example see C_FindObjectsFinal.

C_FindObjectsFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_Fi ndObj ect sFi nal) (
CK_SESSI ON_HANDLE hSessi on

)

C_FindObjectsFinal terminates a search for token and sesson objects. hSession is the
sesson’s handle.

Return values CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example:

Copyright © 1994-1999 RSA Laboratories

Page 167

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hQOnj ect ;
CK_ULONG ul Obj ect Count ;
CK_RV rv;

rv = C_FindObjectslnit(hSession, NULL PTR, 0);
assert(rv == CKR_OK);
while (1) {
rv = C_FindObjects(hSession, &hObject, 1,
&ul Obj ect Count) ;
If (rv I'= CKR_OK || ul ObjectCount == 0)
br eak;

}

rv = C_FindObjectsFinal (hSessi on);
assert(rv == CKR_OK);

11.8 Encryption functions

Cryptoki provides the following functions for encrypting datax

C_Encryptinit

CK_DEFI NE_FUNCTI ON(CK_RV, C Encrypt!nit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Encryptlinit initidizes an encryption operation. hSession is the sesson’'s handle
pMechanism points to the encryption mechanism; hKey isthe handle of the encryption key.

The CKA_ENCRYPT dtribute of the encryption key, which indicates whether the key
supports encryption, must be TRUE.

After cdling C_Encryptinit, the gpplication can ether cdl C_Encrypt to encrypt data in a
sangle pat; or cdl C_EncryptUpdate zero or more times, followed by C_EncryptFinal, to
encrypt datain multiple parts. The encryption operation is active until the gpplication usesa call
to C_Encrypt or C_EncryptFinal to actually obtain the fina piece of ciphertext. To process
additiond data (in angle or multiple parts), the gpplication must cal C_Encryptlnit again.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 168

Return vaues: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_KEY_FUNCTION_NOT PERMITTED, CKR_KEY HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER NOT_LOGGED _IN.

Example see C_EncryptFinal.

C_Encrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C_Encrypt) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG _PTR pul Encrypt edDat aLen

)

C_Encrypt encrypts sngle-part data. hSession is the sesson’s handle;, pData points to the
data; ulDatalen is the length in bytes of the data; pEncryptedData points to the location that
receives the encrypted data; pul EncryptedDatalen points to the location that holds the length
in bytes of the encrypted data.

C_Encrypt usesthe convention described in Section 11.2 on producing outpui.

The encryption operation must have been initidized with C_Encryptinit. A cdl to C_Encrypt
dways teminates the active encryption operaion unless it returns
CKR_BUFFER TOO SMALL or isasuccessful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the ciphertext.

C Encrypt can not be used to terminate a multi-part operation, and must be called after
C Encryptlnit without intervening C EncryptUpdate calls.

For some encryption mechanisms, the input plaintext data has certain length congraints (either
because the mechanism can only encrypt relatively short pieces of plaintext, or because the
mechanism’s input data must consist of an integrd number of blocks). If these condraints are
not satidfied, then C_Encrypt will fall with return code CKR_DATA_LEN RANGE.

The plaintext and ciphertext can be in the same place, i.e, it is OK if pData and
pEncryptedData point to the same location.

Copyright © 1994-1999 RSA Laboratories

Page 169

For most mechanisms, C_Encrypt is equivdent to a sequence of C_EncryptUpdate
operationsfollowed by C_EncryptFinal.

Return values CKR_BUFFER_TOO _SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example see C_EncryptFinal for an example of smilar functions.

C_EncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Encrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul Part Len,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG _PTR pul Encrypt edPart Len

)

C_EncryptUpdate continues a multiple-part encryption operation, processing another data
part. hSession is the sesson’s handle; pPart points to the data part; ulPartLen is the length of
the data part; pEncryptedPart points to the location that receives the encrypted data part;
pul EncryptedPartLen points to the location that holds the length in bytes of the encrypted data
part.

C_EncryptUpdate uses the convention described in Section 11.2 on producing outp.

The encryption operation must have been initidized with C_Encryptlnit. This function may be
cdled any number of timesin successon. A cdl to C_EncryptUpdate which resultsin an error
other than CKR_BUFFER_TOO_SMALL terminates the current encryption operation.

The encryption operation must have been initidized with C_Encryptinit. A cdl to C_Encrypt
dways teminates the active encryption operaion unless it returns
CKR_BUFFER TOO SMALL or isasuccessful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the ciphertext.

The plaintext and ciphertext can be in the same place, i.e, it is OK if pPart and
pEncryptedPart point to the same location.

Return values CKR_BUFFER TOO SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 170

CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example see C_EncryptFinal.

C_EncryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_EncryptFinal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pLast Encrypt edPart,
CK_ULONG _PTR pul Last Encrypt edPart Len

)

C_EncryptFinal finishes a multiple-part encryption operation. hSession is the sesson’s handle;
pLastEncryptedPart points to the location that receives the last encrypted data part, if any;
pul LastEncryptedPartLen points to the location that holds the length of the last encrypted data
part.

C_EncryptFinal usesthe convention described in Section 11.2 on producing output.

The encryption operation must have been initidized with C _Encryptinit. A cdl to
C _EncryptFinal dways terminates the active encryption operation unless it returns
CKR_BUFFER TOO SMALL or isasuccessful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the ciphertext.

For some multi-part encryption mechanisms, the input plaintext data has certain length
congraints, because the mechanism’sinput data must consist of an integral number of blocks. If
these condraints are not sdisfied, then C_EncryptFinal will fal with return code
CKR_DATA_LEN_RANGE.

Return values CKR_BUFFER_TOO _SMALL, CKR_CRYPTOKI_NOT INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR _DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example:

#defi ne PLAI NTEXT_BUF_SZ 200
#defi ne Cl PHERTEXT_BUF_SZ 256

CK_ULONG firstPieceLen, secondPi ecelLen;
CK_SESSI ON_HANDLE hSessi on;

Copyright © 1994-1999 RSA Laboratories

Page 171

CK_OBJECT_HANDLE hKey;
CK_BYTE i v[8];
CK_MECHANI SM mechani sm = {

CKM DES CBC PAD, iv, sizeof(iv)
¥
CK_BYTE dat a[PLAI NTEXT_BUF_SZ] ;

CK_BYTE encrypt edDat a[Cl PHERTEXT_BUF_SZ] ;
CK_ULONG ul Encrypt edDat allLen;

CK_ULONG ul Encr ypt edDat a2Len;

CK_ULONG ul Encrypt edDat a3Len;

CK_ RV rv;

firstPieceLen = 90;
secondPi eceLen = PLAI NTEXT_BUF_SZ-firstPi ecelLen;
rv = C_Encryptlnit(hSession, &mmechanism hKey);
if (rv == CKR_OK) {
/* Encrypt first piece */
ul Encrypt edDat alLen = si zeof (encryptedDat a);
rv = C_Encrypt Updat e(
hSessi on,
&data[0], firstPiecelen,
&encrypt edDat a[0], &ul Encrypt edDat allLen);
If (rv I'= CKR_OK) {

}

/* Encrypt second piece */
ul Encrypt edDat a2Len = si zeof (encrypt edDat a) -
ul Encrypt edDat allLen;
rv = C_Encrypt Updat e(
hSessi on,
&dat a[firstPieceLen], secondPi ecelLen,
&encrypt edDat a[ul Encr ypt edDat allLen],
&ul Encr ypt edDat a2Len) ;
if (rv I'= CKR_OK) {

}

/* Get last little encrypted bit */
ul Encrypt edDat a3Len =
si zeof (encrypt edDat a) - ul Encrypt edDat alLen-

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 172

ul Encrypt edDat a2Len;
rv = C_EncryptFi nal (
hSessi on,

&encr ypt edDat a[ul Encr ypt edDat alLen+ul Encrypt edD
at a2lLen],

&ul Encrypt edDat a3Len) ;
if (rv = CKR._OK) {

}
}

119 Decryption functions

Cryptoki provides the following functions for decrypting data:

C_Decryptlnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Decryptlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C _Decryptlnit initidizes a decryption operation. hSession is the sesson’s handle
pMechanism points to the decryption mechanism; hKey is the handle of the decryption key.

The CKA_DECRYPT atribute of the decryption key, which indicates whether the key
supports decryption, must be TRUE.

After cdling C_Decryptlinit, the application can either cal C_Decrypt to decrypt data in a
sgngle part; or cdl C_DecryptUpdate zero or more times, followed by C_DecryptFinal, to

decrypt datain multiple parts. The decryption operation is active until the application uses a call

to C_Decrypt or C_DecryptFinal to actually obtain the find piece of plaintext. To process
additiond data (in sngle or multiple parts), the application must cal C_Decryptlnit again

Return vaues: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_KEY_FUNCTION_NOT _PERMITTED, CKR_KEY HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,

Copyright © 1994-1999 RSA Laboratories

Page 173

CKR_SESSION_HANDLE_INVALID, CKR_USER NOT LOGGED IN,
CKR ARGUMENTS BAD.

Example see C_DecryptFinal.

C_Decrypt

CK_DEFI NE_FUNCTI ON(CK_RV, C _Decrypt) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncr ypt edDat a,
CK_ULONG ul Encrypt edDat aLen,
CK_BYTE_PTR pDat a,

CK_ULONG_PTR pul Dat aLen

)

C_Decrypt decrypts encrypted data in a sngle pat. hSession is the sesson’s handle
pEncryptedData points to the encrypted data; ulEncryptedDatalen is the length of the
encrypted data; pData points to the location that receives the recovered data; pulDatal.en
points to the location that holds the length of the recovered data.

C_Decrypt usesthe convention described in Section 11.2 on producing output.

The decryption operation must have been initidized with C_DecryptInit. A cal to C_Decrypt
dways teminates the active decryption operation unless it returns
CKR_BUFFER TOO SMALL or isasuccessful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the plaintext.

C Decrypt can not be used to terminate a multi-part operation, and must be caled after
C Decryptlnit without intervening C DecryptUpdate cals.

The ciphertext and plaintext can be in the same place, i.e, it is OK if pEncryptedData and
pData point to the same location.

If the input ciphertext data cannot be decrypted because it has an ingppropriate length, then
ether CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

For most mechanisms, C_Decrypt is equivdent to a sequence of C_DecryptUpdate
operationsfollowed by C_DecryptFinal.

Return values CKR_BUFFER_TOO _SMALL, CKR_CRYPTOKI_NOT INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED DATA_INVALID, CKR_ENCRYPTED DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR OK,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 174

CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example: see C_DecryptFinal for an example of amilar functions.

C_DecryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Decrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG_PTR pul Part Len

)

C_DecryptUpdate continues a multiple-part decryption operation, processing another
encrypted data part. hSession is the sesson’s handle; pEncryptedPart points to the encrypted
data part; ulEncryptedPartLen is the length of the encrypted data part; pPart points to the
location that receives the recovered data part; pul PartLen points to the location that holds the
length of the recovered data part.

C_DecryptUpdate uses the convention described in Section 11.2 on producing outpuit.

The decryption operation must have been initidized with C_Decryptlnit. This function may be
cdled any number of times in successon. A cdl to C_DecryptUpdate which results in an
error other than CKR_BUFFER_TOO_SMALL terminates the current decryption operation.

The ciphertext and plaintext can be in the same place, i.e, it is OK if pEncryptedPart and
pPart point to the same location.

Return values: CKR_BUFFER TOO _SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR _DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_ENCRYPTED DATA_INVALID, CKR_ENCRYPTED DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example See C_DecryptFinal.

Copyright © 1994-1999 RSA Laboratories

Page 175

C_DecryptFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C DecryptFinal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pLast Part,
CK_ULONG_PTR pul Last Part Len

)

C_DecryptFinal finishesamultiple-part decryption operaion. hSession is the sesson’s handle;
pLastPart points to the location that receives the last recovered data part, if any;
pul LastPartLen points to the location that holds the length of the last recovered data part.

C_DecryptFinal usesthe convention described in Section 11.2 on producing output.

The decryption operation must have been initidized with C_Decryptinit. A cdl to
C_DecryptFinal adways terminates the active decryption operaion unless it returns
CKR_BUFFER TOO SMALL or isasuccessful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the plaintext.

If the input ciphertext data cannot be decrypted because it has an inappropriate length, then
either CKR_ENCRYPTED_DATA_INVALID or
CKR_ENCRYPTED_DATA_LEN_RANGE may be returned.

Return values CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example:

#defi ne Cl PHERTEXT_BUF_SZ 256
#defi ne PLAI NTEXT_BUF_SZ 256

CK_ULONG firstEncryptedPi ecelLen,
secondEncrypt edPi ecelLen;

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE i v[8];

CK_MECHANI SM nechani sm = {

CKM DES CBC PAD, iv, sizeof(iv)
¥
CK_BYTE dat a[PLAI NTEXT_BUF_SZ] ;

CK_BYTE encrypt edDat a[Cl PHERTEXT_BUF_SZ] ;
CK_ULONG ul Dat alLen, ul Data2Len, ul Data3Len;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

CK_RV rv;

firstEncryptedPi eceLen = 90;
secondEncrypt edPi eceLen = Cl PHERTEXT_BUF_SZ-
firstEncryptedPi ecelLen;
rv = C Decryptlnit(hSession, &mechani sm hKey);
if (rv == CKR_OK) {
/* Decrypt first piece */
ul Dat alLen = si zeof (data);
rv = C_Decrypt Updat e(
hSessi on,
&encrypt edDat a[0], firstEncryptedPi eceLen
&dat a[0], &ul Dat allLen);
If (rv '= CKR_OK) {

}

/* Decrypt second piece */

ul Dat a2Len = si zeof (dat a)-ul Dat allLen;

rv = C_Decrypt Updat e(
hSessi on,
&encryptedDat a[first Encrypt edPi eceLen],
secondEncrypt edPi ecelLen,
&dat a[ul Dat alLen], &ul Data2Len);

if (rv I'= CKR_OK) {

}
/* Get last little decrypted bit */

ul Dat a3Len = si zeof (data)-ul Dat alLen-ul Dat a2Len;

rv = C_DecryptFi nal (

hSessi on,

&dat a[ul Dat alLen+ul Dat a2Len], &ul Dat a3Len);
If (rv '= CKR_OK) {

Copyright © 1994-1999 RSA Laboratories

176

Page 177

11.10 Message digesting functions

Cryptoki provides the following functions for digesting data:

C_DigestInit

CK_DEFI NE_FUNCTI ON(CK_RV, C _Digestlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm

)

C_DigestInit initidizes a message-digesting operation. hSession is the sesson’'s handle
pMechanism paints to the digesting mechanism.

After caling C_Digestlnit, the application can either call C_Digest to digest data in a Sngle
part; or cal C_DigestUpdate zero or more times, followed by C_DigestFinal, to digest data
in multiple parts. The message-digesting operation is active until the application uses a cdl to
C_Digest or C_DigestFinal to actually obtain the find piece of ciphertext. To process
additiond data (in sngle or multiple parts), the gpplication must cal C_Digestl nit agan.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_USER_NOT_LOGGED_IN, CKR ARGUMENTS BAD.

Example see C_DigestFinal.

C_Digest

CK_DEFI NE_FUNCTI ON(CK_RV, C _Digest) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pDi gest,
CK_ULONG_PTR pul Di gest Len

)

C_Digest digeds datain a single part. hSession is the sesson’s handle, pData points to the
data; ulDatalen is the length of the data; pDigest points to the location that recelves the
message diges; pul DigestLen points to the location that holds the length of the message digest.

C_Digest usesthe convention described in Section 11.2 on producing outpt.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 178

The digest operation must have been initidized with C_Digestinit. A cdl to C_Digest dways
terminates the active digest operation unless it returns CKR_BUFFER _TOO SMALL orisa
successtul cdl (i.e., one which returns CKR_OK) to determine the length of the buffer needed
to hold the message digest.

C Digest can not be used to terminate a multi-part operation, and must be cdled after
C Digestl nit without intervening C DigestUpdate calls.

The input data and digest output can be in the same place, i.e., it isOK if pData and pDigest
point to the same location.

C_Digest is eguivdent to a sequence of C_DigestUpdate operations followed by
C_DigestFinal.

Return values CKR_BUFFER TOO SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example: see C_DigestFinal for an example of smilar functions

C_DigestUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul Part Len

)

C_DigestUpdate continues a multiple-part message-digesting operation, processing another
data part. hSession is the sesson’'s handle, pPart points to the data part; ulPartLen is the
length of the data part.

The message-digesting operation mugt have been initidized with C_DigestInit. Cdls to this
function and C_DigestK ey may be interspersed any number of times in any order. A cdl to
C_DigestUpdate which resultsin an error terminates the current digest operation.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Copyright © 1994-1999 RSA Laboratories

Page 179

Example see C_DigestFinal.

C_DigestK ey

CK_DEFI NE_FUNCTI ON(CK_RV, C_Di gest Key) (
CK_SESSI ON_HANDLE hSessi on,
CK_OBJECT_HANDLE hKey

)

C_DigestK ey continues a multiple-part message-digesting operation by digesting the value of a
secret key. hSession is the sesson’'s handle; hKey is the handle of the secret key to be
digested.

The message-digesting operation must have been initidized with C_Digestinit. Cdls to this
function and C_DigestUpdate may be intergpersed any number of timesin any order.

If the value of the supplied key cannot be digested purely for some reason related to its length,
C_DigestK ey should return the error code CKR_KEY _SIZE RANGE.

Return vaues: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_KEY_HANDLE_INVALID,
CKR_KEY_INDIGESTIBLE, CKR_KEY_SIZE_RANGE, CKR_OK,
CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID.

Example see C_DigestFinal.

C_DigestFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_Di gest Fi nal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDi gest,
CK_ULONG_PTR pul Di gest Len

)

C_DigestFinal finishes a multiple-part message-digesting operation, returning the message
digest. hSession isthe sesson’'s handle; pDigest pointsto the location that receives the message
digest; pulDigestLen points to the location that holds the length of the message digest.
C_DigestFinal usesthe convention described in Section 11.2 on producing output.

The digest operation must have been initidized with C_Digestinit. A cdl to C_DigestFinal
aways terminates the active digest operation unless it returns CKR_BUFFER TOO_SMALL

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 180

or is asuccesstul cdl (i.e., one which returns CKR_OK) to determine the length of the buffer
needed to hold the message digest.

Return values CKR_BUFFER TOO SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_MECHANI SM nechani sm = {
CKM_MD5, NULL_PTR, O
¥
CK BYTE data[] = {...};
CK_BYTE di gest[16];
CK_ULONG ul Di gest Len;
CK_ RV rv;

.rv = C _Digestlnit(hSession, &mrechanism;
if (rv I'= CKR.OK) {

}

rv = C_Di gestUpdat e(hSessi on, data, sizeof(data));
if (rv 1= CKR.OK) {

}

rv = C_Digest Key(hSessi on, hKey);
if (rv I'= CKR_OK) {

}

ul Di gest Len = si zeof (di gest);
rv = C_DigestFinal (hSessi on, digest, &ulDi gestlLen);

Copyright © 1994-1999 RSA Laboratories

Page 181

11.11 Signing and MACing functions

Cryptoki provides the following functions for sgning data (for the purposes of Cryptoki, these
operations also encompass message authentication codes):

C_Signinit

CK_DEFI NE_FUNCTI ON(CK_RV, C_Signlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Signinit initidizes a Sgnature operation, where the sgnature is an appendix to the data
hSession is the sesson’s handle; pMechanism points to the sgnature mechanism; hKey is the
handle of the Sgnature key.

The CKA_SIGN attribute of the sgnature key, which indicates whether the key supports
sgnatures with appendix, must be TRUE.

After cdling C_Signlnit, the gpplication can ether cal C_Sign to Sgn in a sngle part; or cal
C_SignUpdate one or more times, followed by C_SignFinal, to sgn data in multiple parts.
The sgnature operation is active until the application usesacdl to C_Sign or C_SignFinal to
actually obtain the sgnature. To process additiona data (in single or multiple parts), the
goplication must cal C_Signinit again.

Return values CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED,CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED IN,

CKR ARGUMENTS BAD.

Example see C_SignFinal.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 182

C_Sign

CK_DEFI NE_FUNCTI ON(CK_RV, C_Sign)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG _PTR pul Si gnat urelLen

)

C_Sign sgns datain a sngle part, where the Sgnature is an gppendix to the data. hSession is
the sesson’s handle; pData points to the data; ulDatalen is the length of the data; pSignature
points to the location that receives the signature; pulSgnaturelen points to the location that
holds the length of the Sgnature.

C_Sign usesthe convention described in Section 11.2 on producing outpuit.

The dgning operation mugt have been initidized with C_Signinit. A cdl to C_Sign adways
terminates the active signing operation unless it returns CKR_ BUFFER_ TOO_SMALL orisa
successtul cdl (i.e., one which returns CKR_OK) to determine the length of the buffer needed
to hold the Sgnature.

C Sign can not be used to terminate a multi-part operation, and must be called after
C Signlnit without intervening C SignUpdate cals.

For most mechanisms, C_Sign is equivdent to a sequence of C_SignUpdate operations
followed by C_SignFinal.

Return values CKR_BUFFER_TOO _SMALL, CKR_CRYPTOKI_NOT INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example see C_SignFinal for an example of amilar functions.

Copyright © 1994-1999 RSA Laboratories

Page 183

C_SignUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnUpdat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,

CK_ULONG ul Part Len

)

C_SignUpdate continues a multiple-part signature operation, processng ancother data part.
hSession is the sesson’s handle, pPart points to the data part; ulPartLen is the length of the
data part.

The sgnature operation must have been initidized with C_Signl nit. This function may be caled
any number of times in successon. A cdl to C_SignUpdate which results in an error
terminates the current signature operation.

Return values CKR_CRYPTOKI_NOT _INITIALIZED, CKR DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example seeC_SignFinal.

C_SignFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnFi nal) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,

CK_ULONG_PTR pul Si gnat ur eLen

)

C_SignFinal finishes a multiple-part Sgnature operation, returning the signature. hSession is the
session’'s handle; pSignatur e points to the location that receives the signature; pul Sgnaturelen
points to the location that holds the length of the sgnature,

C_SignFinal usesthe convention described in Section 11.2 on producing outpuit.

The 9gning operation must have been initidized with C_Signinit. A cdl to C_SignFinal
aways terminates the active sgning operation unlessiit returns CKR_BUFFER_ TOO _SMALL
or is asuccesstul cdl (i.e., one which returns CKR_OK) to determine the length of the buffer
needed to hold the signature.

Return values CKR_BUFFER TOO SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 184

CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM mechani sm = {

CKM DES MAC, NULL_PTR, O
3

CK _BYTE data[] ={...};
CK_BYTE nac| 4] ;
CK_ULONG ul MaclLen;

CK_ RV rv;

.rv = C_Signlnit(hSession, &mechanism hKey);
if (rv == CKR_OK) {
rv = C_SignUpdat e(hSessi on, data, sizeof(data));

ul MacLen = sizeof (mac);
rv = C_SignFinal (hSessi on, mac, &ul MacLen);

}

C_SignRecover I nit

CK_DEFI NE_FUNCTI ON(CK_RV, C_SignRecoverlnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_SignRecover I nit initidizes a Sgnature operation, where the data can be recovered from the
sggnature. hSession is the sesson’s handle; pMechanism points to the structure that specifies
the sgnature mechaniam; hKey is the handle of the Sgnature key.

The CKA_SIGN_RECOVER dtribute of the signature key, which indicates whether the key
supports signatures where the data can be recovered from the signature, must be TRUE.

Copyright © 1994-1999 RSA Laboratories

Page 185

After cdling C_SignRecover Init, the gpplication may cdl C_SignRecover to 9gnin asngle
part. The signature operetion is active until the application uses a cal to C_SignRecover to
actually obtain the sgnature. To process additiond data in a single part, the gpplication must
cdl C_SignRecover|nit agan.

Return vaues: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY,

CKR_KEY_FUNCTION_NOT PERMITTED, CKR_KEY HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR USER NOT LOGGED IN,

CKR ARGUMENTS BAD.

Example: see C_SignRecover.

C_SignRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnRecover) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,
CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG_PTR pul Si gnat ur eLen

)

C_SignRecover 9gns data in a single operation, where the data can be recovered from the
ggnature. hSession is the session’s handle; pData points to the data; uLDatalen is the length
of the data; pSignature points to the location that receives the sgnature; pulSgnaturelen
points to the location that holds the length of the signature.

C_SignRecover uses the convention described in Section 11.2 on producing output.

The dgning operaion mus have been initidized with C_SignRecoverinit. A cdl to
C_SignRecover dways teminaes the active dgning operation unless it returns
CKR_BUFFER TOO SMALL or isasuccessful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the sgnature.

Return values: CKR_BUFFER TOO SMALL, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DATA_INVALID, CKR_ DATA_LEN RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 186

CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM mechani sm = {

CKM_RSA 9796, NULL_PTR, O
3
CK _BYTE data[] ={...};
CK_BYTE si gnature[128];
CK_ULONG ul Si gnat ur eLen;
CK_ RV rv;

rv = C_SignRecoverlnit(hSession, &mechanism hKey);
if (rv == CKR_OK) {
ul Si gnatureLen = sizeof (signature);
rv = C_SignRecover (
hSessi on, data, sizeof(data), signature,
&ul Si gnat urelLen);
if (rv == CKR_OK) {

}
}

11.12 Functionsfor verifying signaturesand MACs

Cryptoki provides the following functions for verifying sgnatures on data (for the purposes of
Cryptoki, these operations a so encompass message authentication codes):

C_Veifylnit

CK_DEFI NE_FUNCTI ON(CK_RV, C Verifylnit)(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_Verifylnit initidizes a verification operation, where the signature is an gppendix to the data.
hSession is the sesson’'s handle, pMechanism points to the dructure that specifies the
verification mechanism; hKey is the handle of the verification key.

Copyright © 1994-1999 RSA Laboratories

Page 187

The CKA_VERIFY éattribute of the verification key, which indicates whether the key supports
verification where the signature is an gppendix to the data, must be TRUE.

After cdling C_Verifylnit, the application can either cdl C_Verify to verify asgnature on data
inasgngle pat; or cdl C_VerifyUpdate one or more times, followed by C_VerifyFinal, to
verify a dgnature on data in multiple parts. The verification operation is active until the
goplication cdlsC_Verify or C_VerifyFinal. To process additiond data (in single or multiple
parts), the gpplication must call C_Verifylnit agan.

Return values CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED _IN,

CKR ARGUMENTS BAD.

Example see C_VerifyFinal.

C_Verify

CK_DEFI NE_FUNCTI ON(CK_RV, C_Verify)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pDat a,

CK_ULONG ul Dat aLen,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat urelLen

)

C_Veify veifies a Sgnature in a sngle-part operation, where the sgnature is an gppendix to
the data. hSession isthe sesson’s handle; pData points to the data; ulDatalen is the length of
the data; pSgnature points to the signature; ulSgnaturelen isthe length of the Sgnature.

The verification operation must have been initidized with C_Verifylnit. A cdl to C_Verify
aways terminates the active verification operation.

A successtul cdl to C_Verify should return ether the vdue CKR_OK (indicating that the
supplied signature is valid) or CKR_SIGNATURE_INVALID (indiceting that the supplied
ggnature isinvaid). If the Sgnature can be seen to be invaid purely on the bass of its length,
then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active
sgning operation is terminated.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 188

C Veify can not be used to terminate a multi-part operation, and must be cdled after
C Verifylnit without intervening C VerifyUpdate cals.

For most mechanisms, C_Verify is equivalent to a sequence of C_VerifyUpdate operations
followed by C_VerifyFinal.

Return values CKR_CRYPTOKI_NOT _INITIALIZED, CKR DATA_INVALID,
CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR ARGUMENTS BAD.

Example see C_VerifyFinal for an example of amilar functions.

C_VerifyUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyUpdate) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul Part Len

)

C_VerifyUpdate continues a multiple-part verification operation, processng another data part.
hSession is the sesson’s handle, pPart points to the data part; ulPartLen is the length of the
data part.

The verificaion operation must have been initidized with C_Verifylnit. This function may be
cdled any number of timesin successon. A cdl to C_VerifyUpdate which results in an error
terminates the current verification operation.

Return values CKR_CRYPTOKI_NOT _INITIALIZED, CKR DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example see C_VerifyFinal.

Copyright © 1994-1999 RSA Laboratories

Page 189

C_VeifyFinal

CK_DEFI NE_FUNCTI ON(CK_RV, C_VerifyFinal)(
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen

)

C_VerifyFinal finishes a multiple-part verification operation, checking the Sgnature. hSession
isthe sesson’s handle; pSignature points to the Sgnature; ulSgnaturelen is the length of the
sgnature.

The verification operation must have been initidized with C Verifylnit. A cdl to
C_VeifyFinal dways terminates the active verification operation.

A successful cdl to C_VerifyFinal should return ether the vdue CKR_OK (indicating that the
supplied signature is vaid) or CKR_SIGNATURE_INVALID (indicating that the supplied
sgnaure isinvaid). If the Sgnature can be seen to be invalid purdly on the basis of its length,
then CKR_SIGNATURE_LEN_RANGE should be returned. In any of these cases, the active
verifying operation is terminated.

Return values CKR_CRYPTOKI_NOT _INITIALIZED, CKR DATA_LEN_RANGE,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE_INVALID,
CKR_SIGNATURE_LEN_RANGE, CKR ARGUMENTS BAD.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM nechani sm = {
CKM DES MAC, NULL PTR, O
¥
CK BYTE data[] = {...};
CK_BYTE nac|[4];
CK_RV rv;

.rv = C Verifylnit(hSession, &mrechanism hKey);
if (rv == CKR_OK) {
rv = C VerifyUpdat e(hSessi on, data, sizeof(data));

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 190

.rv = C VerifyFinal (hSession, mac, sizeof(mc));

}

C_VerifyRecoverInit

CK_DEFI NE_FUNCTI ON(CK_RV, C_VerifyRecoverlnit)/(
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM PTR pMechani sm
CK_OBJECT_HANDLE hKey

)

C_VerifyRecover I nit initidizes a Sgnature verification operation, where the data is recovered
from the sgnature. hSession is the sesson’s handle; pMechanism points to the structure that
Specifies the verification mechanism; hKey is the handle of the verification key.

The CKA_VERIFY_RECOVER dtribute of the verification key, which indicates whether the
key supports verification where the data is recovered from the signature, must be TRUE.

After cdling C_VerifyRecover|nit, the gpplication may cdl C_VerifyRecover to verify a
ggnature on datain asingle part. The verification operation is active until the application uses a
cdl to C_VerifyRecover to actually obtain the recovered message.

Return vaues: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY,

CKR_KEY_FUNCTION_NOT PERMITTED, CKR_KEY HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER NOT LOGGED IN,

CKR ARGUMENTS BAD.

Example s2e C_VerifyRecover.

Copyright © 1994-1999 RSA Laboratories

Page 191

C_VerifyRecover

CK_DEFI NE_FUNCTI ON(CK_RV, C VerifyRecover) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSi gnat ur e,
CK_ULONG ul Si gnat ur eLen,
CK_BYTE_PTR pDat a,
CK_ULONG _PTR pul Dat aLen

)

C_VeifyRecover verifies a Sgnature in a Sngle-part operation, where the data is recovered
from the ggnature. hSession is the sesson’'s handle, pSignature points to the signature;
ulSgnaturelen is the length of the Sgnature; pData points to the location that receives the
recovered data; and pulDatalen points to the location that holds the length of the recovered
data.

C_VerifyRecover uses the convention described in Section 11.2 on producing outpui.

The verification operation must have been initidized with C_VerifyRecoverinit. A cdl to
C_VerifyRecover dways teminates the active verification operation unless it returns
CKR_BUFFER TOO SMALL or isasuccessful cdl (i.e., one which returns CKR_OK) to
determine the length of the buffer needed to hold the recovered data.

A successful cdl to C_VerifyRecover should return ether the vdue CKR_OK (indicating that
the supplied sgnature is vdid) or CKR_SIGNATURE_INVALID (indicating that the supplied
sgnaure isinvaid). If the Sgnature can be seen to be invalid purdy on the basis of its length,
then CKR_SIGNATURE _LEN RANGE should be returned. The return codes
CKR_SIGNATURE_INVALID and CKR_SIGNATURE LEN _RANGE have a higher
priority than the return code CKR_BUFFER_TOO_SMALL, i.e,if C_VerifyRecover is
supplied with an invaid sgnature, it will never return CKR_BUFFER _TOO_SMALLL.

Return values CKR_BUFFER_TOO _SMALL, CKR_CRYPTOKI_NOT INITIALIZED,
CKR_DATA_INVALID, CKR_DATA_LEN_RANGE, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SIGNATURE LEN_RANGE,
CKR_SIGNATURE_INVALID, CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_MECHANI SM mechani sm = {
CKM_RSA 9796, NULL_PTR, O

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 192

¥

CK _BYTE data[] = {...};
CK_ULONG ul Dat aLen;
CK_BYTE signature[128];
CK_RV rv;

rv = C_VerifyRecoverlnit(hSession, &mrechanism hKey);
if (rv == CKR_OK) {
ul Dat aLen = si zeof (data);
rv = C VerifyRecover (
hSessi on, signature, sizeof(signature), data,
&ul Dat aLen) ;

}
11.13 Dual-function cryptographic functions

Cryptoki provides the following functions to peform two cryptographic operations
“dmultaneoudy” within a sesson. These functions are provided S0 as to avoid unnecessarily
passing data back and forth to and from a token.

C_DigestEncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C _Di gest Encrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul Part Len,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG_PTR pul Encrypt edPart Len

),

C_DigestEncryptUpdate continues multiple-part digest and encryption operations, processing
another data part. hSession is the sesson’s handle; pPart points to the data part; ulPartLen is
the length of the data part; pEncryptedPart points to the location that receives the digested and
encrypted data part; pul EncryptedPartLen points to the location that holds the length of the
encrypted data part.

C_DigestEncryptUpdate uses the convention described in Section 11.2 on producing output.
If a C_DigestEncryptUpdate cal does not produce encrypted output (because an error
occurs, or because pEncryptedPart has the value NULL_PTR, or because

Copyright © 1994-1999 RSA Laboratories

Page 193

pul EncryptedPartLen istoo smdl to hold the entire encrypted part output), then no plaintext is
passed to the active digest operation.

Digest and encryption operations must both be active (they must have been initiglized with
C_Digestlnit and C_Encryptlinit, respectively). This function may be caled any number of
times in successon, and may be interspersed with C_DigestUpdate, C_DigestKey, and
C EncryptUpdate cdls (it would be somewhat unusud to intersperse cdls to
C_DigestEncryptUpdate with cdlsto C_DigestK ey, however).

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR _DATA_LEN RANGE, CKR_DEVICE_ERROR, CKR _DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST _MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hKey;

CK_BYTE iv[8];

CK_MECHANI SM di gest Mechani sm = {
CKM_MD5, NULL_PTR, O

¥

CK_MECHANI SM encrypti onMechani sm = {
CKM_DES_ECB, iv, sizeof(iv)
¥

CK_BYTE encr ypt edDat a[BUF_SZ] ;
CK_ULONG ul Encrypt edDat aLen;
CK_BYTE di gest[16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a[(2* BUF_SZ) +8] ;
CK_RV rv;

int i;

menmset (iv, 0, sizeof(iv));

menset (data, ‘A, ((2*BUF_SZ)+5));

rv = C Encryptlnit(hSession, &encryptionMechani sm
hKey) ;

if (rv I'= CKR_OK) {

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

}
rv = C Digestlnit(hSession, &digestMechanisn;
if (rv I'= CKR_OK) {

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Di gest Encrypt Updat e(

hSessi on,

&dat a[0], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen) ;

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Di gest Encrypt Updat e(

hSessi on,

&dat a[BUF_SZ], BUF_SzZ,

encrypt edDat a, &ul Encrypt edDat aLen) ;

194

/*
* The |l ast portion of the buffer needs to be handl ed
with
* gseparate calls to deal with padding issues in ECB
node

*/

/* First, conplete the digest on the buffer */
rv = C_Di gest Updat e(hSessi on, &data[BUF_SZ*2], 5);

ul Di gest Len = si zeof (di gest);
rv = C_DigestFinal (hSessi on, digest, &ulDi gestlLen);

/* Then, pad last part with 3 0Ox00 bytes, and conplete

encryption */
for(i=0;i<3;i++)

Copyright © 1994-1999 RSA Laboratories

Page 195

dat a[((BUF_Sz*2) +5) +i] = 0x00;

/* Now, get second-to-|ast piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

&dat a[BUF_Sz*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen);

/* Get |ast piece of ciphertext (should have length O,
here) */

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

rv = C _EncryptFinal (hSession, encryptedDat a,
&ul Encr ypt edDat aLen) ;

C_DecryptDigestUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Di gest Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG _PTR pul PartLen

)

C_DecryptDigestUpdate continues a multiple-pat combined decryption and digest
operation, processing another data part. hSession is the session’s handle; pEncryptedPart
points to the encrypted data part; ulEncryptedPartLen is the length of the encrypted data part;
pPart points to the location that receives the recovered data part; pulPartLen points to the
location that holds the length of the recovered data part.

C_DecryptDigestUpdate uses the convention described in Section 11.2 on producing output.
If a C_DecryptDigestUpdate cal does not produce decrypted output (because an error
occurs, or because pPart has the value NULL_PTR, or because pulPartLen is too smdl to
hold the entire decrypted part output), then no plaintext is passed to the active digest operation.

Decryption and digesting operations must both be active (they must have been initidized with
C_Decryptlnit and C_DigestInit, respectively). This function may be cdled any number of
times in succession, and may be interspersed with C_DecryptUpdate, C_DigestUpdate, and
C Digestkey cdls (it would be somewhat wunusud to intersperse cdls to
C_DigestEncryptUpdate with cdlsto C_DigestK ey, however).

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 196

Useof C_DecryptDigestUpdate involves a pipdining issue that does not arise when using
C_DigestEncryptUpdate, the “inverse function” of C_DecryptDigestUpdate. This is
because when C_DigestEncryptUpdate is cdled, precisely the same input is passed to both
the active digesting operation and the active encryption operation; however, when
C_DecryptDigestUpdate is cdled, the input passed to the active digesting operation is the
output of the active decryption operation. This issue comes up only when the mechanism used
for decryption performs padding.

In particular, envison a 24-byte ciphertext which was obtained by encrypting an 18-byte
plaintext with DES in CBC mode with PKCS padding. Consder an application which will
smultaneoudy decrypt this ciphertext and digest the origind plaintext thereby obtained.

After initidizing decryption and digesting operdtions, the application passes the 24-byte
ciphertext (3 DES blocks) into C_DecryptDigestUpdate. C_DecryptDigestUpdate returns
exactly 16 bytes of plaintext, since at this point, Cryptoki doesn't know if there's more
ciphertext coming, or if the last block of ciphertext held any padding. These 16 bytes of
plaintext are passed into the active digesting operation.

Since there is no more ciphertext, the gpplication cals C_DecryptFinal. This tels Cryptoki
that thereé's no more ciphertext coming, and the cdl returns the last 2 bytes of plaintext.
However, since the active decryption and digesting operations are linked only through the
C_DecryptDigestUpdate cdl, these 2 bytes of plaintext are not passed on to be digested.

A cdl to C_DigestFinal, therefore, would compute the message digest of the first 16 bytes of
the plaintext, not the message digest of the entire plantext. It is crucid that, before
C_DigestFinal is cdled, the last 2 bytes of plaintext get passed into the active digesting
operation viaaC_DigestUpdate cdl.

Because of this, it is critica that when an application uses a padded decryption mechanism with
C_DecryptDigestUpdate, it knows exactly how much plaintext has been passed into the
active digesting operation. Extreme caution is warranted when using a padded decryption
mechanism with C_DecryptDigestUpdate.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_ENCRYPTED_DATA_INVALID, CKR_ENCRYPTED_DATA_LEN_RANGE,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_OK,
CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example:

#define BUF_SZ 512

Copyright © 1994-1999 RSA Laboratories

Page 197

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;

CK_BYTE i v[8];

CK_MECHANI SM decrypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)

¥
CK_MECHANI SM di gest Mechani sm = {
CKM_MD5, NULL_PTR, O

¥
CK_BYTE encrypt edDat a[(2* BUF_SZ) +8] ;
CK_BYTE di gest[16];

CK_ULONG ul Di gest Len;

CK_BYTE dat a[BUF_SZ] ;

CK_ULONG ul Dat aLen, ul Last Updat eSi ze;
CK_ RV rv;

menmset (iv, 0, sizeof(iv));

menset (encryptedData, ‘A, ((2*BUF_SZ)+8));

rv = C_Decryptlnit(hSession, &decryptionMechani sm
hKey) ;

if (rv I'= CKR.OK) {

}
rv = C Digestlnit(hSession, &digestMechanism;
if (rv I'= CKR_K){

}

ul Dat aLen = si zeof (dat a);

rv = C _Decrypt Di gest Updat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
dat a, &ul Dat aLen);

ul Dat aLen = si zeof (dat a);

rv = C _Decrypt Di gest Updat e(
hSessi on,
&encrypt edDat a[BUF_SZ], BUF_SZ,
dat a, &ul Dat aLen);

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

/*

198

* The | ast portion of the buffer needs to be handl ed

wi th

* gseparate calls to deal with padding issues in ECB

node
*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (data);
rv = C_Decrypt Updat e(

hSessi on,

&encrypt edDat a[BUF_SZ* 2], 8,

dat a, &ul Last UpdateSi ze);

)* Get | ast piece of plaintext (should have | ength O,

here) */
ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C _DecryptFinal (hSessi on, &dataf ul Last Updat eSi ze],

&ul Dat aLen);
if (rv I'= CKR_OK) {

}

/* Digest |last bit of plaintext */
rv = C _Di gest Updat e(hSessi on, &dat a[BUF_SZ*2], 5);
if (rv 1= CKR_OK) {

ul Di gest Len = si zeof (di gest);

rv = C_DigestFinal (hSession, digest, &ul Di gestlLen);

if (rv I'= CKR_OK) {

Copyright © 1994-1999 RSA Laboratories

Page 199

C_SignEncryptUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C_Si gnEncrypt Updat e) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pPart,
CK_ULONG ul Part Len,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG _PTR pul Encrypt edPart Len

)

C_SignEncryptUpdate continues a multiple-pat combined dgnature and encryption
operation, processing another data part. hSession is the sesson’s handle; pPart points to the
data part; ulPartLen is the length of the data part; pEncryptedPart points to the location that
receives the digested and encrypted data part; and pul EncryptedPart points to the location
that holds the length of the encrypted data part.

C_SignEncryptUpdate uses the convention described in Section 11.2 on producing output. If
aC_SignEncryptUpdate call does not produce encrypted output (because an error occurs, or
because pEncryptedPart hasthe value NULL_PTR, or because pul EncryptedPartLen is too
smdl to hold the entire encrypted part output), then no plaintext is passed to the active sgning
operation.

Sgnature and encryption operations must both be active (they must have been initidized with
C_Signinit and C_Encryptinit, respectively). This function may be cdled any number of
times in succession, and may be interspersed with C_SignUpdate and C_EncryptUpdate
cdls.

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR _DATA_LEN RANGE, CKR_DEVICE_ERROR, CKR DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST MEMORY,
CKR_OK, CKR_OPERATION_NOT_INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;

CK_OBJECT_HANDLE hEncrypti onKey, hMacKey;

CK_BYTE i v[8];

CK_MECHANI SM si gnMechani sm = {
CKM_DES_MAC, NULL_PTR, O

b

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 200

CK_MECHANI SM encrypti onMechani sm = {
CKM_DES_ECB, iv, sizeof(iv)
¥

CK_BYTE encr ypt edDat a[BUF_SZ] ;
CK_ULONG ul Encrypt edDat aLen
CK_BYTE MAC] 4] ;

CK_ULONG ul MaclLen;

CK_BYTE dat a[(2* BUF_SZ) +8] ;
CK_RV rv;

int i;

menset (iv, 0, sizeof(iv));

nmenset (data, ‘A, ((2*BUF_SZ)+5));

rv = C Encryptlnit(hSession, &encryptionMechani sm
hEncrypti onKey);

if (rv I'= CKR_OK) {

}
rv = C_Signlnit(hSession, &signMechani sm hMacKey);
if (rv I'= CKR_OK) {

}

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_SignEncrypt Updat e(

hSessi on,

&dat a[0], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen);

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_SignEncrypt Updat e(

hSessi on,

&dat a[BUF_SZ], BUF_SZ,

encrypt edDat a, &ul Encrypt edDat aLen) ;

/*

Copyright © 1994-1999 RSA Laboratories

Page 201

* The | ast portion of the buffer needs to be handl ed
with

* gseparate calls to deal with padding issues in ECB
node

*/

/* First, conplete the signature on the buffer */
rv = C_SignUpdat e(hSessi on, &data[BUF_SzZ*2], 5);

ul MacLen = si zeof (MAC);
rv = C_DigestFinal (hSessi on, MAC, &ul MacLen);

/* Then pad last part with 3 0x00 bytes, and conplete
encryption */
for(i=0;i<3;i++)
dat a[((BUF_Sz*2) +5)+i] = 0x00;

/* Now, get second-to-|ast piece of ciphertext */
ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;
rv = C_Encrypt Updat e(

hSessi on,

&dat a[BUF_Sz*2], 8,

encrypt edDat a, &ul Encrypt edDat aLen) ;

/* Get |ast piece of ciphertext (should have length O,
here) */

ul Encrypt edDat aLen = si zeof (encrypt edDat a) ;

rv = C_EncryptFinal (hSession, encryptedDat a,
&ul Encr ypt edDat aLen) ;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 202

C_DecryptVerifyUpdate

CK_DEFI NE_FUNCTI ON(CK_RV, C Decrypt Veri fyUpdate) (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pEncrypt edPart,
CK_ULONG ul Encrypt edPart Len,
CK_BYTE_PTR pPart,
CK_ULONG _PTR pul PartLen

)

C_DecryptVerifyUpdate continues a multiple-pat combined decryption and verification
operation, processing another data part. hSession is the session’s handle; pEncryptedPart
points to the encrypted data; ulEncryptedPartLen is the length of the encrypted data; pPart
points to the location that receives the recovered data; and pulPartLen points to the location
that holds the length of the recovered data.

C_DecryptVerifyUpdate uses the convention described in Section 11.2 on producing output.
If a C_DecryptVerifyUpdate cal does not produce decrypted output (because an error
occurs, or because pPart has the value NULL_PTR, or because pulPartLen is too smdl to
hold the entire encrypted part output), then no plaintext is passed to the active verification
operation.

Decryption and signature operations must both be active (they must have been initidized with
C_Decryptlnit and C_Verifylnit, respectively). This function may be caled any number of
times in succession, and may be interspersed with C_DecryptUpdate and C_VerifyUpdate
cdls.

Useof C_DecryptVerifyUpdate involves a pipdining issue that does not arise when using
C_SignEncryptUpdate, the “inverse function” of C_DecryptVerifyUpdate. Thisis because
when C_SignEncryptUpdate is cdled, precisely the same input is passed to both the active
ggning operation and the active encryption operaion; however, when
C_DecryptVerifyUpdate is cdled, the input passed to the active verifying operation is the
output of the active decryption operation. This issue comes up only when the mechanism used
for decryption performs padding.

In particular, envison a 24-byte ciphertext which was obtained by encrypting an 18-byte
plantext with DES in CBC mode with PKCS padding. Consider an gpplication which will
smultaneoudy decrypt this ciphertext and verify a sgnature on the originad plaintext thereby
obtained.

After initidizing decryption and verification operations, the gpplication passes the 24-byte
ciphertext (3 DES blocks) into C_DecryptVerifyUpdate. C_DecryptVerifyUpdate returns
exactly 16 bytes of plaintext, snce a this point, Cryptoki doesn't know if theré's more
ciphertext coming, or if the last block of ciphertext hed any padding. These 16 bytes of
plaintext are passed into the active verification operation.

Copyright © 1994-1999 RSA Laboratories

Page 203

Since there is no more ciphertext, the gpplication calls C_DecryptFinal. This tells Cryptoki
that theré's no more ciphertext coming, and the cdl returns the last 2 bytes of plaintext.
However, since the active decryption and verification operations are linked only through the
C_DecryptVerifyUpdate cal, these 2 bytes of plaintext are not passed on to the verification
mechanism.

A cdl to C_VerifyFinal, therefore, would verify whether or not the sgnature supplied isavdid
ggnature on the first 16 bytes of the plaintext, not on the entire plaintext. It is crucid thét,
before C_VerifyFinal is cdled, the last 2 bytes of plaintext get passed into the active
verification operation viaaC_VerifyUpdate cal.

Because of this, it is critica that when an application uses a padded decryption mechanism with
C_DecryptVerifyUpdate, it knows exactly how much plaintext has been passed into the
active verification operation. Extreme caution is warranted when using a padded
decryption mechanismwith C_DecryptVerifyUpdate

Return values: CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR _DATA_LEN RANGE, CKR_DEVICE_ERROR, CKR _DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_ENCRYPTED DATA_INVALID,
CKR_ENCRYPTED DATA_LEN RANGE, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_OK, CKR_OPERATION_NOT _INITIALIZED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR ARGUMENTS BAD.

Example:
#define BUF_SZ 512

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hDecrypti onKey, hMacKey;
CK_BYTE i v[8];
CK_MECHANI SM decrypti onMechani sm = {
CKM DES ECB, iv, sizeof(iv)
¥
CK_MECHANI SM veri fyMechani sm = {
CKM_DES_MAC, NULL_PTR, O
¥
CK_BYTE encrypt edDat a[(2* BUF_SZ) +8] ;
CK_BYTE MAC[4] ;
CK_ULONG ul MacLen;
CK_BYTE dat a[BUF_SZ] ;
CK_ULONG ul Dat aLen, ul Last Updat eSi ze;
CK_ RV rv;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 204

menset (iv, 0, sizeof(iv));

menset (encryptedData, ‘A, ((2*BUF_SZ)+8));

rv = C Decryptlnit(hSession, &decryptionMechani sm
hDecrypti onKey) ;

if (rv = CKR_OK) {

}

rv = C Verifylnit(hSession, &verifyMechani sm
hMVacKey) ;

if (rv !'= CKR_CK) {

}

ul Dat aLen = si zeof (dat a);

rv = C _Decrypt VerifyUpdat e(
hSessi on,
&encrypt edDat a[0], BUF_SZ,
dat a, &ul Dat aLen);

ul Dat aLen = si zeof (dat a);

rv = C _Decrypt VerifyUpdat e(
hSessi on,
&encrypt edDat a[BUF_SZ], BUF_SZ,
dat a, &ul datalLen);

/*
* The |l ast portion of the buffer needs to be handl ed
with
* gseparate calls to deal with padding issues in ECB
node
*/

/* First, conplete the decryption of the buffer */
ul Last Updat eSi ze = si zeof (data);
rv = C_Decrypt Updat e(

hSessi on,

&encrypt edDat a[BUF_SZ* 2], 8,

dat a, &ul Last Updat eSi ze);

Copyright © 1994-1999 RSA Laboratories

Page 205

/* Get last little piece of plaintext. Should have
l ength 0 */

ul Dat aLen = si zeof (dat a) - ul Last Updat eSi ze;

rv = C_DecryptFinal (hSession, &data[ul Last Updat eSi ze],
&ul Dat aLen) ;

if (rv I'= CKR_OK) {

}

/* Send last bit of plaintext to verification
operation */

rv = C VerifyUpdat e(hSessi on, &data[BUF_SzZ*2], 5);

if (rv = CKR_OK) {

}
rv = C VerifyFinal (hSession, MAC, ul MacLen);

if (rv == CKR_SI GNATURE_| NVALI D) {

}

11.14 Key management functions

Cryptoki provides the following functions for key management:

C_GenerateKey

CK_DEFI NE_FUNCTI ON(CK_RV, C _Gener at eKey) (
CK_SESSI ON_HANDLE hSessi on
CK_MECHANI SM_PTR pMechani sm
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Count,
CK_OBJECT_HANDLE_PTR phKey

)

C_GenerateK ey generates a secret key, creating a new key object. hSession is the sesson’s
handle pMechanism points to the key generation mechanism; pTemplate points to the
template for the new key; ulCount is the number of attributes in the template; phKey points to
the location that recaives the handle of the new key.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 206

Since the type of key to be generated is implicit in the key generation mechanism, the template
does not need to supply a key type. If it does supply a key type which is inconsstent with the
key genegraion mechanism, C_GenerateKey fals and retuns the eror code
CKR_TEMPLATE_INCONSISTENT. The CKA_CLASS dtribute istreated smilarly.

If acdl to C_GenerateK ey cannot support the precise template supplied to it, it will fal and
return without creating any key object.

The key object created by a successful cal to C_GenerateK ey will have its CKA_LOCAL
attribute set to TRUE.

Return values CKR_ATTRIBUTE_READ ONLY, CKR ATTRIBUTE TYPE_INVALID,
CKR_ATTRIBUTE_VALUE INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN, CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hKey;
CK_MECHANI SM mechani sm = {

CKM DES _KEY_GEN, NULL_PTR, O

¥
CK_RV ryv;

rv = C_Generat eKey(hSessi on, &mechani sm NULL_PTR, O,
&hKey) ;
if (rv == CKR_OK) {

Copyright © 1994-1999 RSA Laboratories

Page 207

C_GenerateKeyPair

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cener at eKeyPair) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_ATTRI BUTE_PTR pPubl i cKeyTenpl at e,
CK_ULONG ul Publ i cKeyAttri buteCount,
CK_ATTRI BUTE_PTR pPri vat eKeyTenpl at e,
CK_ULONG ul Privat eKeyAttri but eCount,
CK_OBJECT_HANDLE PTR phPubl i cKey,
CK_OBJECT_HANDLE_PTR phPri vat eKey

),

C_GenerateK eyPair generates a public/private key pair, creating new key objects. hSession
is the sesson's handle, pMechanism points to the key generation mechanism;
pPublicKeyTemplate points to the template for the public key; ulPublicKeyAttributeCount is
the number of atributes in the public-key template, pPrivateKeyTemplate points to the
template for the private key; ulPrivateKeyAttributeCount is the number of attributes in the
private-key template; phPublicKey points to the location that receives the handle of the new
public key; phPrivateKey points to the location that receives the handle of the new private key.

Since the types of keys to be generated are implicit in the key par generation mechanism, the
templates do not need to supply key types. If one of the templates does supply a key type
which is incondgtent with the key generation mechanism, C_GenerateKeyPair fals and
returns the error code CKR_TEMPLATE _INCONSISTENT. The CKA_CLASS attribute is
trested Smilarly.

If acdl to C_GenerateK eyPair cannot support the precise templates supplied to it, it will fall
and return without creeting any key objects.

A cdl to C_GenerateK eyPair will never cregte just one key and return. A cdl can fail, and
creste no keys, or it can succeed, and create a matching public/private key pair.

The key objects created by a successful cdl to C_GenerateKeyPair will have ther
CKA_LOCAL attributes set to TRUE.

Note carefully the order of the arguments to C_GenerateKeyPair. The last two
arguments do not have the same order as they did in the original Cryptoki Version 1.0
document. The order of these two arguments has caused some unfortunate confusion.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 208

CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_USER_NOT_LOGGED_IN, CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPrivat eKey;
CK_MECHANI SM mechani sm = {

CKM_RSA PKCS_KEY_PAI R _GEN, NULL_PTR, 0
3

CK_ULONG modul usBits = 768;

CK_BYTE publicExponent[] = { 3 };

CK_BYTE subject[] = {...};

CK BYTE id[] = {123};

CK_BBOOL true = TRUE;

CK_ATTRI BUTE publ i cKeyTenpl ate[] = {
{ CKA_ENCRYPT, &true, sizeof(true)},
{CKA_VERI FY, &true, sizeof(true)},
{CKA WRAP, &true, sizeof(true)},
{CKA_MODULUS BI TS, &nmodul usBits,

si zeof (modul usBits)},
{ CKA_PUBLI C_EXPONENT, publicExponent, sizeof
(publ i cExponent) }

¥

CK_ATTRI BUTE privat eKeyTenpl ate[] = {
{CKA _TOKEN, &true, sizeof(true)},
{CKA PRI VATE, &true, sizeof(true)},
{ CKA_SUBJECT, subject, sizeof(subject)},
{CKA ID, id, sizeof(id)},
{CKA_SENSI TI VE, &true, sizeof(true)},
{ CKA_DECRYPT, &true, sizeof(true)},
{CKA _SIGN, &true, sizeof(true)},
{ CKA_UNWRAP, &true, sizeof(true)}

3

CK_RV ryv;

rv = C_Gener at eKeyPai r (
hSessi on, &mechani sm
publ i cKeyTenpl ate, 5,
privat eKeyTenpl ate, 8,
&hPubl i cKey, &hPrivateKey);
if (rv == CKR_OK) {

Copyright © 1994-1999 RSA Laboratories

Page 209

}
C_WrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_W apKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hW appi ngKey,
CK_OBJECT_HANDLE hKey,

CK_BYTE_PTR pW appedKey,
CK_ULONG_PTR pul W appedKeyLen

)

C_WrapKey wraps (i.e., encrypts) a private or secret key. hSession is the sesson’s handle;
pMechanism points to the wrapping mechanism; hWrappingKey is the handle of the wrapping
key; hKey is the handle of the key to be wrapped; pWrappedKey points to the location that
receives the wrapped key; and pulWrappedKeyLen points to the location that receives the

length of the wrapped key.

C_WrapK ey uses the convention described in Section 11.2 on producing outpuit.

The CKA_WRAP dtribute of the wrapping key, which indicates whether the key supports
wrapping, must be TRUE. The CKA_EXTRACTABLE attribute of the key to be wrapped
must dso be TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its having
its CKA_EXTRACTABLE attribute set to TRUE, then C_WrapKey fals with error code
CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the specified wrapping key
and mechanian soldy because of its length, then C_WrapKey fals with error code
CKR_KEY_SIZE RANGE.

C_WrapKey can be usad in the following Stuetions
To wrap any secret key with an RSA public key.

To wrap any secret key with any other secret key other than a SKIPJACK, BATON, or
JUNIPER key.

To wrap a SKIPJACK, BATON, or JUNIPER key with another SKIPJACK, BATON,
or JUNIPER key (the two keys need not be the same type of key).

To wrap an RSA, DiffieHdlman, or DSA private key with any secret key other than a
SKIPJACK, BATON, or JUNIPER key.

Towrap aKEA or DSA private key with a SKIPJACK key.

Of course, tokens vary in which types of keys can actualy be wrapped with which mechanisms.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 210

Return Vaues. CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_KEY_HANDLE_INVALID,
CKR_KEY _NOT _WRAPPABLE, CKR_KEY_ SIZE RANGE,
CKR_KEY_UNEXTRACTABLE, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,
CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,

CKR_USER _NOT_LOGGED_IN, CKR_ WRAPPING_KEY HANDLE_INVALID,
CKR_WRAPPING_KEY_SIZE_RANGE,

CKR_ WRAPPING_KEY TYPE_INCONSISTENT, CKR ARGUMENTS BAD.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hW appi ngKey, hKey;
CK_MECHANI SM mechani sm = {
CKM_DES3_ECB, NULL_PTR, O
¥
CK_BYTE wr appedKey| 8] ;
CK_ULONG ul W appedKeyLen;
CK_RV rv;

ul WappedKeyLen = si zeof (wr appedKey) ;
rv = C_WapKey(

hSessi on, &mechani sm

hW appi ngKey, hKey,

wr appedKey, &ul W appedKeyLen);
if (rv == CKR_OK) {

Copyright © 1994-1999 RSA Laboratories

Page 211

C_UnwrapKey

CK_DEFI NE_FUNCTI ON(CK_RV, C_Unwr apKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hUnwr appi ngKey,
CK_BYTE_PTR pW appedKey,
CK_ULONG ul W appedKeyLen,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE_PTR phKey

),

C_UnwrapKey unwraps (i.e. decrypts) a wrapped key, creating a new private key or secret
key object. hSession is the sesson’'s handle, pMechanism points to the unwrapping
mechanism; hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points to
the wrapped key; ulWrappedKeyLen is the length of the wrapped key; pTemplate points to
the template for the new key; ulAttributeCount is the number of attributes in the template;
phKey points to the location that receives the handle of the recovered key.

The CKA_UNWRAP dtribute of the unwrgpping key, which indicates whether the key
supports unwrapping, must be TRUE.

The new key will have the CKA_ALWAYS SENSITIVE dtribute set to FALSE, and the
CKA _EXTRACTABLE attribute set to TRUE.

When C_UnwrapKey is used to unwrap a key with the CKM_KEY_WRAP_SET_OAEP
mechanism (see Section 12.32.1), additional “extra datal’ is decrypted &t the same time that the
key isunwrapped. The return of this data follows the convention in Section 11.2 on producing
output. If the extra data is not returned from a cal to C_UnwrapKey (either because the call
was only to find out how large the extra data is, or because the buffer provided for the extra
datawastoo smdl), then C_UnwrapK ey will not create anew key, either.

If acdl to C_UnwrapKey cannot support the precise template supplied to it, it will fal and
return without cresting any key object.

The key object created by a successful cal to C_UnwrapKey will have its CKA_LOCAL
attribute set to FALSE.

Return values CKR_ATTRIBUTE_READ_ONLY, CKR_ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE_VALUE_INVALID, CKR_ BUFFER TOO SMALL,
CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR _DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST MEMORY, CKR_MECHANISM_INVALID,
CKR_MECHANISM_PARAM_INVALID, CKR_OK, CKR_OPERATION_ACTIVE,

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 212

CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID,
CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_UNWRAPPING_KEY HANDLE_INVALID,

CKR_UNWRAPPING KEY_SIZE RANGE,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT,

CKR_USER _NOT_LOGGED_IN, CKR WRAPPED KEY _INVALID,
CKR_WRAPPED KEY_LEN_RANGE, CKR ARGUMENTS BAD.

Example:

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hUnwr appi ngKey, hKey;
CK_MECHANI SM mechani sm = {

CKM DES3_ECB, NULL_PTR, O

3
CK_BYTE wr appedKey[8] = {...};
CK_OBJECT_CLASS keyCl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;

CK BBOOL true = TRUE;

CK_ATTRI BUTE tenplate[] = {

{CKA _CLASS, &keyCl ass, sizeof(keyC ass)},
{CKA_KEY_TYPE, &keyType, sizeof(keyType)},
{ CKA_ENCRYPT, &true, sizeof(true)},

{ CKA_DECRYPT, &true, sizeof(true)}

}1
CK_ RV rv;

rv = C_Unw apKey(

hSessi on, &nechani sm hUnwr appi ngKey,

wr appedKey, sizeof (wappedKey), tenplate, 4, &hKey);
if (rv == CKR_OK) {

Copyright © 1994-1999 RSA Laboratories

Page 213

C_DeriveKey

CK_DEFI NE_FUNCTI ON(CK_RV, C Deri veKey) (
CK_SESSI ON_HANDLE hSessi on,
CK_MECHANI SM_PTR pMechani sm
CK_OBJECT_HANDLE hBaseKey,
CK_ATTRI BUTE_PTR pTenpl at e,
CK_ULONG ul Attri but eCount,
CK_OBJECT_HANDLE_PTR phKey

)

C_DeriveK ey derives a key from a base key, creating a new key object. hSession is the
sesson’'s handle; pMechanism points to a structure that specifies the key derivation mechaniam;
hBaseKey is the handle of the base key; pTemplate points to the template for the new key;
ul AttributeCount is the number of atributes in the template; and phKey points to the location
that receives the handle of the derived key.

Thevauesof the CK_SENSITIVE, CK_ALWAYS SENSITIVE, CK_EXTRACTABLE,
and CK_NEVER_EXTRACTABLE attributes for the base key affect the values that these
attributes can hold for the newly-derived key. See the description of each particular key-
derivation mechanism in Section 11.17.2 for any condraints of this type.

If acdl to C_DeriveKey cannot support the precise template supplied to it, it will fal and
return without cresting any key object.

The key object created by a successful cdl to C_DeriveKey will have its CKA_LOCAL
attribute set to FALSE.

Return values: CKR_ATTRIBUTE_READ_ONLY, CKR ATTRIBUTE_TYPE_INVALID,
CKR_ATTRIBUTE VALUE_INVALID, CKR_CRYPTOKI_NOT _INITIALIZED,
CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_KEY_HANDLE_INVALID,
CKR_KEY_SIZE_RANGE, CKR KEY_TYPE_INCONSISTENT,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ ONLY,
CKR_TEMPLATE_INCOMPLETE, CKR TEMPLATE_INCONSISTENT,
CKR_TOKEN_WRITE_PROTECTED, CKR_USER NOT_LOGGED _IN,

CKR ARGUMENTS BAD.

Example

CK_SESSI ON_HANDLE hSessi on;
CK_OBJECT_HANDLE hPubl i cKey, hPrivateKey, hKey;
CK_MECHANI SM keyPai r Mechani sm = {

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 214

CKM DH_PKCS_KEY_PAI R_GEN, NULL_PTR, O
¥
CK_BYTE prinme[] ={...};

CK_BYTE base[] ={...};

CK_BYTE publicVal ue[128];

CK_BYTE ot her Publ i cVval ue[128] ;

CK_MECHANI SM mechani sm = {

CKM DH_PKCS_ DERI VE, ot her Publi cVal ue,
si zeof (ot her Publ i cVal ue)

CK_ATTRI BUTE pTenpl ate[] = {

CKA VALUE, &publicVval ue, sizeof(publicValue)}
¥
CK_OBJECT_CLASS keyCl ass = CKO_SECRET_KEY;
CK_KEY_TYPE keyType = CKK_DES;

CK_BBOOL true = TRUE;
CK_ATTRI BUTE publicKeyTenpl ate[] = {

{CKA PRI ME, prinme, sizeof(prinme)},

{ CKA_BASE, base, sizeof (base)}
¥
CK_ATTRI BUTE privateKeyTenpl ate[] = {

{CKA_DERI VE, &true, sizeof(true)}
3
CK_ATTRI BUTE tenplate[] = {

{CKA CLASS, &keyCl ass, sizeof(keyC ass)},

{CKA_KEY_TYPE, &keyType, sizeof(keyType)},

{ CKA_ENCRYPT, &true, sizeof(true)},

{ CKA_DECRYPT, &true, sizeof(true)}

} H
CK_ RV rv;

rv = C_Gener at eKeyPai r (
hSessi on, &keyPairMechani sm
publ i cKeyTenpl ate, 2,
privat eKeyTenpl ate, 1,
&hPubl i cKey, &hPrivat eKey);
if (rv == CKR_OK) {
rv = C GetAttributeVal ue(hSession, hPubli cKey,
&pTenpl ate, 1);
if (rv == CKR_OK) {
/* Put other guy’s public value in
ot her Publ i cval ue */

Copyright © 1994-1999 RSA Laboratories

Page 215

rv = C DeriveKey(
hSessi on, &mechani sm
hPri vat eKey, tenplate, 4, &hKey);
if (rv == CKR_OK) {

}
}
}

11.15 Random number generation functions

Cryptoki provides the following functions for generating random numbers:

C_SeedRandom

CK_DEFI NE_FUNCTI ON(CK_RV, C_SeedRandom (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pSeed,

CK_ULONG ul SeedLen

)

C_SeedRandom mixes additional seed materid into the token's random number generator.
hSession is the session’s handle; pSeed points to the seed materid; and ulSeedLen is the length
in bytes of the seed materid.

Return values CKR_CRYPTOKI_NOT _INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_ RANDOM_SEED NOT SUPPORTED,
CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER NOT LOGGED IN,

CKR ARGUMENTS BAD.

Example see C_GenerateRandom.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 216

C_GenerateRandom

CK_DEFI NE_FUNCTI ON(CK_RV, C_Gener at eRandom (
CK_SESSI ON_HANDLE hSessi on,
CK_BYTE_PTR pRandonDat a,
CK_ULONG ul RandonlLen

)

C_GenerateRandom generates random or pseudo-random data. hSession is the sesson’s
handle; pRandomData points to the location that receives the random data; and ulRandomLen
isthe length in bytes of the random or pseudo-random data to be generated.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_MEMORY, CKR DEVICE_REMOVED,
CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST _MEMORY, CKR OK,
CKR_OPERATION_ACTIVE, CKR_RANDOM_NO_RNG, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER NOT LOGGED IN,

CKR ARGUMENTS BAD.

Example
CK_SESSI ON_HANDLE hSessi on;
CK _BYTE seed[] = {...};
CK_BYTE randomData[] = {...};
CK_RV rv;

.rv = C_SeedRandom hSessi on, seed, sizeof(seed));
if (rv I'= CKR_OK) {

}

rv = C_Gener at eRandom hSessi on, randonDat a,
si zeof (randonDat a)) ;
if (rv == CKR_OK) {

Copyright © 1994-1999 RSA Laboratories

Page 217

11.16 Paralld function management functions

Cryptoki provides the fallowing functions for managing pardlel execution of cryptographic
functions. These functions exist only for backwards competibility.

C_GetFunctionStatus

CK_DEFI NE_FUNCTI ON(CK_RV, C_Get Functi onSt at us) (
CK_SESSI ON_HANDLE hSessi on
) ;

In previous versons of Cryptoki, C_GetFunctionStatus obtained the status of a function
running in pardld with an gpplication. Now, however, C_GetFunctionStatus is a legacy
function which should smply return the value CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR SESSION HANDLE INVALID,

CKR SESSION CLOSED.

C_CancdFunction

CK_DEFI NE_FUNCTI ON(CK_RV, C_Cancel Functi on) (
CK_SESSI ON_HANDLE hSessi on
)

In previous versons of Cryptoki, C_CancelFunction cancdled a function running in pardld
with an gpplication. Now, however, C_CancelFunction is a legacy function which should
smply return the vallue CKR_FUNCTION_NOT_PARALLEL.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_FUNCTION_FAILED,
CKR_FUNCTION_NOT_PARALLEL, CKR_GENERAL_ERROR,
CKR_HOST_MEMORY, CKR SESSION HANDLE INVALID,

CKR SESSION CLOSED.

11.17 cCallback functions

Cryptoki sessons can use function pointers of type CK_NOTIFY to notify the application of
certain events.

11.17.1 Surrender callbacks

Cryptographic functions (.e., any functions faling under one of these categories encryption
functions, decryption functions, message digesting functions, signing and MACing functions;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 218

functions for verifying sgnaures and MACs, dud-purpose cryptographic functions, key
management functions, random number generation functions) executing in Cryptoki sessons can
periodicadly surrender control to the agpplication who cdled them if the sesson they ae
executing in had anatification callback function associated with it when it was opened. They do
this by «cdling the sesson's cdlback with the aguments (hSessi on,
CKN_SURRENDER, pApplication),wheehSessi on isthe sesson’s handle and
pAppl i cati on was supplied to C_OpenSession when the sesson was opened.
Surrender callbacks should return either the vaue CKR_OK (to indicate that Cryptoki should
continue executing the function) or the value CKR_CANCEL (to indicate that Cryptoki should
abort execution of the function). Of course, before returning one of these values, the calback
function can perform some computation, if desired.

A typicd use of a surrender callback might be to give an gpplication user feedback during a
lengthy key pair generation operation. Each time the gpplication receives a calback, it could

display an additiond “.” to the user. It might so examine the keyboard's activity since the last

surrender calback, and abort the key pair generation operation (probably by returning the value

CKR_CANCEL) if the user hit <ESCAPE>.

A Cryptoki library is not required to make any surrender callbacks.

11.17.2 Vendor-defined callbacks

Library vendors can dso define additiond types of callbacks. Because of this extenson
capability, application-supplied natification callback routines should examine each calback they
recaive, and if they are unfamiliar with the type of that calback, they should immediatdy give
control back to the library by returning with the value CKR_OK.

12. Mechanisms
A mechanism specifies precisely how a certain cryptographic processisto be performed.

The following table shows which Cryptoki mechanisms are supported by different cryptographic
operations. For any particular token, of course, a particular operation may well support only a
subset of the mechanisms lisged. There is dso no guarantee that a token which supports one
mechanism for some operation supports any other mechanism for any other operation (or even
supports that same mechanism for any other operation). For example, even if atokenisableto
creete RSA digitd signatures with the CKM_RSA _PKCS mechaniam, it may or may not be
the case that the same token can aso perform RSA encryption with CKM_RSA _PKCS.

Copyright © 1994-1999 RSA Laboratories

Table 5555555548, M echanisms vs. Functions

Page 219

M echanism

Functions

Encrypt
&
Decrypt

Sign
&
Verify

SR

VR!

Digest

Gen.
Key/
Key
Pair

Wrap
&
Unwrap

Derive

CKM_RSA_PKCS_KEY_PAIR_GEN

v

CKM_RSA_PKCS

‘/2

/2

CKM_RSA _PKCS OAEP

\/2

(AN

CKM_RSA PKCS PSS

CKM_RSA_9796

CKM_RSA_X_509

‘/2

CKM_MD2 _RSA_PKCS

CKM_MD5_RSA_PKCS

CKM_SHA1 RSA_PKCS

CKM_RIPEMD128 RSA_PKCS

CKM_RIPEMD160 RSA PKCS

CKM_SHA1 RSA PKCS PSS

(ANEANEANERN RN BN

CKM_DSA_KEY_PAIR_GEN

CKM_DSA

R

CKM_DSA_SHA1

<

CKM_FORTEZZA_TIMESTAMP

CKM_ECDSA_KEY_PAIR GEN

CKM_ECDSA

/2

CKM_ECDSA_SHA1

CKM_DH_PKCS KEY_PAIR_GEN

CKM_DH_PKCS DERIVE

CKM_KEA_KEY_PAIR_GEN

CKM_KEA_KEY_DERIVE

CKM_GENERIC_SECRET _KEY_GEN

CKM_RC2_KEY_GEN

CKM_RC2_ECB

CKM_RC2_CBC

<

<

CKM_RC2_CBC_PAD

CKM_RC2_MAC_GENERAL

CKM_RC2_MAC

CKM_RC4 KEY_GEN

CKM_RC4

CKM_RC5_KEY_GEN

CKM_RC5_ECB

CKM_RC5_CBC

<

<

CKM_RC5_CBC_PAD

CKM_RC5 MAC_GENERAL

CKM_RC5 MAC

CKM_DES KEY_GEN

CKM_DES ECB

CKM_DES _CBC

Copyright © 1994-1999 RSA Laboratories.

PKCS #11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 220
Functions
Encrypt | Sign SR Gen. Wrap
M echanism & & & Digest | Key/ & Derive
Decrypt | Verify | VR? Key | Unwrap
Pair
CKM_DES CBC_PAD v 4
CKM_DES MAC_GENERAL v
CKM_DES MAC v
CKM_DES2_KEY_GEN v
CKM_DES3 KEY_GEN v
CKM_DES3_ECB v v
CKM_DES3 CBC v v
CKM_DES3_CBC_PAD v v
CKM_DES3_MAC_GENERAL 4
CKM_DES3 MAC v
CKM_CAST_KEY_GEN v
CKM_CAST_ECB v v
CKM_CAST_CBC v v
CKM_CAST_CBC_PAD v v
CKM_CAST_MAC_GENERAL v
CKM_CAST_MAC v
CKM_CAST3 KEY_GEN v
CKM_CAST3 ECB v v
CKM_CAST3_CBC v v
CKM_CAST3_CBC_PAD v v
CKM_CAST3 MAC_GENERAL v
CKM_CAST3 MAC v
CKM_CAST128 KEY_GEN v
(CKM_CAST5_KEY_GEN)
CKM_CAST128_ECB (CKM_CAST5_ECB) v v
CKM_CAST128 CBC (CKM_CAST5_CBC) v v
CKM_CAST128 CBC_PAD v v
(CKM_CAST5_CBC_PAD)
CKM_CAST128 MAC_GENERAL v
(CKM_CAST5_MAC_GENERAL)
CKM_CAST128 MAC (CKM_CAST5_MAC) v
CKM_IDEA_KEY_GEN v
CKM_IDEA_ECB v v
CKM_IDEA_CBC v v
CKM_IDEA_CBC_PAD v v
CKM_IDEA_MAC_GENERAL v
CKM_IDEA_MAC v
CKM_CDMF_KEY_GEN v
CKM_CDMF_ECB v v
CKM_CDMF_CBC v v
CKM_CDMF_CBC_PAD v v
CKM_CDMF_MAC_GENERAL v
CKM_CDMF_MAC v

Copyright © 1994-1999 RSA Laboratories

Page 221

M echanism

Functions

Encrypt
&
Decrypt

Sign

Verify

SR

VR!

Digest

Gen.
Key/
Key
Pair

Wrap

Unwrap

Derive

CKM_SKIPJACK_KEY_GEN

v

CKM_SKIPJACK_ECB64

CKM_SKIPJACK_CBC64

CKM_SKIPJACK_OFB64

CKM_SKIPJACK_CFB64

CKM_SKIPJACK_CFB32

CKM_SKIPJACK_CFB16

ANERNERNERNERNERN ERN

CKM_SKIPJACK_CFBS8

CKM_SKIPJACK_WRAP

CKM_SKIPJACK_PRIVATE_WRAP

CKM_SKIPJIACK_RELAYX

CKM_BATON_KEY_GEN

CKM_BATON_ECB128

CKM_BATON_ECB96

CKM_BATON_CBC128

CKM_BATON_COUNTER

CKM_BATON_SHUFFLE

NI ENEN

CKM_BATON_WRAP

CKM_JUNIPER_KEY_GEN

CKM_JUNIPER_ECB128

CKM_JUNIPER_CBC128

CKM_JUNIPER_COUNTER

CKM_JUNIPER_SHUFFLE

SNIRSIRN I

CKM_JUNIPER_WRAP

CKM_MD2

CKM_MD2_HMAC_GENERAL

CKM_MD2_HMAC

CKM_MD2_KEY_DERIVATION

CKM_MD5

CKM_MD5_HMAC_GENERAL

CKM_MD5_HMAC

CKM_MD5_KEY_DERIVATION

CKM_SHA 1

CKM_SHA_1 HMAC_GENERAL

CKM_SHA_1 HMAC

AN

CKM_SHA1 KEY_DERIVATION

RIPEMD128

CKM

(AN

CKM

RIPEMD128 HMAC GENERAL

CKM

RIPEMD128 HMAC

[ANEAN

RIPEMD160

CKM

(AN

CKM

RIPEMD160 HMAC GENERAL

CKM

RIPEMD160 HMAC

(ANEAN

CKM_FASTHASH

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD

222

M echanism

Functions

Encrypt
&
Decrypt

Sign

Verify

SR

VR!

Digest

Gen.
Key/
Key
Pair

Wrap

Unwrap

Derive

CKM_PBE_MD2_DES CBC

v

CKM_PBE_MD5 DES CBC

CKM_PBE_MD5_CAST _CBC

CKM_PBE_MD5_CAST3 CBC

CKM_PBE_MD5_CAST128_CBC
(CKM_PBE_MD5_CAST5_CBC)

NI

CKM_PBE_SHA1 CAST128 CBC
(CKM_PBE_SHA1_CAST5_CBC)

AN

CKM_PBE_SHA1_RC4 128

CKM_PBE_SHA1 RC4 40

CKM_PBE_SHA1 DES3 EDE_CBC

CKM_PBE_SHA1 DES2 EDE_CBC

CKM_PBE_SHA1 RC2 128 CBC

CKM_PBE_SHA1 RC2 40 CBC

CKM_PBA_SHA1 WITH_SHA1 HMAC

CKM_PKCS5 PBKD?2

ANIENIENIRNEEN RN IRV RN

CKM_KEY_WRAP_SET_OAEP

CKM_KEY_WRAP_LYNKS

CKM_SSL3 PRE_MASTER KEY_GEN

N

CKM_SSL3 MASTER_KEY_DERIVE

CKM_SSL3 KEY_AND_MAC _DERIVE

<

CKM_SSL3_MD5_MAC

CKM_SSL3_SHA1 MAC

CKM_CONCATENATE_BASE_AND_KEY

CKM_CONCATENATE_BASE_AND_DATA

CKM_CONCATENATE_DATA_AND_BASE

CKM_XOR_BASE_AND_DATA

CKM_EXTRACT_KEY_FROM_KEY

ANIENIENIENIEN

! SR = SignRecover, VR = VerifyRecover.

2 Single-part operations only.

Mechanism can only be used for wrapping, not unwrapping.

Theremainder of Section 11.17.2 will present in detail the mechanisms supported by Cryptoki
Verson 2:012.1 and the parameters which are supplied to them.

In generd, if a mechanism makes no mention of the ulMinKeyLen and ulMaxKeyLen fidds of
the CK_MECHANISM_INFO gructure, then those fields have no meaning for that particular

mechanism.

Copyright © 1994-1999 RSA Laboratories

Page 223

121 RSA mechanisms

1211 PKCS#1 RSA key pair generation

The PKCS #1 RSA key par generation mechanism, denoted
CKM_RSA PKCS KEY_PAIR_GEN, is a key par generaion mechanism based on the
RSA public-key cryptosystem, as defined in PKCS #1.

It does not have a parameter.

The mechanism generates RSA public/private key pairs with a particular modulus length in bits
and public exponent, as secified in the CKA _MODULUS BITS ad
CKA_PUBLIC_EXPONENT étributes of the template for the public key.

The mechanism contributesthe CKA_CLASS, CKA_KEY_TYPE, CKA_MODULUS, and
CKA_PUBLIC_EXPONENT atributes to the new public key. It contributes the
CKA_CLASSand CKA_KEY_TYPE datributes to the new private key; it may aso contribute
some of the following atributes to the new privale key: CKA_MODULUS,
CKA_PUBLIC_EXPONENT, CKA_PRIVATE_EXPONENT, CKA_PRIME_1,
CKA_PRIME_2, CKA_EXPONENT _1, CKA_EXPONENT 2, CKA _COEFFICIENT
(see Section 10.9.110.9.110.9.110-71). Other attributes supported by the RSA public and
private key types (specificaly, the flags indicating which functions the keys support) may aso be
specified in the templates for the keys, or ese are assgned default initid vaues.

Keys generated with this mechanism can be used with the following mechanisms PKCS #1
RSA; ISO/IEC 9796 RSA; X.509 (raw) RSA; PKCS #1 RSA with MD2; PKCS #1 RSA
with MD5; PKCS #1 RSA with SHA-1; and OAEP key wrapping for SET.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of RSA modulus sizes, in
bits.

121.2 PKCS#1 RSA

The PKCS #1 RSA mechanism, denoted CKM_RSA PK CS, is a multi-purpose mechanism
based on the RSA public-key cryptosystem and the block formats defined in PKCS #1. It
supports single-part encryption and decryption; single-part signatures and verification with and
without message recovery; key wrapping; and key unwrapping. This mechanism corresponds
only to the part of PKCS #1 that involves RSA; it does not compute a message digest or a
Digedinfo encoding a gpecified for the nd2w t hRSAEncryption ad
md5wi t hRSAENncr ypt i on agorithmsin PKCS#1.

This mechanism does not have a parameter.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 224

This mechanism can wrap and unwrap any secret key of agppropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that it
supports. For wrapping, the “input” to the encryption operation is the vaue of the
CKA_VALUE atribute of the key that is wrapped; smilarly for unwrapping. The mechanism
does not wrap the key type or any other information about the key, except the key length; the
goplication must convey these separately. In particular, the mechanism contributes only the
CKA_CLASS and CKA VALUE (and CKA_VALUE_LEN, if the key has it) attributes to
the recovered key during unwrapping; other attributes must be specified in the template.

Congraints on key types and the length of the data are summarized in the following table. For
encryption, decryption, signatures and sgnature verification, the input and output data may begin
a the samelocation in memory. In thetable, k isthe length in bytes of the RSA modulus.

Table 5656565649, PK CS#1 RSA: Key And Data L ength

Function Key type I nput Output Comments
length length

C_Encrypt! RSA public key £k-11 k block type 02
C_Decrypt! RSA private key K £k-11 block type 02
C Sign* RSA private key £k-11 k block type 01
C_SignRecover RSA private key £ k-11 k block type 01
C _Veify' RSA publickey | £ k-11, K N/A block type 01
C VeifyRecover | RSA public key k £ k-11 block type 01
C WrapKey RSA public key £ k-11 k block type 02
C_UnwrapKey RSA private key k £ k-11 block type 02

! Single-part operations only.

? Datalength, signature length.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of

CK_MECHANISM _INFO gructure specify the supported range of RSA modulus sizes, in

hits.

12.1.3 PKCS#1 RSA OAEP mechanism parameters

CK RSA PKCS SAERP-MGF TYPE;

CK RSA PKCS GAERP-MGE TYPE PTR

CK RSA PKCS GAERP-MGF TYPE isusad to indicate the M essage Generation Function
(MGF) applied to a message block when formatting a message block for the PKCS #1 OAEP
encryption scheme. It is defined as follows:

Copyright © 1994-1999 RSA Laboratories

Page 225

typedef CK ULONG CK_RSA PKCS- OAERP-MGF_TYPE;

The following MGFs are defined in PKCS #1 v2.0. The following table lists the defined
functions.

Table57, PK CS#1 RSA-OAEPRP: M essage Gener ation Functions

Sour ce | dentifier Value
CKG MGF1 SHA1 0x00000001

CK RSA PKCS- OAERP-MGE TYPE PTR is a pointer to a CK RSA PKCS
OAEP-MGF TYPE.

CK_RSA PKCS OAEP SOURCE TYPE;
CK_RSA PKCS OAEP SOURCE TYPE PTR

CK RSA PKCS OAEP SOURCE TYPE is usad to indicate the source of the encoding
parameter when formatting a message block for the PKCS #1 OAEP encryption scheme. It is
defined asfollows:

t ypedef CK ULONG CK_RSA PKCS_OAEP_SOURCE_TYPE,;

The following encoding parameter sources are defined in PKCS #1 v2.0. The following table
lists the defined sources dong with the corresponding data type for the pSour ceData fidd in the
CK RSA PKCS OAEP PARAM Sdructure defined below.

Table 58, PK CS#1 RSA OAEP: Encoding parameter sour ces

Sour ce | dentifier Value Data Type

CKZ DATA SPECIFIED | 0x00000001 | Array of CK BYTE containing the vaue of
the encoding parameter. If the parameter is
empty, pSourceData must be NULL and
ul SourceDatal_en mugt be zero.

CK_RSA PKCS OAEP _SOURCE TYPE PTR IS a pointer to a
CK_RSA PKCS OAEP SOURCE TYPE.

CK RSA PKCS OAEP PARAMS; CK RSA PKCS OAEP PARAMS PTR

CK RSA PKCS OAEP PARAMS is a sructure that provides the parameters to the
CKM RSA PKCS OAEP mechaniam. The structure is defined as follows:

typedef struct CK RSA PKCS OAEP PARANS {

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 226

CK MECHANI SM TYPE hashAl g;
CK RSA PKCS OAEP MGF TYPE nyf;
CK RSA PKCS OAEP SOURCE TYPE source;
CK VO D PTR pSour ceDat a;
CK ULONG ul Sour ceDat aLen;
} CK RSA PKCS OAEP PARAMS;

Thefidds of the ructure have the following meanings.

hashAlg mechanism ID of the message digest dgorithm used to
cdculate the digest of the encoding parameter

mgf mask generation function to use on the encoded block

source source of the encoding parameter

pSourceData data used as the input for the encoding parameter source

ulSourceDatal en length of the encoding parameter source input

CK_RSA PKCS OAEP PARAMS PTR IS a pointer to a
CK RSA PKCS OAEP PARAMS

12.1.4 PKCS#1 RSA OAEP

The PKCS #1 RSA OAEP mechanism, denoted CKM RSA PKCS OAEP, is a multi-
purpose mechanism based on the RSA public-key cryptosystem and the OAEP block format
defined in PKCS #1. |t supports single-part encryption and decryption; key wrapping; and key
unwrapping.

It has aparameter, aCK RSA PKCS OAEP PARAM S sructure.

This mechanism can wrap and unwrap any secret key of appropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that it
supports. For wrapping, the “input” to the encryption operation is the vaue of the
CKA VALUE datribute of the key that is wrapped; smilarly for unwrapping. The mechanigm
does not wrap the key type or any other information about the key, except the key length; the
application must convey these separatdy. In particular, the mechanism contributes only the
CKA CLASSand CKA VALUE (and CKA VALUE LEN, if the key has it) attributes to
the recovered key during unwrapping; other attributes must be specified in the template.

Condraints on key types and the length of the data are summarized in the following table. For
encryption and decryption, the input and output data may begin at the same location in memory.
In the table, K is the length in bytes of the RSA modulus, and hLen is the output length of the

Copyright © 1994-1999 RSA Laboratories

Page 227

messsge digest dgorithm specified by the hashAlg fidd of the
CK RSA PKCS OAEP PARAM Sstructure.
Table59, PKCS#1 RSA OAEP: Key And Data L ength

Function Key type [nput Output

length length

C Encrypt! RSA publickey | £ k-2-hLen k

C Decrypt RSA private key k £ k-2-hLen

C WrapKey RSA public key £ k-2-hLen k

C UnwrapKey RSA private key K £ k-2-hLen
! Single-part operations only.
For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the

CK MECHANISM INFO sructure specify the supported range of RSA modulus sizes, in
bits.

12.1.5 PKCS#1 RSA PSS mechanism parameters

CK RSA PKCS PSS PARAMS; CK RSA PKCS PSS PARAMS PTR

CK RSA PKCS PSS PARAMS is a sructure that provides the parameters to the
CKM RSA PKCS PSS mechanism. The structure is defined as follows:

typedef struct CK RSA PKCS PSS PARANS {
CK MECHANI SM TYPE hashAl g;
CK _RSA PKCS MGF TYPE nyf;

} CK RSA PKCS PSS PARAMS;

Thefidds of the gructure have the following meanings:

hashAlg mechanism ID of the message digest dgorithm used to
cdculate the digest of the message being sgned
mgf mask generation function to use on the encoded block. The
M GF should be based on the same underlying digest
dgorithm indicated by hashAlg
CK RSA PKCS PSS PARAMS PTR is a pointer to a

CK_RSA PKCS PSS PARAMS

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 228

12.1.6 PKCS#1 RSA PSS

The PKCS #1 RSA PSS mechanism, denoted CKM RSA PKCS PSS, is a mechaniam
based on the RSA public-key cryptosystem and the PSS block format defined in PKCS #1. It
supports single-part digital Sgnatures and verification

It has aparameter, aCK RSA PKCS PSS PARAM S structure.

Condrants on key types and the length of the dataare summarized in the following table. In the
table, k isthelength in bytes of the RSA modulus, and hLen is the output length of the message
digest dgorithm specified by the hashAlqg fidd of the CK RSA PKCS OAEP PARAMS
sructure.

Table 60, PKCS#1 RSA PSS: Key And Data L ength

Function Key type Input Output
length length
C Sgr RSA private key £ k-2 k
C Vaify" RSA public key K £ k-7
! Single-part operations only.

For this mechanism, the ulMinKeySze and ulMaxKeySze fidds of the
CK MECHANISM INFO sructure specify the supported range of RSA modulus Szes, in
bits.

12.1.7 ISO/IEC 9796 RSA

The ISO/IEC 9796 RSA mechanism, denoted CKM _RSA_9796, is a mechanism for single-
part Sgnatures and verification with and without message recovery based on the RSA public-
key cryptosysem and the block formats defined in ISO/IEC 9796 and its annex A. This
mechanism is compatible with the draft ANS X9.31 (assuming the length in bits of the X9.31
hash vdue isamultiple of 8).

This mechanism processes only byte strings, whereas ISO/IEC 9796 operates on bit strings.
Accordingly, the following transformations are performed:

Datais converted between byte and bit string formats by interpreting the most-significant bit
of the leading byte of the byte dring as the leftmogt bit of the bit string, and the least-
ggnificant bit of the tralling byte of the byte string as the rightmost bit of the bit gtring (this
assumes the length in bits of the datais amultiple of 8).

A sgnaure is converted from a bit string to a byte string by padding the bit string on the left
with O to 7 zero hits s0 that the resulting length in bits is a multiple of 8, and converting the

Copyright © 1994-1999 RSA Laboratories

Page 229

resulting bit string as above it is converted from a byte string to a bit string by converting the
byte gtring as above, and removing bits from the left so that the resulting length in bitsis the
same as that of the RSA modulus.

This mechanism does not have a parameter.

Congraints on key types and the length of input and output data are summarized in the following
table. Inthetable, k isthelength in bytes of the RSA modulus.

Table 6161606050, | SO/IEC 9796 RSA: Key And Data L ength

Function Key type I nput Output
length length
C Sign* RSA private key £ &/20 k
C_SignRecover RSA private key £ &/20 k
C _Veify' RSA publickey | £ &/20 Kk N/A
C VerifyRecover | RSA public key k £ &/20
! Single-part operations only.

? Datalength, signature length.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the supported range of RSA modulus Sizes, in
bits.

12.1.8 X.509 (raw) RSA

The X.509 (raw) RSA mechanism, denoted CKM_RSA X 509, is a multi-purpose
mechanism based on the RSA public-key cryptosystem. It supports single-part encryption and
decryption; sngle-part sgnatures and verification with and without message recovery; key
wrapping; and key unwrapping. All these operations are based on so-caled “raw” RSA, as
assumed in X.5009.

“Raw” RSA as defined here encrypts a byte string by converting it to an integer, most-ggnificant
byte firgt, applying “raw” RSA exponentiation, and converting the result to a byte string, most-
ggnificant byte first. The input string, congdered as an integer, must be less than the modulus;
the output string is dso less than the modulus.

This mechanism does not have a parameter.

This mechanism can wrap and unwrap any secret key of agppropriate length. Of course, a
particular token may not be able to wrap/unwrap every appropriate-length secret key that it
supports. For wrapping, the “input” to the encryption operation is the vaue of the

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 230

CKA_VALUE dtribute of the key that is wrapped; smilarly for unwrapping. The mechanism
does not wrap the key type, key length, or any other information about the key; the application
must convey these separately, and supply them when unwrapping the key.

Unfortunately, X.509 does not specify how to perform padding for RSA encryption. For this

mechanism, padding should be performed by prepending plaintext data with O-valued bytes. In
effect, to encrypt the sequence of plaintext bytesh b, ... b, (n £ k), Cryptoki forms P=2"

Y, +2™0,+...+b,. This number must be less than the RSA modulus. The k-byte ciphertext (k

is the length in bytes of the RSA modulus) is produced by raising P to the RSA public exponent

modulo the RSA modulus. Decryption of ak-byte ciphertext C is accomplished by rasing C to

the RSA private exponent modulo the RSA modulus, and returning the resulting vaue as a
sequence of exactly k bytes. If the resulting plaintext is to be used to produce an unwrapped

key, then however many bytes are specified in the template for the length of the key are taken
from the end of this sequence of bytes.

Technicdly, the above procedures may differ very dightly from certain details of what is
specified in X.509.

Executing cryptographic operations using this mechanism can result in the error returns
CKR_DATA_INVALID (if plaintext is supplied which has the same length as the RSA
modulus and is numericdly a leet a lage a the modulus) and
CKR_ENCRYPTED_DATA_INVALID (if ciphertext is supplied which has the same length as
the RSA modulus and is numericaly &t least as large as the modulus).

Congraints on key types and the length of input and output data are summarized in the following
table. Inthetable, k isthelength in bytes of the RSA modulus.

Table 6262616151, X.509 (Raw) RSA: Key And Data L ength

Function Key type Input Output length
length

C_Encrypt RSA public key £k k

C_Decrypt! RSA private key K K

C Sign* RSA private key £k K

C_SignRecover RSA private key £k k

C _Veify' RSA publickey | £k, k? N/A

C_VeifyRecover | RSA public key k k

C_WrapKey RSA public key £k k

C_UnwrapKey RSA private key k £ k (specified in template)

! Single-part operations only.

? Datalength, signature length.

Copyright © 1994-1999 RSA Laboratories

Page 231

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of RSA modulus sizes, in
bits.

This mechaniam is intended for compatibility with gpplications that do not follow the PKCS #1
or ISO/IEC 9796 block formats.

12.1.9

PKCS#1 RSA signaturewith MD2, MD5, or SHA-1

The PKCS #1 RSA sgnature with MD2 mechanism, denoted CKM_MD2 RSA_PKCS,
performs single- and multiple-part digita signatures and verification operations without message
recovery. The operations performed are as described in PKCS #1 with the object identifier
md2WithRSA Encryption.

Smilaly, the PKCS #1 RSA dgnaure with MD5 mechanism, denoted
CKM_MD5 RSA PKCS, peforms the same operations described in PKCS #1 with the
object identifier mdSWithRSAEncryption. The PKCS #1 RSA dgnature with SHA-1
mechanism, denoted CKM_SHA1 RSA PKCS, performs the same operations, except thet it
uses the hash function SHA-1, instead of MD2 or MD5.

None of these mechanisms has a parameter.

Congraints on key types and the length of the data for these mechanisms are summarized in the
following table. In the table, k is the length in bytes of the RSA modulus. For the PKCS #1
RSA sgnature with MD2 and PKCS #1 RSA signature with MD5 mechanisms, k must be at
least 27; for the PKCS #1 RSA dgnature with SHA-1 mechanism, k must be at least 31.

Table 6363626252, PKCS #1 RSA Signatures with MD2, MD5, or SHA-1: Key And
Data Length

Function Key type Input length | Output length| Comments

C_Sgn RSA private key any k block type
01

C_Veify RSA public key any, k? N/A block type
01

2 Datalength, signature length.

For these mechanisms, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the supported range of RSA modulus Sizes, in
bits.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 232

12.1.10 PKCS#1 RSA PSS sgnature with SHA-1

The PKCS #1 RSA PSS dgnaure with SHA-1 mechanism, denoted
CKM SHA1l RSA PKCS PSS, paforms sngle- and multiple-part digital Sgnatures and
verification operations without message recovery.

It has aparameter, aCK RSA PKCS PSS PARAM S structure.

Congrants on key types and the length of the data for these mechanisms are summarized in the
following table. Inthetable, k isthe length in bytes of the RSA modulus.

Table 64, PK CS#1 RSA PSS Signatureswith SHA-1: Key And Data L ength

Function Key type Input length | Output length
C Saon RSA private key ay k
C Veify RSA public key any, k N/A

2 Datalength, signature lengtth.

For these mechanisms, the ulMinKeySze and ulMaxKeySze fidds of the
CK MECHANISM INFO sructure specify the supported range of RSA modulus sizes, in
bits.

12.2 DSA mechanisms

12.2.1 DSA key pair generation

The DSA key par generation mechanism, denoted CKM_DSA KEY_PAIR_GEN, is akey
par generation mechanism based on the Digitd Signature Algorithm defined in FIPS PUB 186.

This mechanism does not have a parameter.

The mechanism generates DSA public/private key pairs with a particular prime, subprime and
base, as specified inthe CKA_PRIME, CKA_SUBPRIME, and CKA_BASE dttributes of
the template for the public key. Note tha this verson of Cryptoki does not include a
mechanism for generating these DSA parameters.

The mechanism contributes the CKA_CLASS, CKA _KEY_TYPE, and CKA VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME,
CKA_SUBPRIME, CKA_BASE, and CKA_VALUE attributes to the new private key.
Other attributes supported by the DSA public and private key types (specificdly, the flags
indicating which functions the keys support) may aso be specified in the templates for the keys,
or else are assigned default initid vaues.

Copyright © 1994-1999 RSA Laboratories

Page 233

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of DSA prime sizes, in bits.

12.2.2 DSA without hashing

The DSA without hashing mechanism, denoted CKM _DSA, is a mechanism for sngle-part
sgnatures and verification based on the Digita Signature Algorithm defined in FIPS PUB 186.
(This mechanism corresponds only to the part of DSA that processes the 20-byte hash value; it
does not compute the hash value.)

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA vauesr and s, each represented most-significant byte first.

It does not have a parameter.

Congraints on key types and the length of data are summarized in the following table:

Table 6565636353, DSA: Key And Data L ength

Function Key type Input length Output
length
C Sign* DSA private key 20 40
C _Veify' DSA public key 20, 407 N/A
! Single-part operations only.

? Datalength, signature length.
For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of DSA prime sizes, in bits.

12.2.3 DSA with SHA-1

The DSA with SHA-1 mechanism, denoted CKM_DSA_SHA1, is a mechanism for single-
and multiple-part Sgnatures and verification based on the Digita Signature Algorithm defined in
FIPS PUB 186. This mechanism computes the entire DSA specification, including the hashing
with SHA-1.

For the purposes of this mechanism, a DSA signature is a 40-byte string, corresponding to the
concatenation of the DSA vauesr and s, each represented most-significant byte first.

This mechanism does not have a parameter.

Congraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 234

Table 6666646454, DSA with SHA-1: Key And Data L ength

Function Key type Input length Output
length

C Sgn DSA private key any 40

C Veify DSA public key any, 40° N/A

? Datalength, signature length.
For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of DSA prime sizes, in bits.

1224 FORTEZZA timestamp

The FORTEZZA timestamp mechanism, denoted CKM_FORTEZZA_TIMESTAMP, isa
mechanism for Sngle-part sgnatures and verification. The Sgnaturesit produces and verifies are
DSA digital sgnatures over the provided hash vaue and the current time.

It has no parameters.

Condraints on key types and the length of data are summarized in the following table. The input
and output data may begin a the same location in memory.

Table 6764656555, FORTEZZA Timestamp: Key And Data L ength

Function Key type Input length Output
length
C Sign* DSA private key 20 40
C_Veify! DSA public key 20, 407 N/A
! Single-part operations only.

? Datalength, signature length.

For this mechanism, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of DSA prime sizes, in bits.
12.3 About ECDSA

The ECDSA (Elliptic Curve Digitd Signature Algorithm) in this document is the one described
in the ANSI X9.62 working draft specification of November 17, 1997. It is hoped that the
parts of this document that Cryptoki references will not change in the find ANS X9.62
document, but there is no guarantee that this will be the case.

In this working draft, there are 3 different varieties of ECDSA defined:

Copyright © 1994-1999 RSA Laboratories

Page 235

1. ECDSA using afidd with an odd prime number of dements.

2. ECDSA using afidd of characterigtic 2 whose lements are represented using a polynomia
basis.

3. ECDSA using afield of characteristic 2 whose eements are represented using an optimal
normd basis.

An ECDSA key in Cryptoki contains information about which variety of ECDSA it is suited for.
It is preferable that a Cryptoki library which can perform ECDSA mechanisms be capable of
performing operations with al 3 varieties of ECDSA; however, thisis not required.

If an attempt to create, generate, derive, or unwrap an ECDSA key of an unsupported variety
(or of an unsupported size of a supported variety) is made, that attempt should fall with the
error code CKR_TEMPLATE _INCONSISTENT.

12.4 ECDSA mechanisms

1241

ECDSA key pair generation

The ECDSA key pair generation mechanism, denoted CKM_DSA_KEY_PAIR_GEN, isa
key pair generation mechanism for ECDSA.

This mechanism does not have a parameter.

The mechanism generates ECDSA public/private key pairs with particular ECDSA parameters,
as oecified in the CKA_ECDSA_PARAMS dtribute of the template for the public key.
Note that this verson of Cryptoki does not include a mechanism for generating these ECDSA
parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_EC_POINT
atributes to the new public key and the CKA_CLASS, CKA KEY_TYPE,
CKA_ECDSA_PARAMSand CKA_CKA_VALUE dtributes to the new private key.
Other attributes supported by the ECDSA public and private key types (specificdly, the flags
indicating which functions the keys support) may aso be specified in the templates for the keys,
or else are assigned default initid vaues.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the minimum and maximum supported number
of bitsin the field Szes, respectively. For example, if a Cryptoki library supports only ECDSA
using afield of characteristic 2 which has between 2°® and 2°® dements, then ulMinKeySize =
201 and ulMaxKeySize = 301 (when written in binary notation, the number 2% consists of a 1

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 236

bit followed by 200 O bits. It is therefore a 201-bit number. Similarly, 2% is a 301-bit
number).

12.4.2 ECDSA without hashing

The ECDSA without hashing mechanism, denoted CKM _ECDSA, is a mechanism for single-
part Sgnatures and verification for ECDSA. (This mechanism corresponds only to the part of
ECDSA that processes the 20-byte hash value; it does not compute the hash value.)

For the purposes of this mechanism, an ECDSA sgnature is a 40-byte string, corresponding to
the concatenation of the ECDSA vauesr and s, each represented most-significant byte firgt.

This mechanism does not have a parameter.

Congraints on key types and the length of data are summarized in the following table:

Table 6868666656, ECDSA: Key And Data L ength

Function Key type Input Output
length length
C Sign* ECDSA private key 20 40
C _Veify' ECDSA public key 20, 407 N/A
! Single-part operations only.

2 Data length, Sgneture length.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the minimum and maximum supported number
of bitsin the field Szes, respectively. For example, if a Cryptoki library supports only ECDSA
using a fidd of characteristic 2 which has between 2* and Z® dements (inclusive), then
ulMinKeySze = 201 and ulMaxKeySze = 301 (when written in binary notation, the number
2?0 condists of a 1 bit followed by 200 0 bits. It is therefore a 201-bit number. Similarly, 22°
isa 301-bit number).

1243 ECDSA with SHA-1

The ECDSA with SHA-1 mechanism, denoted CKM_ECDSA SHAL, is a mechanism for
sgngle- and multiple-part signatures and verification for ECDSA. This mechanism computes the
entire ECDSA specification, including the hashing with SHA-1.

For the purposes of this mechanism, an ECDSA signature is a 40-byte string, corresponding to
the concatenation of the ECDSA vauesr and s, each represented most-significant byte fird.

Copyright © 1994-1999 RSA Laboratories

Page 237

This mechanism does not have a parameter.

Condgraints on key types and the length of data are summarized in the following table:

Table 6969676757, ECDSA with SHA-1: Key And Data L ength

Function | Key type I nput Output length
length

C Sgn ECDSA private key any 40

C Veify | ECDSA public key any, 40 N/A

? Datalength, signature length.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the minimum and maximum supported number
of bitsin the field Szes, respectively. For example, if a Cryptoki library supports only ECDSA
using afield of characteristic 2 which has between 2°® and 2°® dements, then ulMinKeySize =
201 and ulMaxKeySize = 301 (when written in binary notation, the number 22 consists of a 1
bit followed by 200 O bits. It is therefore a 201-bit number. Similarly, 2% is a 301-bit
numbe).

125 DiffieeHdlman mechanisms

1251 PKCS#3 DiffieeHellman key pair generation

The PKCS #3 DiffieHdlman key par generation mechanism, denoted
CKM_DH_PKCS KEY_PAIR_GEN, is akey par generation mechanism based on Diffie-
Hellman key agreement, as defined in PKCS#3. Thisiswhat PKCS#3 cals“phase”.

It does not have a parameter.

The mechanism generates Diffie-Helman public/private key pars with a particular prime and
base, as specified in the CKA_PRIME and CKA_BASE attributes of the template for the
public key. If the CKA_VALUE_BITS dtribute of the private key is specified, the mechanism
limits the length in bits of the private value, as described in PKCS #3. Note that this verson of
Cryptoki does not include a mechanism for generating a prime and base.

The mechanism contributes the CKA_CLASS, CKA _KEY_TYPE, and CKA VALUE
attributes to the new public key and the CKA_CLASS, CKA_KEY_TYPE, CKA_PRIME,
CKA_BASE, and CKA_VALUE (and the CKA_VALUE_BITS dtribute, if it is not dready
provided in the template) atributes to the new private key; other attributes required by the
Diffie-Hellman public and private key types must be specified in the templates.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 238

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of Diffie-Hdlman prime
gzes, in bits.

1252

PK CS#3 DiffieeHellman key derivation

The PKCS #3 DiffieeHdlman key derivation mechanism, denoted
CKM_DH_PKCS DERIVE, isamechanism for key derivation based on Diffie-Hdlman key
agreement, as defined in PKCS#3. Thisiswhat PKCS#3 cdls “phase 11”.

It has a parameter, which is the public value of the other party in the key agreement protocal,
represented as a Cryptoki “Big integer” (i.e., asequence of bytes, most-sgnificant byte first).

This mechaniam derives a secret key from a Diffie-Helman private key and the public vaue of
the other party. It computes a Diffie-Hellman secret value from the public vaue and private key
according to PKCS #3, and truncates the result according to the CKA_KEY_TYPE atribute
of the template and, if it has one and the key type supports it, the CKA_VALUE_LEN
attribute of the template. (The truncation removes bytes from the leading end of the secret
vaue)) The mechanism contributes the result as the CKA_VALUE aitribute of the new key;
other attributes required by the key type must be specified in the template.

The deived key inherits the vdues of the CKA_SENSITIVE,
CKA_ALWAYS SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE atributes from the base key. The vaues of the
CKA_SENSITIVE and CKA_EXTRACTABLE dtributes may be overidden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS SENSITIVE attribute st to TRUE, then the template may not specify that
the derived key should have the CKA_SENSITIVE atribute sat to FALSE; amilaly, if the
base key hasthe CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the template
may not specify that the derived key should have the CKA_EXTRACTABLE attribute set to
TRUE.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of Diffie-Hdlman prime
gzes, in bits.

12.6 KEA mechanism parameters

CK_KEA_DERIVE_PARAMS; CK_KEA_DERIVE_PARAMS PTR

CK_KEA _DERIVE_PARAMS is a dructure that provides the parameters to the
CKM_KEA_DERIVE mechaniam. Itisdefined asfollows:

Copyright © 1994-1999 RSA Laboratories

Page 239

typedef struct CK KEA DERI VE PARAMS {
CK _BBOOL i sSender;
CK_ULONG ul Randomien;
CK_BYTE_PTR pRandonA;
CK_BYTE_PTR pRandonB;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;

} CK_KEA_DERI VE_PARAMS;

Thefields of the Sructure have the following meanings

IsSender Option for generating the key (cdled aTEK). Thevdueis
TRUE if the sender (originator) generatesthe TEK,
FALSE if the recipient is regeneraing the TEK.

ulRandomLen szeof random Raand Rb, in bytes
pRandomA pointer to Radata
pRandomB pointer to Rb data
ulPublicDatalen other party’s KEA public key size
pPublicData pointer to other party’s KEA public key vaue

CK_KEA_DERIVE_PARAMS PTR isapointer toaCK_KEA DERIVE_PARAMS

12.7 KEA mechanisns

12.7.1 KEA key pair generation

The KEA key par generation mechanism, denoted CKM_KEA KEY_PAIR_GEN,
generates key pairs for the Key Exchange Algorithm, as defined by NIST's “SKIPJACK and

KEA Algorithm Specification Verson 2.0, 29 May 1998 .is-akey-pair-generatiionmechanism

It does not have a parameter.

The mechanism generates KEA public/private key pairs with a particular prime, subprime and
base, as pecified in the CKA_PRIME, CKA_SUBPRIME, and CKA_BASE dttributes of
the template for the public key. Note that this verson of Cryptoki does not include a
mechanism for generating these KEA parameters.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE
atributes to the new public key and the CKA_CLASS, CKA KEY_TYPE, CKA_PRIME,
CKA_SUBPRIME, CKA_BASE, and CKA_VALUE dtributes to the new privae key.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 240

Other attributes supported by the KEA public and private key types (specificdly, the flags
indicating which functions the keys support) may aso be specified in the templates for the keys,
or else are assigned default initid vaues.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of KEA prime sizes, in bits.

12.7.2 11+2-KEA key derivation

The KEA key derivation mechanism, denoted CKM_KEA_DERIVE, is a mechanism for key
derivation based on KEA, the Key Exchange Algorithm, as defined by NIST’'s “ SKIPJACK
and KEA Algorithm Specification Verson 2.0”, 29 May 1998.

It has a parameter, aCK_KEA_ DERIVE_PARAM Sdructure.

This mechanisnm derives a secret vaue, and truncates the result according to the
CKA_KEY_TYPE attribute of the template and, if it has one and the key type supportsiit, the
CKA_VALUE_LEN attribute of the template. (The truncation removes bytes from the leading
end of the secret value)) The mechanism contributes the result as the CKA_VALUE atribute
of the new key; other attributes required by the key type must be specified in the template.

As defined in the Specification, KEA can be used in two different operationa modes: full mode
and eemaill mode. Full mode is a two-phase key derivation sequence that requires red-time
parameter exchange between two parties. E-mail mode is a one-phase key derivation sequence
that does not require rea-time parameter exchange. By convention, email mode is designated
by use of afixed vaue of one (1) for the KEA parameter R, (pRandomB).

The opeaion of this mechanisn depends on two of the vdues in the supplied
CK KEA DERIVE PARAMS dructure, as detailed in the table below. Note that, in dl
casss, the data buffers pointed to by the parameter structure fidlds pRandomA and pRandomB
must be dlocated by the cdler prior to invoking C DeriveK ey. Also, the values pointed to by
pRandomA and pRandomB are represented as Cryptoki “Big integer” data (i.e., a sequence of
bytes, mogt-sgnificant byte first).

Copyright © 1994-1999 RSA Laboratories

Page 241

Table 70, KEA Parameter Values and Oper ations

Value of Value of big
boolean integer Token Action
isSender pRandomB (after checking parameter and template vaues)
TRUE 0 Compute KEA R, vdue, soreit in pRandomA, return
CKR _OK. No derived key object is created.
TRUE 1 Compute KEA R, vdue, soreit in pRandomA, derive
key value using e-mail mode, create key object, return
CKR OK.
TRUE >1 Compute KEA R, vdue, soreit in pRandomA, derive
key value using full mode, create key object, return
CKR OK.
FALSE 0 Compute KEA R, vaue, goreit in pRandomB, return
CKR _OK. No derived key object is created.
FALSE 1 Derive key value usng e-mail mode, create key object,
return CKR OK.
FALSE >1 Derive key vaue using full mode, create key object,
return CKR_OK.

Note that the parameter vaue pRandomB==0 is a flag tha the KEA mechanism is beng
invoked to compute the party’s public random value (R, or Ry, for sender or recipient,
respectively), not to derive a key. In these cases, any object template supplied as the
C DeriveK ey pTemplate argument should be ignored.

The derived key inherits the vadues of the CKA_SENSITIVE,
CKA_ALWAYS SENSITIVE, CKA_EXTRACTABLE, and
CKA_NEVER_EXTRACTABLE atributes from the base key. The vaues of the
CKA_SENSITIVE and CKA_EXTRACTABLE attributes may be overidden in the
template for the derived key, however. Of course, if the base key has the
CKA_ALWAYS SENSITIVE attribute st to TRUE, then the template may not specify that
the derived key should have the CKA_SENSITIVE atribute set to FALSE; amilarly, if the
base key hasthe CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the template
may not specify that the derived key should have the CKA_EXTRACTABLE attribute set to
TRUE.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of KEA prime sizes, in bits.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 242

12.8 Generic secret key mechanisms

12.8.1 Generic secret key generation

The generic secret key generaion mechanism, denoted
CKM_GENERIC_SECRET_KEY_GEN, is used to generate generic secret keys. The
generated keys take on any attributes provided in the template passed to the C_GenerateK ey
cdl, andthe CKA_VALUE_LEN attribute specifies the length of the key to be generated.

It does not have a parameter.

The template supplied must specify a vaue for the CKA_VALUE_LEN attribute. I the
template specifies an object type and a class, they must have the following values:

CK_OBJECT_CLASS=CKO_SECRET_KEY;
CK_KEY_TYPE = CKK_GENERIC_SECRET;

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of key sizes, in bits.

12.9 Wrapping/unwrapping private keys (RSA, DiffieeHdlman, and DSA)

Cryptoki Versions 2.01 and up alows the use of secret keys for wragpping and unwrapping
RSA private keys, Diffie-Hdlman private keys, and DSA private keys. For wrapping, a private
key is BER-encoded according to PKCS #8's PrivateKeylnfo ASN.1 type. PKCS #8
requires an agorithm identifier for the type of the secret key. The object identifiers for the
required dgorithm identifiers are asfollows:

rsaEncryption OBJECT IDENTIFIER ::= { pkcs-1 1}
dhKeyAgreenent OBJECT IDENTIFIER ::= { pkcs-3 1 }
i d-dsa OBJECT I DENTIFIER ::= {
i so(1l) menber-body(2) us(840) x9-57(10040) x9cm(4) 1
}
where
pkcs-1 OBJECT | DENTIFIER :: = {
I so(1l) menber-body(2) US(840) rsadsi (113549) pkcs(1)
1}
pkcs-3 OBJECT I DENTIFIER :: = {

I so(1l) menber-body(2) US(840) rsadsi (113549) pkcs(1)

Copyright © 1994-1999 RSA Laboratories

Page 243

31}
These parameters for the dgorithm identifiers have the following types, repectively:
NUL L

DHPar anet er ::= SEQUENCE ({
prime | NTEGER, -- p
base | NTEGER, -- ¢
privateVal ueLength | NTEGER OPTI ONAL

}

Dss-Parnms : .= SEQUENCE {
p | NTEGER,
g | NTEGER,
g | NTEGER

}
Within the PrivateK eylnfo type:

RSA private keys are BER-encoded according to PKCS #1's RSAPrivateKey ASN.1
type. This type requires vaues to be present for all the attributes specific to Cryptoki’s
RSA private key objects. In other words, if a Cryptoki library does not have values for an
RSA privete key's CKA_MODULUS, CKA_PUBLIC_EXPONENT,
CKA_PRIVATE_EXPONENT, CKA_PRIME_1, CKA_PRIME_2,
CKA_EXPONENT_1, CKA_EXPONENT2, and CKA_COEFFICIENT vaues, it
cannot creste an RSAPrivateKey BER-encoding of the key, and o it cannot prepare it for

wrgpping.
Diffie-Hellman private keys are represented as BER-encoded ASN.1 type INTEGER.
DSA private keys are represented as BER-encoded ASN.1 type INTEGER.

Once a private key has been BER-encoded as a PrivateKeyInfo type, the resulting string of
bytes is encrypted with the secret key. This encryption must be done in CBC mode with
PKCS padding.

Unwrapping a wrapped private key undoes the above procedure. The CBC-encrypted
ciphertext is decrypted, and the PKCS padding is removed. The data thereby obtained are
parsed as a PrivateKeylnfo type, and the wrapped key is produced. An error will result if the
origina wrapped key does not decrypt properly, or if the decrypted unpadded data does not
parse properly, or its type does not match the key type specified in the template for the new
key. The unwrapping mechanism contributes only those attributes specified in the
PrivateKeylnfo type to the newly-unwrapped key; other attributes must be specified in the
template, or will take their default vaues.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 244

Earlier drafts of PKCS#11 Version 2.0 and Verson 2.01 used the object identifier

DSA OBJECT IDENTIFIER ::= { algorithm 12 }
al gorithm OBJECT I DENTIFIER ::= {
Iso(l) identifier-organization(3) oiw1l4) secsig(3)
al gorithm(2) }

with associated parameters
DSAPar anet ers ::= SEQUENCE ({
primel | NTEGER, -- nodulus p
prime2 | NTEGER, -- nodulus ¢
base | NTEGER -- base g
}

for wrapping DSA private keys. Note that dthough the two structures for holding DSA
parameters appear identical when instances of them are encoded, the two corresponding object
identifiers are different.

12.10 About RC2

RC2 is ablock cipher which is trademarked by RSA Data Security. It has a varidble keysize
and an additiona parameter, the “ effective number of bits in the RC2 search space’, which can
take on vaues in the range 1-1024, inclusve. The effective number of bits in the RC2 search
gpace is sometimes specified by an RC2 “verson number™”; this “verson number” is not the
same thing as the “ effective number of bits’, however. Thereisacanonicd way to convert from
oneto the other.

12.11 RC2 mechanism parameters

CK_RC2 PARAMS; CK_RC2 PARAMS PTR

CK_RC2 PARAMS provides the paameters to the CKM_RC2 ECB ad
CKM_RC2 MAC mechanisms. It holds the effective number of bits in the RC2 search
gpace. It isdefined asfollows:

typedef CK_ULONG CK_RC2_PARAMS;

CK_RC2 PARAMS PTR isapointer toaCK_RC2 PARAMS

Copyright © 1994-1999 RSA Laboratories

Page 245

CK_RC2 CBC_PARAMS; CK_RC2 CBC_PARAMS PTR

CK_RC2 CBC_PARAMS is a dructure that provides the parameters to the
CKM_RC2 CBCand CKM_RC2 _CBC_PAD mechanisms. It isdefined asfollows

typedef struct CK RC2_CBC PARAMS {
CK_ULONG ul Ef fectiveBits;
CK_BYTE i v[8];
} CK_RC2_CBC_PARAMS;
The fidds of the structure have the following meanings:
ulEffectiveBits the effective number of bitsin the RC2 search space
iv theinitidizaion vector (IV) for cipher block chaining mode
CK_RC2 CBC_PARAMS PTR isapointer toaCK_RC2 CBC_PARAMS
CK_RC2 MAC_GENERAL_PARAMS;
CK_RC2 MAC_GENERAL_PARAMS PTR

CK_RC2 MAC_GENERAL_PARAMSis a dructure that provides the parameters to the
CKM_RC2 MAC_GENERAL mechanigm. It isdefined asfollows.

typedef struct CK RC2_MAC GENERAL_ PARAMS ({
CK_ULONG ul EffectiveBits;
CK_ULONG ul MacLengt h;
} CK_RC2_MAC_ GENERAL_PARAMS;
Thefields of the structure have the following meanings
ulEffectiveBits the effective number of bitsin the RC2 search space
ulMacLength length of the MAC produced, in bytes
CK_RC2 MAC_GENERAL_PARAMS PTR is a pointer to a
CK_RC2 MAC_GENERAL_PARAMS
12.12 RC2 mechanisms

12.12.1 RC2key generation

The RC2 key generation mechanism, denoted CKM_RC2 KEY_GEN, is a key generation
mechanism for RSA Data Security’ s block cipher RC2.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 246

It does not have a parameter.

The mechanism generates RC2 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC2 key type (specificaly, the flags
indicating which functions the key supports) may be specified in the template for the key, or se
are assgned default initid vaues.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of RC2 key Szes, in hits.

12.12.2 RC2-ECB

RC2-ECB, denoted CKM_RC2 ECB, is a mechanisn for dnglee and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data Security’s
block cipher RC2 and e ectronic codebook mode as defined in FIPS PUB 81.

It has a parameter, aCK_RC2 PARAM S which indicates the effective number of bits in the
RC2 search space.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not
be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism
encrypts the value of the CKA_VALUE dtribute of the key that is wrapped, padded on the
tralling end with up to seven null bytes so that the resulting length is a multiple of eight. The
output data is the same length as the padded input data. It does not wrap the key type, key
length, or any other information about the key; the gpplication must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN déttribute of the template. The mechanism contributes the result as
the CKA_VALUE attribute of the new key; other attributes required by the key type must be
specified in the template.

Congraints on key types and the length of data are summarized in the following table:

Table 7171686858, RC2-ECB: Key And Data Length

Copyright © 1994-1999 RSA Laboratories

Page 247

Function Key Input length Output length Comments
type
C_Encrypt RC2 multiple of 8 same as input length no find part
C _Decrypt RC2 multiple of 8 same as input length no find part
C WrapKey RC2 ay input length rounded up to
multiple of 8

C_UnwrapKey | RC2 multipleof 8 | determined by type of key

being unwrapped or

CKA_VALUE_LEN

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO sructure specify the supported range of RC2 effective number of
bits.

12.12.3 RC2-CBC

RC2-CBC, denoted CKM_RC2 CBC, is a mechanism for sngle and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data Security’s
block cipher RC2 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC2_CBC_PARAMS dructure, where the firg field indicates the
effective number of bitsin the RC2 search space, and the next fidd is the initidization vector for
cipher block chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not
be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism
encrypts the value of the CKA_VALUE dttribute of the key that is wrapped, padded on the
trailing end with up to seven null bytes so that the resulting length is a multiple of eight. The
output data is the same length as the padded input data. It does not wrap the key type, key
length, or any other information about the key; the application must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN dtribute of the template. The mechanism contributes the result as
the CKA_VALUE dtribute of the new key; other attributes required by the key type must be
gpecified in the template.

Condgraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 248

Table 7272596959, RC2-CBC: Key And Data Length

Function Key Input length Output length Comments
type
C_Encrypt RC2 multiple of 8 same asinput length no find part
C_Decrypt RC2 multiple of 8 same asinput length no find part
C_WrapKey RC2 any input length rounded up to
multiple of 8
C UnwrapKey | RC2 multipleof 8 | determined by type of key
being unwrapped or
CKA_VALUE_LEN

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of RC2 effective number of
bits.

12.12.4 RC2-CBC with PK CS padding

RC2-CBC with PKCS padding, denoted CKM_RC2_CBC_PAD, isamechanian for sngle-
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on
RSA Data Security’s block cipher RC2; cipher-block chaining mode as defined in FIPS PUB
81; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RC2_CBC_PARAMS dructure, where the firg field indicates the
effective number of bitsin the RC2 search space, and the next fidld is the initidization vector.

The PKCS padding in this mechanism dlows the length of the plaintext vaue to be recovered
from the ciphertext vdue. Therefore, when unwrapping keys with this mechanism, no vdue
should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Hdlman, and DSA private keys (see Section 12.9 for details). Theentriesin Table
73Table 70Table 67Fable-60 for data length congtraints when wrapping and unwrapping keys
do not apply to wrapping and unwrapping private keys.

Congraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories

Page 249

Table 73£3767060, RC2-CBC with PKCS Padding: Key And Data L ength

Function Key Input length Output length
type
C_Encrypt RC2 any input length rounded up to
multiple of 8
C _Decrypt RC2 multipleof 8 | between 1 and 8 bytes shorter
than input length
C_WrapKey RC2 any input length rounded up to
multiple of 8
C UnwrapKey | RC2 multipleof 8 | between 1 and 8 bytes shorter
than input length

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO sructure specify the supported range of RC2 effective number of
bits.

12.12.5 General-length RC2-MAC

Generd-length RC2-MAC, denoted CKM_RC2 MAC_GENERAL, is a mechaniam for
sngle- and multiple-part signatures and verification, based on RSA Data Security’ s block cipher
RC2 and data authentication as defined in FIPS PUB 113,

It has a parameter, aCK_RC2 MAC_GENERAL_PARAMS gructure, which specifies the
effective number of bits in the RC2 search space and the output length desired from the
mechaniam.

The output bytes from this mechaniam are taken from the gart of the find RC2 cipher block
produced in the MACing process.

Congraints on key types and the length of data are summarized in the following table:

Table 7574717161, General-length RC2-MAC: Key And Data Length

Function Key type | Datalength Signaturelength
C Sgn RC2 any 0-8, as specified in parameters
C Veify RC2 any 0-8, as specified in parameters

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 250

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO sructure specify the supported range of RC2 effective number of
bits.

12.12.6 RC2-MAC

RC2-MAC, denoted by CKM_RC2 MAC, is a specid case of the generd-length RC2-
MAC mechanism (see Section 12.12.5). Indead of taking a
CK_RC2 MAC_GENERAL_PARAMS paameter, it takes a CK_RC2 PARAMS
parameter, which only contains the effective number of bits in the RC2 search space. RC2-
MAC aways produces and verifies 4-byte MACs.

Congraints on key types and the length of data are summarized in the following table:

Table 7645727262, RC2-MAC: Key And Data L ength

Function Key type | Datalength Signaturelength
C Sgn RC2 ay 4
C Veify RC2 ay 4

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dgructure specify the supported range of RC2 effective number of
bits.

12.13 RC4 mechanisms

12.13.1 RC4 key generation

The RC4 key generation mechanism, denoted CKM_RC4 KEY_GEN, is a key generation
mechanism for RSA Data Security’ s proprietary stream cipher RCA.

It does not have a parameter.

The mechanism generates RC4 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC4 key type (specificaly, the flags
indicating which functions the key supports) may be specified in the template for the key, or se
are assgned default initid vaues.

Copyright © 1994-1999 RSA Laboratories

Page 251

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of RC4 key sizes, in hits.
12.13.2 RC4

RC4, denoted CKM_RC4, is a mechanism for sngle and multiple-part encryption and
decryption based on RSA Data Security’ s proprietary stream cipher RCA.

It does not have a parameter.

Congraints on key types and the length of input and output data are summarized in the following
table:

Table 7746737363, RC4: Key And Data L ength

Function Key type | Input length Output length Comments
C_Encrypt RC4 ay sameasinput length | nofind part
C _Decrypt RC4 ay sameasinput length | nofind part

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of RC4 key Szes, in hits.

12.14 About RC5

RC5 is aparametrizable block cipher for which RSA Data Security has patent pending. It hasa
variable wordsze, a variable keysze, and a variable number of rounds. The blocksze of RC5
isaways equd to twiceitswordsize.

12.15 RC5 mechanism parameters

CK_RC5 PARAMS; CK_RC5 PARAMS PTR

CK_RC5 PARAMS provides the paameters to the CKM_RC5 ECB ad
CKM_RC5 MAC mechanigms. It isdefined asfollows

typedef struct CK RC5_PARAMS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;

} CK_RC5_PARAMS;

Thefidds of the structure have the following meanings.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 252

ulWordsize wordsize of RC5 cipher in bytes
ulRounds number of rounds of RC5 encipherment

CK_RC5 PARAMS PTR isapointer toaCK_RC5 PARAMS

CK_RC5 CBC_PARAMS; CK_RC5_CBC_PARAMS PTR

CK_RC5 CBC_PARAMS is a dructure that provides the parameters to the
CKM_RC5 CBCand CKM_RC5 CBC_PAD mechaniams. It isdefined asfollows

typedef struct CK RC5_CBC _PARAMS {
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;
CK_BYTE_PTR pl v;
CK_ULONG ul I vLen;
} CK_RC5_CBC_PARAMS;
The fidds of the structure have the following meanings:
ulWordsize wordsize of RC5 cipher in bytes
ulRounds number of rounds of RC5 encipherment
plv pointer to initidization vector (1V) for CBC encryption
ullvLen length of initidization vector (must be same as blocksize)

CK_RC5 CBC_PARAMS PTR isapointer toaCK_RC5 CBC_PARAMS

CK_RC5 MAC_GENERAL _PARAMS;
CK_RC5 MAC_GENERAL_PARAMS PTR

CK_RC5 MAC_GENERAL_PARAMSis a dructure that provides the parameters to the
CKM_RC5 MAC_GENERAL mechanigm. It isdefined asfollows:

typedef struct CK RC5_MAC GENERAL_ PARAMS ({
CK_ULONG ul Wor dsi ze;
CK_ULONG ul Rounds;
CK_ULONG ul MacLengt h;

} CK_RC5_MAC_GENERAL_PARANS;

Thefields of the Sructure have the following meanings

ulWordsize wordsize of RC5S cipher in bytes

Copyright © 1994-1999 RSA Laboratories

Page 253

ulRounds number of rounds of RC5 encipherment
ulMacLength length of the MAC produced, in bytes

CK_RC5 MAC_GENERAL_PARAMS PTR is a ponter to a
CK_RC5 MAC_GENERAL_PARAMS

12.16 RC5 mechanisms

12.16.1 RC5key generation

The RC5 key generation mechanism, denoted CKM_RC5 KEY_GEN, is a key generation
mechanism for RSA Data Security’ s block cipher RC5.

It does not have a parameter.

The mechanism generates RC5 keys with a particular length in bytes, as specified in the
CKA_VALUE_LEN attribute of the template for the key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the RC5 key type (specificaly, the flags
indicating which functions the key supports) may be specified in the template for the key, or se
are assgned default initid vaues.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO gructure specify the supported range of RC5 key szes, in bytes.

12.16.2 RC5-ECB

RC5-ECB, denoted CKM_RC5 ECB, is a mechanisn for dngle and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data Security’s
block cipher RC5 and el ectronic codebook mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5 PARAMS which indicates the wordsze and number of
rounds of encryption to use.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not
be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism
encrypts the value of the CKA_VALUE dtribute of the key that is wrapped, padded on the
tralling end with null bytes so that the resulting length is a multiple of the cipher blocksize (twice
the wordsize). The output datais the same length as the padded input data. It does not wrap the
key type, key length, or any other information about the key; the gpplication must convey these

separately.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 254

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_KEY_TYPE attributes of the template and, if it has one, and the key type
supportsit, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the
result asthe CKA_VALUE attribute of the new key; other attributes required by the key type
must be specified in the template.

Congraints on key types and the length of data are summarized in the following table:

Table 7874747464, RC5-ECB: Key And Data L ength

Function Key Input length Output length Comments
type
C_Encrypt RC5 multiple of same asinput length no find part
blocksze
C _Decrypt RC5 multiple of same asinput length no find part
blocksze
C_WrapKey RC5 any input length rounded up to
multiple of blocksze
C UnwrapKey | RC5 multiple of determined by type of key
blocksze being unwrapped or
CKA_VALUE_LEN

12.16.3 RC5-CBC

RC5-CBC, denoted CKM_RC5 CBC, is a mechanism for dngle and multiple-part
encryption and decryption; key wrapping; and key unwrapping, based on RSA Data Security’s
block cipher RC5 and cipher-block chaining mode as defined in FIPS PUB 81.

It has a parameter, a CK_RC5 _CBC_PARAM S structure, which specifies the wordsize and
number of rounds of encryption to use, as well as the initidization vector for cipher block
chaining mode.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not
be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism
encrypts the value of the CKA_VALUE attribute of the key that is wrapped, padded on the
tralling end with up to seven null bytes so that the resulting length is a multiple of eight. The
output data is the same length as the padded input data. It does not wrap the key type, key
length, or any other information about the key; the gpplication must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN détribute of the template. The mechanism contributes the result as

Copyright © 1994-1999 RSA Laboratories

Page 255

the CKA_VALUE dtribute of the new key; other attributes required by the key type must be
specified in the template.

Congraints on key types and the length of data are summarized in the following table:

Table 7948757565, RC5-CBC: Key And Data L ength

Function Key Input length Output length Comments
type
C_Encrypt RC5 multiple of same asinput length no find part
blocksze
C_Decrypt RC5 multiple of same asinput length no find part
blocksze
C WrapKey RC5 ay input length rounded up to
multiple of blocksize
C_UnwrapKey | RC5 multiple of determined by type of key
blocksze being unwrapped or
CKA_VALUE LEN

12.16.4 RC5-CBC with PKCS padding

RC5-CBC with PKCS padding, denoted CKM_RC5 CBC_PAD, isamechanism for sngle-
and multiple-part encryption and decryption; key wrapping; and key unwrapping, based on
RSA Data Security’s block cipher RC5; cipher-block chaining mode as defined in FIPS PUB
81; and the block cipher padding method detailed in PKCS #7.

It has a parameter, a CK_RC5 _CBC_PARAM S structure, which specifies the wordsize and
number of rounds of encryption to use, as well as the initidization vector for cipher block
chaining mode.

The PKCS padding in this mechanism dlows the length of the plaintext vaue to be recovered
from the ciphertext vdue. Therefore, when unwrapping keys with this mechanism, no vdue
should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Hellman, and DSA private keys (see Section12.9 for details). The entriesin Teble
80Fable#6Table#3Table-66 for data length congtraints when wrapping and unwrapping keys
do not apply to wrapping and unwrapping private keys.

Congraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 256

Table 8079767666, RC5-CBC with PKCS Padding: Key And Data L ength

Function Key Input length Output length
type
C_Encrypt RC5 any input length rounded up to
multiple of blocksze
C _Decrypt RC5 multipleof | between 1 and blocksize bytes
blocksze shorter than input length
C_WrapKey RC5 any input length rounded up to
multiple of blocksze
C UnwrapKey | RC5 multipleof | between 1 and blocksize bytes
blocksze shorter than input length

12.16.5 General-length RC5-MAC

Generd-length RC5-MAC, denoted CKM_RC5 MAC_GENERAL, is a mechaniam for
sngle- and multiple-part signatures and verification, based on RSA Data Security’ s block cipher
RC5 and data authentication as defined in FIPS PUB 113,

It has a parameter, aCK_RC5 MAC_GENERAL _PARAM S sructure, which specifies the
wordsize and number of rounds of encryption to use and the output length desired from the
mechaniam.

The output bytes from this mechanism are taken from the gart of the find RC5 cipher block
produced in the MACing process.

Congraints on key types and the length of data are summarized in the following table:

Table 828047767, General-length RC2-MAC: Key And Data Length

Function Key type | Datalength Signature length
C Sgn RC2 any 0-blocksize, as specified in parameters
C Veify RC2 any 0-blocksize, as specified in parameters

12.16.6 RC5-MAC

RC5-MAC, denoted by CKM_RC5 MAC, is a specid case of the generd-length RC5-
MAC mechanism (see Section 12.16.5). Indead of teking a
CK_RC5 MAC_GENERAL_PARAMS parameter, it takes a CK_RC5 PARAMS
parameter. RC5-MAC aways produces and verifies MACs hdf as large as the RC5
blocksize.

Condgraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories

Page 257

Table 8381787868, RC5-MAC: Key And Data L ength

Function Key type | Datalength Signaturelength
C Sgn RC5 any RC5 wordsize = édlocksize/20
C Veify RC5 any RC5 wordsize = édlocksize/20

12.17 General block cipher mechanism parameters

CK_MAC_GENERAL_PARAMS; CK_MAC_GENERAL_PARAMS PTR

CK_MAC_GENERAL_PARAMS provides the parameters to the genera-length MACing
mechanisms of the DES, DES3 (triple-DES), CAST, CAST3, CAST128 (CAST5), IDEA,
and CDMF ciphers. It holds the length of the MAC that these mechanisms will produce. It is
defined asfollows:

typedef CK_ULONG CK_MAC_GENERAL_PARANS:

CK_MAC_GENERAL_PARAMS PTR is a pointer to a
CK_MAC_GENERAL_PARAMS

12.18 General block cipher mechanisms

For brevity’s sake, the mechanisms for the DES, DES3 (triple-DES), CAST, CASTS,
CAST128 (CAST5), IDEA, and CDMF block ciphers will be described together here. Each
of these ciphers has the following mechaniams, which will be described in atemplatized form:

12.18.1 General block cipher key generation

Cipher <NAME> has a key generation mechanism, “<NAME> key generation”, denoted
CKM_<NAME> KEY_GEN.

This mechanism does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key. Other attributes supported by the key type (specificdly, the flags
indicating which functions the key supports) may be specified in the template for the key, or se
are assgned default initid vaues.

When DES keys or CDMF keys are generated, their parity bits are set properly, as specified in
FIPS PUB 46-2. Similarly, when a triple-DES key is generated, each of the DES keys
comprising it has its parity bits set properly.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 258

When DES or CDMF keys are generated, it is token-dependent whether or not it is possible
for “weak” or “semi-wesk” keys to be generated. Similarly, when triple-DES keys are
generated, it is token dependent whether or not it is possible for any of the component DES
keysto be“weak” or “semi-weak” keys.

When CAST, CAST3, or CAST128 (CAST5) keys are generated, the template for the secret
key must specify aCKA _VALUE_LEN attribute.

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM INFO sructure may or may not be used. The CAST, CAST3, and
CAST128 (CAST5) ciphers have variable key sizes, and so for the key generation mechanisms
for these ciphes the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO structure specify the supported range of key sizes, in bytes. For
the DES, DES3 (triple-DES), IDEA, and CDMF ciphers, these fields are not used.

12.18.2 General block cipher ECB

Cipher <NAME> has an dectronic codebook mechanism, “<NAME>-ECB”, denoted
CKM_<NAME> _ECB. It is a mechaniam for sngle- and multiple-part encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It does not have a parameter.

This mechanism can wrap and unwrap any secret key. Of course, a particular token may not
be able to wrap/unwrap every secret key that it supports. For wrapping, the mechanism
encrypts the value of the CKA_VALUE dtribute of the key that is wrapped, padded on the
trailing end with null bytes so that the resulting length isamultiple of <NAME>'s blocksize. The
output data is the same length as the padded input data. It does not wrap the key type, key
length or any other information about the key; the gpplication must convey these separately.

For unwrapping, the mechanism decrypts the wrapped key, and truncates the result according
to the CKA_KEY_TYPE attribute of the template and, if it has one, and the key type supports
it, the CKA_VALUE_LEN attribute of the template. The mechanism contributes the result as
the CKA_VALUE dtribute of the new key; other attributes required by the key type must be
specified in the template.

Congraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories

Page 259

Table 8482797969, General Block Cipher ECB: Key And Data L ength

Function Key type Input Output length Comments
length
C_Encrypt <NAME> | multiple of same asinput length no find part
blocksze
C _Decrypt <NAME> | multiple of same asinput length no find part
blocksze
C_WrapKey <NAME> any input length rounded up to
multiple of blocksze
C UnwrapKey | <NAME> ay determined by type of key
being unwrapped or
CKA_VALUE_LEN

12.18.3 General block cipher CBC

Cipher <NAME> has a cipher-block chaining mode, “<NAME>-CBC”, denoted
CKM_<NAME> CBC. It is a mechaniam for gngle- and multiple-pat encryption and
decryption; key wrapping; and key unwrapping with <NAME>.

It has a parameter, an initidization vector for cipher block chaining mode. The initidization
vector has the same length as <NAME>'s blocksize.

Congraints on key types and the length of data are summarized in the following table:

Table 8583808070, General Block Cipher CBC: Key And Data L ength

Function Key type Input Output length Comments
length
C_Encrypt <NAME> | multipleof same asinput length no find part
blocksize
C_Decrypt <NAME> | multiple of same as input length no find part
blocksze
C_WrapKey <NAME> any input length rounded up to
multiple of blocksze
C _UnwrapKey | <NAME> any determined by type of key
being unwrapped or
CKA_VALUE _LEN

12.18.4 General block cipher CBC with PKCS padding

Cipher <NAME> has a cipher-block chaining mode with PKCS padding, “<NAME>-CBC
with PKCS padding”, denoted CKM_<NAME>_CBC_PAD. It is a mechaniam for sngle-

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 260

and multiplepat encryption and decryption; key wrapping; and key unwrapping with
<NAME>. All ciphertext is padded with PKCS padding.

It has a parameter, an initidization vector for cipher block chaining mode. The initidization
vector has the same length as <NAME>'s blocksize.

The PKCS padding in this mechanism dlows the length of the plaintext value to be recovered
from the ciphertext value. Therefore, when unwrapping keys with this mechanism, no vaue
should be specified for the CKA_VALUE_LEN attribute.

In addition to being able to wrap and unwrap secret keys, this mechanism can wrap and unwrap
RSA, Diffie-Hdlman, and DSA private keys (see Section 12.9 for details). Theentriesin Table
86¥able-81Table 78Table#1 for data length congtraints when wrapping and unwrapping keys
do not apply to wrapping and unwrapping private keys.

Congraints on key types and the length of data are summarized in the following table:

Table 8684818171, General Block Cipher CBC with PKCS Padding: Key And Data
Length

Function Key type Input Output length
length
C_Encrypt <NAME> ay input length rounded up to
multiple of blocksze
C_Decrypt <NAME> | multipleof | between 1 and blocksize bytes
blocksze shorter than input length
C WrapKey <NAME> ay input length rounded up to
multiple of blocksze
C UnwrapKey | <NAME> | multipleof | between 1 and blocksize bytes
blocksze shorter than input length

12.18.5 General-length general block cipher MAC

Cipher <NAME> has a generd-length MACing mode, “Genera-length <NAME>-MAC”,
denoted CKM_<NAME> MAC_GENERAL. It is amechanian for angle- and multiple-
part sgnatures and verification.

It has a parameter, a CK_MAC_GENERAL_PARAMS which specifies the gze of the
output.

The output bytes from this mechanism are taken from the sart of the find cipher block
produced in the MACing process.

Copyright © 1994-1999 RSA Laboratories

Page 261

Congraints on key types and the length of input and output data are summarized in the following
table:

Table 8885828273, General-length General Block Cipher MAC: Key And Data
Length

Function Key type | Datalength Signaturelength
C Sgn <NAME> any 0-blocksize, depending on
parameters
C Veify <NAME> any 0-blocksize, depending on
parameters
12.18.6 General block cipher MAC
Cipherr <NAME> has a MACing mechanism, “<NAME>-MAC’, denoted

CKM_<NAME> MAC. This mechanism is a ecid cae of the
CKM_<NAME> MAC_GENERAL mechanism described in Section 12.18.5. It dways
produces an output of size haf aslarge as <NAME>'s blocksize.

This mechanism has no parameters.

Condgraints on key types and the length of data are summarized in the following table:

Table 8986838373, General Block Cipher MAC: Key And Data Length

Function Key type | Datalength Signaturelength
C Sgn <NAME> any éblocksize/20
C Veify <NAME> any éblocksize/20

12.19 Double-length DES mechanisms

12.19.1 Double-length DES key generation

The double-length DES key generation mechaniam, denoted CKM_DES2 KEY_GEN, is a
key generation mechanism for double-length DES keys. The DES keys making up a double-
length DES key both have their parity bits set properly, as specified in FIPS PUB 46-2.

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA _KEY_TYPE, and CKA_ VALUE
attributes to the new key. Other attributes supported by the double-length DES key type
(spedifically, the flags indicating which functions the key supports) may be specified in the
template for the key, or ese are assgned default initia values.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 262

Double-length DES keys can be used with dl the same mechanisms as triple-DES keys
CKM_DES ECB, CKM_DES CBC, CKM_DES CBC_PAD,
CKM_DES MAC_GENERAL, and CKM_DES MAC (these mechanisms are described
in templatized form in Section 12.18). Triple-DES encryption with a double-length DES key
consgts of three steps: encryption with the first DES key; decryption with the second DES key;
and encryption with the first DES key.

When double-length DES keys are generated, it is token-dependent whether or not it is
possible for either of the component DES keys to be “weak” or “semi-weak” keys.

12.20 SKIPJACK mechanism parameters

CK_SKIPJACK_PRIVATE_WRAP_PARAMS;
CK_SKIPJACK_PRIVATE_WRAP PARAMS PTR

CK_SKIPJACK_PRIVATE_WRAP_PARAMSis a dructure that provides the parameters
tothe CKM_SKIPJACK PRIVATE_WRAP mechanian. It isdefined asfollows:

typedef struct CK _SKI PJACK PRI VATE WRAP_PARAMS ({
CK_ULONG ul Passwor dLen;
CK_BYTE_PTR pPasswor d;
CK_ULONG ul Publ i cDat aLen;
CK_BYTE_PTR pPubl i cDat a;
CK_ULONG ul PandG.en;
CK_ULONG ul QLen;
CK_ULONG ul Randomi_en;
CK_BYTE_PTR pRandomA;
CK_BYTE_PTR pPri meP;
CK_BYTE_PTR pBaseG,
CK_BYTE_PTR pSubpri meQ,

} CK_SKI PJACK PRI VATE_WRAP_PARANS;

Thefields of the structure have the following meanings
ulPasswordLen length of the password

pPassword pointer to the buffer which contains the user-supplied
password

ulPublicDataLen other party’s key exchange public key size
pPublicData pointer to other party’ s key exchange public key vaue

ulPandGLen length of prime and base vaues

Copyright © 1994-1999 RSA Laboratories

Page 263

ulQLen length of subprime vaue
ulRandomLen sizeof random Ra, in bytes
pRandomA pointer to Radata
pPrimeP pointer to Prime, p, vdue
pBaseG pointer to Base, g, vaue
pSubprimeQ pointer to Subprime, g, value

CK_SKIPJACK_PRIVATE_WRAP PARAMS PTR is a ponter to a
CK_PRIVATE_WRAP_PARAMS

CK_SKIPJACK_RELAYX_PARAMS;
CK_SKIPJACK_RELAYX_PARAMS PTR

CK_SKIPJACK_RELAYX_PARAMS is a dructure that provides the parameters to the
CKM_SKIPJACK_RELAYX mechanism. It isdefined asfollows

typedef struct CK_SKI PJACK RELAYX PARAMS {
CK_ULONG ul O dW appedXLen;
CK_BYTE_PTR pQ dW appedX;
CK_ULONG ul O dPasswor dLen;
CK_BYTE_PTR pd dPasswor d;
CK_ULONG ul O dPubl i cDat aLen;
CK_BYTE_PTR pQ dPubl i cDat a;
CK_ULONG ul O dRandonlen;
CK_BYTE_PTR pO dRandomA;
CK_ULONG ul NewPasswor dLen;
CK_BYTE_PTR pNewPasswor d;
CK_ULONG ul NewPubl i cDat aLen;
CK_BYTE_PTR pNewPubl i cDat a;
CK_ULONG ul NewRandomnien;
CK_BYTE_PTR pNewRandomA,;

} CK_SKI PJACK_RELAYX_ PARANMS;

Thefields of the sructure have the following meanings
ulOldWrappedXLen length of old wrapped key in bytes
pOIldWrappedX pointer to old wrapper key

ulOldPasswordLen length of the old password

Copyright © 1994-1999 RSA Laboratories.

pOldPassword

ulOldPublicDatalen
pOldPublicData
ulOldRandomLen
pOldRandomA
ulNewPasswordLen

pNewPassword

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 264

pointer to the buffer which contains the old user-supplied
password

old key exchange public key sze

pointer to old key exchange public key vaue
Sze of old random Rain bytes

pointer to old Ra data

length of the new password

pointer to the buffer which contains the new user-supplied

password
ulNewPublicDatal en new key exchange public key size
pNewPublicData pointer to new key exchange public key vaue

ulNewRandomLen size of new random Rain bytes

pNewRandomA pointer to new Radata

CK_SKIPJACK_RELAYX_PARAMS PTR is a
CK_SKIPJACK_RELAYX_PARAMS

pointer to a

12.21 SKIPJACK mechanisms

12.21.1 SKIPJACK key generation

The SKIPJACK key generation mechanism, denoted CKM_SKIPJACK_KEY_GEN, is a
key generation mechanism for SKIPJACK. The output of this mechanism is cdled a Message
Encryption Key (MEK).

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key.

Copyright © 1994-1999 RSA Laboratories

Page 265

12.21.2 SKIPJACK-ECB64

SKIPJACK-ECB64, denoted CKM_SKIPJACK ECB®64, is a mechanian for sngle- and
multiple-part encryption and decryption with SKIPJACK in 64-bit electronic codebook mode
as defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this1V is set
to some vaue generated by the token—in other words, the application cannot specify a
particular 1V when encrypting. It can, of course, specify a particular IV when decrypting.

Condgraints on key types and the length of data are summarized in the following table:

Table 9084848474, SKIPJACK-ECB64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 8 | sameasinput length | nofind part
C _Decrypt SKIPJACK multipleof 8 | sameasinput length | nofind part

12.21.3 SKIPJACK-CBC64

SKIPJACK-CBC64, denoted CKM_SKIPJACK _CBC64, is a mechanian for sngle- and
multiple-part encryption and decryption with SKIPJACK in 64-bit cipher-block chaining mode
as defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this IV is st
to some vaue generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Condgraints on key types and the length of data are summarized in the following table:

Table 9188858575, SKIPJACK-CBC64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 8 | sameasinput length | nofind part
C_Decrypt SKIPJACK multipleof 8 | sameasinput length | nofind part

12.21.4 SKIPJACK-OFB64

SKIPJACK-OFB64, denoted CKM_SKIPJACK _OFB64, is a mechanism for sngle- and
multiple-part encryption and decryption with SKIPJACK in 64-bit output feedback mode as
defined in FIPS PUB 185.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 266

It has a parameter, a 24-byte initidization vector. During an encryption operation, this1V is set
to some vaue generated by the token—in other words, the application cannot specify a
particular 1V when encrypting. It can, of course, specify a particular IV when decrypting.

Condgraints on key types and the length of data are summarized in the following table:

Table 9289868676, SKIPJACK-OFB64: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 8 | sameasinput length | nofind part
C _Decrypt SKIPJACK multipleof 8 | sameasinput length | nofind part

12.21.5 SKIPJACK-CFB64

SKIPJACK-CFB64, denoted CKM_SKIPJACK _CFB64, is a mechaniam for single- and
multiple-part encryption and decryption with SKIPJACK in 64-bit cipher feedback mode as
defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this IV is st
to some vaue generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Condgraints on key types and the length of data are summarized in the following table:

Table 9390878777, SKIPJACK-CFB64: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 8 | sameasinput length | nofind part
C_Decrypt SKIPJACK multipleof 8 | sameasinput length | nofind part

12.21.6 SKIPJACK-CFB32

SKIPJACK-CFB32, denoted CKM_SKIPJACK_CFB32, is a mechaniam for single- and
multiple-part encryption and decryption with SKIPJACK in 32-bit cipher feedback mode as
defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this IV is st
to some vaue generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular 1V when decrypting.

Condraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories

Page 267

Table 9491888878, SKIPJACK-CFB32: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 4 | sameasinput length | nofind part
C _Decrypt SKIPJACK multipleof 4 | sameasinput length | nofind part

12.21.7 SKIPJACK-CFB16

SKIPJACK-CFB16, denoted CKM_SKIPJACK_CFB16, is a mechaniam for single- and
multiple-part encryption and decryption with SKIPJACK in 16-bit cipher feedback mode as
defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this IV is st
to some vaue generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular [V when decrypting.

Congraints on key types and the length of data are summarized in the following table:

Table 9592898979, SKIPJACK-CFB16: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 4 | sameasinput length | no find part
C_Decrypt SKIPJACK multipleof 4 | sameasinput length | no find part

12.21.8 SKIPJACK-CFB8

SKIPJACK-CFBS, denoted CKM_SKIPJACK_CFB8, is a mechanism for sngle and
multiple-part encryption and decryption with SKIPJACK in 8-hit cipher feedback mode as
defined in FIPS PUB 185.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this IV is st
to some vaue generated by the token—in other words, the gpplication cannot specify a
particular IV when encrypting. It can, of course, specify a particular 1V when decrypting.

Condgraints on key types and the length of data are summarized in the following table:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 268

Table 9693909080, SK1PJACK-CFBS8: Data and Length

Function Key type Input length Output length Comments
C_Encrypt SKIPJACK multipleof 4 | sameasinput length | nofind part
C _Decrypt SKIPJACK multipleof 4 | sameasinput length | nofind part

12.21.9 SKIPJACK-WRAP

The SKIPJACK-WRAP mechanism, denoted CKM_SKIPJACK_WRAP, is used to wrap
and unwrap a secret key (MEK). It can wrap or unwrap SKIPJACK, BATON, and
JUNIPER keys.

It does not have a parameter.

12.21.10 SKIPJACK-PRIVATE-WRAP

The SKIPJACK-PRIVATE-WRAP mechanism, denoted
CKM_SKIPJACK_PRIVATE_WRAP, is used to wrap and unwrap a private key. It can
wrap KEA and DSA private keys.

It has a parameter, aCK_SKIPJACK_PRIVATE_WRAP_PARAM S dructure.

12.21.11 SKIPJACK-RELAYX

The SKIPJACK-RELAY X mechanism, denoted CKM_SKIPJACK_RELAYX, isused with
the C_WrapK ey function to “change the wrapping” on a private key which was wrapped with
the SKIPJACK-PRIVATE-WRAP mechanism (see Section 12.21.10).

It has a parameter, a CK_SKI1PJACK_RELAYX_PARAM Sdtructure.

Although the SKIPJACK-RELAY X mechanism is used with C_WrapKey, it differs from
other key-wrapping mechanisms. Other key-wrapping mechanisms take a key handle as one of
the arguments to C_WrapKey; however, for the SKIPJACK_RELAYX mechanism, the
[dwaysinvdid] vaue 0 should be passed asthe key handiefor C_WrapKey, and the dready-
wrapped key should be passed in as part of the CK_SKIPJACK_RELAYX PARAMS
dructure.

Copyright © 1994-1999 RSA Laboratories

Page 269

12.22 BATON mechanisms

12.22.1 BATON key generation

The BATON key generation mechanism, denoted CKM_BATON_KEY_GEN, is a key
generation mechanism for BATON. The output of this mechanism is cdled a Message
Encryption Key (MEK).

It does not have a parameter.

This mechanism contributes the CKA_CLASS, CKA KEY_TYPE, and CKA_VALUE
attributes to the new key.

12.22.2 BATON-ECB128

BATON-ECB128, denoted CKM_BATON_ECB128, is a mechanism for sngle and
multiple-part encryption and decryption with BATON in 128-hit electronic codebook mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this 1V is set
to some vaue generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Congraints on key types and the length of data are summarized in the following table:

Table 9794919181, BATON-ECB128: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt BATON multiple of 16 sameasinput length | nofind part
C_Decrypt BATON multiple of 16 sameasinput length | nofind part

12.22.3 BATON-ECB9

BATON-ECB96, denoted CKM_BATON_ECB96, is a mechanism for sngle- and multiple-
part encryption and decryption with BATON in 96-bit electronic codebook mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this IV is st
to some vaue generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Condgraints on key types and the length of data are summarized in the following table:

Table 9895929282, BATON-ECB96: Data and L ength

Copyright © 1994-1999 RSA Laboratories.

PKCS #11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 270
Function Key type Input length Output length Comments
C_Encrypt BATON multiple of 12 same asinput length no find part
C_Decrypt BATON multiple of 12 same asinput length no find part

12.22.4 BATON-CBC128

BATON-CBC128, denoted CKM_BATON_CBC128, is a mechanism for sngle and
multiple-part encryption and decryption with BATON in 128-hit cipher-block chaining mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this IV is st
to some vaue generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular [V when decrypting.

Congraints on key types and the length of data are summarized in the following table:

Table 9996939383, BATON-CBC128: Data and Length

Function Key type | Inputlength Output length Comments
C_Encrypt BATON multipleof 16 | sameasinput length | no find part
C_Decrypt BATON multipleof 16 | sameasinput length | no find part

12.22.5 BATON-COUNTER

BATON-COUNTER, denoted CKM_BATON_COUNTER, is a mechanism for sngle- and
multiple-part encryption and decryption with BATON in counter mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this1V is set
to some vaue generated by the token—in other words, the application cannot specify a
particular 1V when encrypting. It can, of course, specify a particular IV when decrypting.

Congraints on key types and the length of data are summarized in the following table:

Table 10097949484, BATON-COUNTER: Data and Length

Function Key type | Inputlength Output length Comments
C_Encrypt BATON multipleof 16 | sameasinput length no find part
C_Decrypt BATON multipleof 16 | sameasinput length no find part

12.22.6 BATON-SHUFFLE

BATON-SHUFFLE, denoted CKM_BATON_SHUFFLE, is a mechaniam for sngle- and
multiple-part encryption and decryption with BATON in shuffle mode.

Copyright © 1994-1999 RSA Laboratories

Page 271

It has a parameter, a 24-byte initidization vector. During an encryption operation, this1V is set
to some vaue generated by the token—in other words, the application cannot specify a
particular 1V when encrypting. It can, of course, specify a particular IV when decrypting.

Condgraints on key types and the length of data are summarized in the following table:

Table 10198959585, BATON-SHUFFLE: Data and L ength

Function Key type | Inputlength Output length Comments
C_Encrypt BATON multipleof 16 | sameasinput length no find part
C _Decrypt BATON multipleof 16 | sameasinput length no find part

12.22.7 BATON WRAP

The BATON wrap and unwrap mechanism, denoted CKM_BATON_WRAP, is a function
used to wrap and unwrap a secret key (MEK). It can wrap and unwrap SKIPJACK,
BATON, and JUNIPER keys.

It has no parameters.
When used to unwrgp a Kkey, this mechanism contributes the CKA_CLASS,
CKA _KEY_TYPE, and CKA_VALUE dtributesto it.

12.23 JUNIPER mechanisms

12.23.1 JUNIPER key generation

The JUNIPER key generation mechanism, denoted CKM_JUNIPER_KEY_GEN, is a key
generation mechanism for JUNIPER. The output of this mechanism is cdled a Message
Encryption Key (MEK).

It does not have a parameter.

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE, and CKA VALUE
attributes to the new key.

12.23.2 JUNIPER-ECB128

JUNIPER-ECB128, denoted CKM_JUNIPER_ECB128, is a mechanism for sngle- and
multiple-part encryption and decryption with JUNIPER in 128-bit el ectronic codebook mode.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 272

It has a parameter, a 24-byte initidization vector. During an encryption operation, this1V is set
to some vaue generated by the token—in other words, the application cannot specify a
particular 1V when encrypting. It can, of course, specify a particular IV when decrypting.

Condraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin a the same location in

memory.

Table 10299969686, JUNI PER-ECB128: Data and L ength

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multipleof 16 | sameasinput length | nofind part
C _Decrypt JUNIPER multipleof 16 | sameasinput length | nofind part

12.23.3 JUNIPER-CBC128

JUNIPER-CBC128, denoted CKM_JUNIPER_CBC128, is a mechaniam for sngle- and
multiple-part encryption and decryption with JUNIPER in 128-hit cipher-block chaining mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this1V is set
to some vaue generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Congraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin a the same location in

memory.

Table 103100979787, JUNI PER-CBC128: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multipleof 16 | sameasinput length | nofind part
C_Decrypt JUNIPER multipleof 16 | sameasinput length | nofind part

12.23.4 JUNIPER-COUNTER

JUNIPER COUNTER, denoted CKM_JUNIPER_COUNTER, is a mechaniam for sngle-
and multiple-part encryption and decryption with JUNIPER in counter mode,

It has a parameter, a 24-byte initidization vector. During an encryption operation, this IV is st
to some vaue generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular 1V when decrypting.

Copyright © 1994-1999 RSA Laboratories

Page 273

Congraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin a the same location in

memoary.

Table 104101989888, JUNI PER-COUNTER: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multipleof 16 | sameasinput length | nofind part
C_Decrypt JUNIPER multipleof 16 | sameasinput length | nofind part

12.23.5 JUNIPER-SHUFFLE

JUNIPER-SHUFFLE, denoted CKM_JUNIPER_SHUFFLE, is a mechanism for sngle-
and multiple-part encryption and decryption with JUNIPER in shuffle mode.

It has a parameter, a 24-byte initidization vector. During an encryption operation, this IV is st
to some vaue generated by the token—in other words, the application cannot specify a
particular IV when encrypting. It can, of course, specify a particular IV when decrypting.

Congraints on key types and the length of data are summarized in the following table. For
encryption and decryption, the input and output data (parts) may begin a the same location in

memory.

Table 105382999989, JUNI PER-SHUFFLE: Data and Length

Function Key type Input length Output length Comments
C_Encrypt JUNIPER multipleof 16 | sameasinput length | nofind part
C_Decrypt JUNIPER multipleof 16 | sameasinput length | no find part

12.23.6 JUNIPER WRAP

The JUNIPER wrap and unwrap mechanism, denoted CKM_JUNIPER_WRAP, is a
function used to wrap and unwrap an MEK. It can wrap or unwrap SKIPJACK, BATON,
and JUNIPER keys.

It has no parameters.

When used to unwrgp a key, this mechanism contributes the CKA_CLASS,
CKA_KEY_TYPE, and CKA_VALUE attributesto it.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 274

12.24 MD2 mechanisms

12.24.1 MD2

The MD2 mechanism, denoted CKM _M D2, is a mechanism for message digesting, following
the MD2 message-digest dgorithm defined in RFC 1319.

It does not have a parameter.
Condraints on the length of data are summarized in the following table:

Table 10610310010090, MD2: Data L ength

Function | Datalength | Digest length
C Digest ay 16

12.24.2 General-length MD2-HMAC

The generd-length MD2-HMAC mechanism, denoted CKM_MD2 HMAC_GENERAL, is
a mechanism for dgnatures and verification. It uses the HMAC congruction, based on the
MD2 hash function. The keysit uses are generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAM S which holds the length in bytes of
the desred output. This length should be in the range 0-16 (the output size of MD2 is 16
bytes). Signatures (MACs) produced by this mechanism will be taken from the start of the full
16-byte HMAC output.

Table 10710410110191 General-length MD2-HMAC: Key And Data Length

Function Key type Data length Signaturelength
C Sgn generic secret any 0-16, depending on parameters
C Veify generic secret any 0-16, depending on parameters

12.243 MD2-HMAC

The MD2-HMAC mechanism, denoted CKM_MD2 HMAC, is a specid case of the
generd-length MD2-HMAC mechanism in Section 12.24.2.

It has no parameter, and aways produces an output of length 16.

Copyright © 1994-1999 RSA Laboratories

Page 275

12.24.4 MD2 key derivation

MD2 key derivation, denoted CKM_MD2 _KEY_DERIVATION, is a mechanism which
provides the capability of deriving a secret key by digesting the value of another secret key with
MD2.

The vaue of the base key is digested once, and the result is used to make the vaue of derived
secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 16 bytes (the output size of
MD?2).

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key type s, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in thetemplate. 1If it doesn't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more than 16 bytes, an error is generated.
This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE atributes in the template for the
new key can both be specified to be either TRUE or FALSE. If omitted, these attributes
each take on some default vaue.

If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then the
derived key will aswdl. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key hasits CKA_ALWAYS SENSITIVE dtribute set to
the samevadue asits CKA_SENSITIVE attribute.

Smilarly, if the base key has its CKA_NEVER_EXTRACTABLE atribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE attribute set to the opposite vdue from its
CKA _EXTRACTABLE dattribute.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 276

12.25 MD5 mechanisms

12.25.1 MD5

The MD5 mechanism, denoted CKM _M D5, is a mechanism for message digesting, following
the MD5 message-digest dgorithm defined in RFC 1321.

It does not have a parameter.

Congraints on the length of input and output data are summarized in the following table. For
sngle-part digesting, the data and the digest may begin at the same location in memory.

Table 10810510210292, MD5: Data L ength

Function | Datalength | Digest length
C Digest any 16

12.25.2 General-length MD5-HMAC

The genera-length MD5-HMAC mechanism, denoted CKM_MD5_HMAC_GENERAL, is
a mechanism for sgnatures and verification. It uses the HMAC congruction, based on the
MD5 hash function. The keys it uses are generic secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAMS which holds the length in bytes of
the desred output. This length should be in the range 0-16 (the output Size of MDS5 is 16
bytes). Signatures (MACs) produced by this mechanism will be taken from the tart of the full
16-byte HMAC output.

Table 10910610310393, General-length MD5-HMAC: Key And Data L ength

Function Key type Data length Signature length
C Sgn generic secret any 0-16, depending on parameters
C Veify generic secret any 0-16, depending on parameters

12.25.3 MD5-HMAC

The MD5-HMAC mechanism, denoted CKM_MD5 HMAC, is a specid case of the
generd-length MD5-HMAC mechanism in Section 12.25.2.

It has no parameter, and aways produces an output of length 16.

Copyright © 1994-1999 RSA Laboratories

Page 277

12.25.4 MD5 key derivation

MD?5 key derivation, denoted CKM_MD5 KEY_DERIVATION, is a mechanism which
provides the capability of deriving a secret key by digesting the value of another secret key with
MDS5.

The vaue of the base key is digested once, and the result is used to make the vaue of derived
secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be 16 bytes (the output size of
MD5).

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key type s, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in thetemplate. 1If it doesn't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more than 16 bytes, an error is generated.
This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE atributes in the template for the
new key can both be specified to be either TRUE or FALSE. If omitted, these attributes
each take on some default vaue.

If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then the
derived key will aswdl. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key hasits CKA_ALWAYS SENSITIVE dtribute set to
the samevadue asits CKA_SENSITIVE attribute.

Smilarly, if the base key has its CKA_NEVER_EXTRACTABLE atribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE attribute set to the opposite vdue from its
CKA _EXTRACTABLE dattribute.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 278

12.26 SHA-1 mechanisms

12.26.1 SHA-1

The SHA-1 mechanism, denoted CKM_SHA 1, is a mechaniam for message digesting,
following the Secure Hash Algorithm defined in FIPS PUB 180-1.

It does not have a parameter.

Congraints on the length of input and output data are summarized in the following table. For
sngle-part digesting, the data and the digest may begin at the same location in memory.

Table 11030710410494, SHA-1: Data Length

Function | Input length | Digest length
C_Digest any 20

12.26.2 General-length SHA-1-HMAC

The generd-length SHA-1-HMAC mechanism, denoted
CKM_SHA 1 HMAC_GENERAL, is amechaniam for sgnatures and verification. It uses
the HMAC congruction, based on the SHA-1 hash function. The keys it uses are generic
secret keys.

It has a parameter, a CK_MAC_GENERAL_PARAM S which holds the length in bytes of
the desired output. This length should be in the range 0-20 (the output size of SHA-1 is 20
bytes). Signatures (MACs) produced by this mechanism will be taken from the start of the full
20-byte HMAC output.

Table 11110810510595, Gener al-length SHA-1-HMAC: Key And Data L ength

Function Key type Data length Signaturelength
C Sgn generic secret any 0-20, depending on parameters
C Veify generic secret any 0-20, depending on parameters

12.26.3 SHA-1-HMAC

The SHA-1-HMAC mechanism, denoted CKM_SHA 1 HMAQC, is a specid case of the
generd-length SHA-1-HMAC mechanism in Section 12.26.2.

It has no parameter, and aways produces an output of length 20.

Copyright © 1994-1999 RSA Laboratories

Page 279

12.26.4 SHA-1key derivation

SHA-1 key derivation, denoted CKM_SHA1 KEY_DERIVATION, is a mechanism which
provides the capability of deriving a secret key by digesting the value of another secret key with
SHA-1.

The vaue of the base key is digested once, and the result is used to make the vaue of derived
secret key.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Itslength will be 20 bytes (the output size of SHA-
1).

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length was provided in the template, but a key type s, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in thetemplate. 1If it doesn't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more than 20 bytes, an error is generated.
This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE atributes in the template for the
new key can both be specified to be either TRUE or FALSE. If omitted, these attributes
each take on some default vaue.

If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then the
derived key will aswdl. If the base key hasits CKA_ALWAYS SENSITIVE attribute
st to TRUE, then the derived key hasits CKA_ALWAYS SENSITIVE dtribute set to
the samevadue asits CKA_SENSITIVE attribute.

Smilarly, if the base key has its CKA_NEVER_EXTRACTABLE atribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE attribute set to the opposite vdue from its
CKA _EXTRACTABLE dattribute.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 280

12.27 FASTHASH mechanisms

12.27.1 FASTHASH

The FASTHASH mechanism, denoted CKM_FASTHASH, is a mechaniam for message
digedting, following the U. S. government’ s dgorithm.

It does not have a parameter.
Condraints on the length of input and output data are summarized in the following table:

Table 11210910610696, FASTHASH: Data L ength

Function | Input length | Digest length
C Digest ay 40

12.28 Password-based encryption/authentication mechanism parameters

CK_PBE_PARAMS; CK_PBE_PARAMS PTR

CK_PBE_PARAM Sisadtructure which provides dl of the necessary information required by
the CKM_PBE mechanisms (see PKCS #5 and PKCS #12 for information on the PBE
generation mechanisms) and the CKM_PBA_SHA1 WITH_SHA1 HMAC mechaniam. Itis
defined asfollows:

typedef struct CK PBE_PARAMS {
CK_CHAR_PTR pl nit Vector;
CK_CHAR _PTR pPassword;
CK_ULONG ul Passwor dLen;
CK_CHAR PTR pSalt;
CK_ULONG ul Sal t Len;
CK _ULONG ul I teration;

} CK_PBE_PARANS;

Thefields of the Sructure have the following meanings

plnitVector pointer to the location that receives the 8-byte initidization
vector (1V), if an 1V isrequired,

pPassword pointsto the password to be used in the PBE key
generation;

ulPasswordLen length in bytes of the password information;

Copyright © 1994-1999 RSA Laboratories

Page 281

palt points to the st to be used in the PBE key generation;
ulSaltLen lengthin bytes of the sdt information;
ullteration ~ number of iterations required for the generation.

CK_PBE_PARAMS PTR isapointer to aCK_PBE_PARAMS

12.29 PKCS#5 and PKCS #5-style passwor d-based encryption mechanisms

The mechanisms in this section are for generating keys and 1Vs for performing password-based
encryption. The method used to generate keys and 1Vsis specified in PKCS #5.

12.29.1 MD2-PBE for DES-CBC

MD2-PBE for DES-CBC, denoted CKM_PBE_MD2 DES CBC, is amechanism used for
generating a DES secret key and an IV from a password and a sdt vaue by using the MD2
digest dgorithm and an iteration count. This functiondity is defined in PKCS#5 as PBK DF1.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generaion process and the location of the gpplication-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

12.29.2 MD5-PBE for DES-CBC

MD5-PBE for DES-CBC, denoted CKM_PBE_MD5 DES CBC, is amechanism used for
generating a DES secret key and an IV from a password and a sdt vaue by using the MD5
digest dgorithm and an iteration count. This functiondity is defined in PKCS#5 as PBKDFL.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
informetion for the key generation process and the location of the gpplication-supplied buffer
which will recaive the 8-byte IV generated by the mechanism.

12.29.3 MD5-PBE for CAST-CBC

MD5-PBE for CAST-CBC, denoted CKM_PBE_MD5_CAST_CBC, is a mechanism used
for generating a CAST secret key and an IV from a password and a sat value by using the
MDS5 digest dgorithm and an iteration count. This functiondity is andlogous to that defined in
PKCS#5 PBKDF1 for MD5 and DES.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 282

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
informetion for the key generation process and the location of the gpplication-supplied buffer
which will recaive the 8-byte IV generated by the mechanism.

The length of the CAST key generated by this mechanisn may be specified in the supplied
template; if it is not present in the template, it defaultsto 8 bytes.

12.29.4 MD5-PBE for CAST3-CBC

MD5-PBE for CAST3-CBC, denoted CKM_PBE_MD5 CAST3 CBC, is a mechanism
used for generating a CAST 3 secret key and an IV from a password and a sdt value by using
the MDS5 digest dgorithm and an iteration count. This functiondlity is analogous to that defined in
PKCS#5 PBKDF1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
informetion for the key generaion process and the location of the gpplication-supplied buffer
which will recaive the 8-byte IV generated by the mechanism.

The length of the CAST3 key generated by this mechanism may be specified in the supplied
template; if it is not present in the template, it defaultsto 8 bytes.

12.29.5 MD5-PBE for CAST128-CBC (CAST5-CBC)

MD5-PBE for CAST128-CBC (CAST5-CBC), denoted
CKM_PBE_MD5 CAST128 CBCor CKM_PBE_MD5 CAST5 CBC, is a mechanism
used for generating a CAST128 (CAST5) secret key and an 1V from a password and a salt
vaue by using the MD5 digest dgorithm and an iteration count. This functiondity is andogous to
that defined in PKCS#5 PBKDFL1 for MD5 and DES.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generaion process and the location of the gpplication-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CAST5) key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaultsto 8 bytes.

12.29.6 SHA-1-PBE for CAST128-CBC (CAST5-CBC)

SHA-1-PBE for CAST128-CBC (CAST5-CBCO), denoted
CKM_PBE_SHA1 CAST128 CBC or CKM_PBE_SHA1 CAST5 CBC, is a
mechanism used for generating a CAST128 (CAST5) secret key and an IV from a password
and a st vadue by usng the SHA-1 digest dgorithm and an iteration count. This functiondity is
anaogous to that defined in PKCS#5 PBKDF1 for MD5 and DES.

Copyright © 1994-1999 RSA Laboratories

Page 283

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
informetion for the key generation process and the location of the gpplication-supplied buffer
which will recaive the 8-byte IV generated by the mechanism.

The length of the CAST128 (CAST5) key generated by this mechanism may be specified in the
supplied template; if it is not present in the template, it defaultsto 8 bytes.

12.29.7 PKCS#5 PBKDF2 key generation mechanism parameters

CK PKCS5 PBKD2 PSEUDO RANDOM FUNCTION TYPE;
CK PKCS5 PBKDZ2 PSEUDO RANDOM FUNCTION TYPE PTR

CK PKCS5 PBKD2 PSEUDO RANDOM FUNCTION TYPE is used to indicate the
Pseudo-Random Function (PRF) used to generate key bits usng PKCS #5 PBKDF2. It is
defined asfollows:

t ypedef CK_PKCS5_PBKD2_PSEUDO_RANDOM FUNCTI ON_TYPE;

The following PRFs are defined in PKCS #5 v2.0. The following table ligs the defined
functions.

Table 1133110107107, PK CS#5 PBK DF2 K ey Gener ation: Pseudo-random functions

Sour ce | dentifier Value Parameter Type

CKP PKCS5 PBKD2 HMAC SHA1 | O0x00000001 | No Parameter. pPrfData must
be NULL and ulPrfDatalLen
must be zero.

CK PKCS5 PBKD2 PSEUDO RANDOM FUNCTION TYPECK—RSAPKCS-OA
EP MGE TYPE PTR is a pointer to a
CK PKCS5 PBKD2 PSEUDO RANDOM FUNCTION TYPECK—RSAPKCS-OA
EPMGE TYPE.

CK _PKCS5 PBKD2 SALT SOURCE TYPE;
CK PKCS5 PBKD2 SALT SOURCE TYPE PTR

CK PKCS5 PBKD2 SALT SOURCE TYPE is used to indicate the source of the <t
vaue when deriving akey using PKCS #5 PBKDF2. It is defined as follows:

typedef CK ULONG CK PKCS5 PBKDF2_ SALT_ SOURCE_TYPE;

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 284

Thefollowing sdt vaue sources are defined in PKCS #5 v2.0. The following table lists the
defined sources dong with the corresponding data type for the pSaltSourceData fidd in the
CK PKCS5 PBKD2 PARAM dructure defined below.

Table 114411108108, PK CS#5 PBK DF2 K ey Generation: Salt sour ces

Sour ce | dentifier Value Data Type
CKZ SALT SPECIFIED | 0x00000001 | Array of CK BYTE containing the vaue of the
st vdue.

CK PKCS5 PBKD2 SALT SOURCE TYPE PTR IS a pointer to a
CK PKCS5 PBKD2 SALT SOURCE TYPE.

CK_PKCS5 PBKD2 PARAMS; CK PKCS5 PBKD2 PARAMS PTR

CK PKCS5 PBKD2 PARAMS is a dructure that provides the parameters to the
CKM PKCS5 PBK D2 mechanism. The structure is defined as follows;

typedef struct CK PKCS5 PBKD2 PARAMS {
CK PKCS5 PBKD2 SALT SOURCE TYPE sal t Sour ce;
CK VO D PTR pSal t Sour ceDat a;
CK ULONG ul Sal t Sour ceDat alLen;
CK ULONG iterations;
CK PKCS5 PBKD2 PSEUDO RANDOM FUNCTI ON TYPE prf;
CK VO D PTR pPrf Dat a;
CK ULONG ul Prf Dat aLen;
} CK PKCS5 PBKD2 PARANS;

Thefidds of the structure have the following meanings;

saltSource source of the sat value

pSaltSourceData data used as the input for the salt source

ul SaltSourceDatal_en length of the salt source input

iterations number of iterations to perform when generating each
block of random data

prf pseudo-random function to used to generate the key

pPrfData data used as the input for PRF in addition to the salt value

ulPrfDatalLen length of the input data for the PRF

Copyright © 1994-1999 RSA Laboratories

Page 285

CK_PKCS5 PBKD2 PARAMS PTR isapointer toaCK PKCS5 PBKD2 PARAMS

12.29.8 PKCS#5 PBK D2 key generation

PKCS #5 PBKDF2 key generation, denoted CKM PKCS5 PKKD2, is a mechanism used
for generating a secret key from a password and a sdt value. This functiondity is defined in
PKCS#5 as PBKDF2.

It has a parameter, a CK PKCS5 PBKDF2 PARAMS structure. The parameter specifies
the sdt vaue source, pseudo-random function, and iteration count used to generate the new

key.

Since this mechanism can be used to generate any type of secret key, new key templates must
contain the CKA KEY TYPE and CKA VALUE LEN atributes. If the key type has a
fixed length the CKA VALUE LEN attribute may be omitted.

12.30 PKCS#12 password-based encryption/authentication mechanisms

The mechanismsiin this section are for generating keys and 1Vs for performing password-based
encryption or authentication. The method used to generate keys and 1Vs is based on a method
that was specified in the origind draft of PKCS #12.

We specify here a generd method for producing various types of pseudo-random bits from a
password, p; adring of sdt bits, s; and an iteration count, c. The “type”’ of pseudo-random bits
to be produced isidentified by an identification byte, 1D, the meaning of which will be discussed
later.

Let H be ahash function built around acompression function f: Z,'~ Z,' ® Z," (that is, H has
a chaning varigble and output of length u bits, and the message input to the compression
function of H is v bits). For MD2 and MD5, u=128 and v=512; for SHA-1, u=160 and
v=512.

We assume here that u and v are both multiples of 8, as are the lengths in bits of the password
and st strings and the number n of pseudo-random bits required. In addition, u and v are of
COUrse NONZero.

1. Condruct agtring, D (the “diversfier”), by concatenating v/8 copies of ID.

2. Concatenate copies of the sdt together to create a string S of length vé&s/vu bits (the find
copy of the sdt may be truncated to create S). Note that if the sdt is the empty dring, then
isS

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 286

3. Concatenate copies of the password together to create astring P of length vép/vu bits (the
fina copy of the password may be truncated to creete P). Note that if the password is the
empty gring, then 0 isP.

4. Set 1=g|P to be the concatenation of Sand P.
5. Setj=é&/ul
6. Fori=1,2, ...,], dothefollowing:
a) Set A=H(D||l), the ¢" hash of DJ|I. That is, compute the hash of D||I; compute the

hash of that hash; etc.; continue in this fashion until a totd of ¢ hashes have been
computed, each on the result of the previous hash.

b) Concatenate copiesof A; to create astring B of length v bits (the find copy of Aj may
be truncated to create B).

o Tredting | as a concatenation |, Iy, ..., k1 Of v-bit blocks, where k=és/virép/vy,
modify | by setting I;=(1;+B+1) mod 2’ for each j. To perform this addition, treet
each v-bit block as abinary number represented most-significant bit fird.

7. Concatenate Ay, A, ..., Aj together to form a pseudo-random bit string, A.

8. Usethefirg nbitsof A asthe output of this entire process.

When the password-based encryption mechanisms presented in this section are used to
generate a key and IV (if needed) from a password, sdt, and an iteration count, the above
dgorithm isused. To generate akey, the identifier byte ID is set to the value 1; to generate an
IV, theidentifier byte ID is set to the vaue 2.

When the password based authentication mechanism presented in this section is used to
generate a key from a password, sdt, and an iteration count, the above dgorithm isused. The
identifier byte ID is st to the value 3.

12.30.1 SHA-1-PBE for 128-bit RC4

SHA-1-PBE for 128-bit RC4, denoted CKM_PBE_SHA1 RC4 128, is a mechanism usd
for generating a 128-bit RC4 secret key from a password and a st value by using the SHA-1
digest dgorithm and an iteration count. The method used to generate the key is described
above on page 28510626810.

Copyright © 1994-1999 RSA Laboratories

Page 287

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process. The parameter dso has afidd to hold the location
of an gpplication-supplied buffer which will recaive an IV; for this mechanism, the contents of
thisfidd areignored, snce RC4 does not requirean I V.

The key produced by this mechanism will typically be used for performing password-based
encryption.

12.30.2 SHA-1-PBE for 40-bit RC4

SHA-1-PBE for 40-bit RC4, denoted CKM_PBE_SHA1 RC4 40, isamechanism used for
generating a 40-bit RC4 secret key from a password and a sdt vaue by using the SHA-1
digest dgorithm and an iteration count. The method used to generate the key is described
above on page 28510626810.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process. The parameter aso has a field to hold the location
of an gpplication-supplied buffer which will receive an IV; for this mechanism, the contents of
thisfield areignored, snce RC4 does not requirean V.

The key produced by this mechanism will typicaly be used for performing password-based
encryption.

12.30.3 SHA-1-PBE for 3-key tripleeDES-CBC

SHA-1-PBE for 3-key triple- DES-CBC, denoted CKM_PBE_SHA1 DES3 EDE_CBC,
is amechanism used for generating a 3-key triple-DES secret key and IV from a password and
a st vaue by usng the SHA-1 digest dgorithm and an iteration count. The method used to
generate the key and IV is described above on page 28510626810. Each byte of the key
produced will have its low-order bit adjusted, if necessary, so that avalid 3-key triple-DES key
with proper parity bitsis obtained.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
informetion for the key generation process and the location of the gpplication-supplied buffer
which will recaive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typicaly be used for performing password-
basad encryption.
12.30.4 SHA-1-PBE for 2-key tripleeDES-CBC

SHA-1-PBE for 2-key triple- DES-CBC, denoted CKM_PBE_SHA1 DES2 EDE_CBC,
is amechanism used for generating a 2-key triple-DES secret key and IV from a password and

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 288

a st vaue by usng the SHA-1 digest dgorithm and an iteration count. The method used to
generate the key and IV is described above on page 28510626810. Each byte of the key
produced will have its low-order bit adjusted, if necessary, so that avalid 2-key triple-DES key
with proper parity bitsis obtained.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
informetion for the key generation process and the location of the gpplication-supplied buffer
which will recaive the 8-byte IV generated by the mechanism.

The key and IV produced by this mechanism will typicaly be used for performing password-
basad encryption.

12.30.5 SHA-1-PBE for 128-bit RC2-CBC

SHA-1-PBE for 128-bit RC2-CBC, denoted CKM_PBE_SHA1 RC2 128 CBC, is a
mechanism used for generating a 128-bit RC2 secret key and 1V from a password and a salt
vaue by usng the SHA-1 digest dgorithm and an iteration count. The method used to generate
the key and 1V is described above on page 28510626810.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
informetion for the key generation process and the location of the gpplication-supplied buffer
which will recaive the 8-byte IV generated by the mechanism.

When the key and |V generated by this mechanism are used to encrypt or decrypt, the effective
number of bitsin the RC2 search space should be set to 128. This ensures compatibility with
the ASN.1 Object Identifier ppbeW t hNSHA1ANd128Bi t RC2- CBC.

The key and IV produced by this mechanism will typicaly be used for performing password-
based encryption.

12.30.6 SHA-1-PBE for 40-bit RC2-CBC

SHA-1-PBE for 40-bit RC2-CBC, denoted CKM_PBE_SHA1 RC2 40 CBC, is a
mechanism used for generating a 40-bit RC2 secret key and 1V from a password and a salt
vaue by usng the SHA-1 digest dgorithm and an iteration count. The method used to generate
the key and 1V is described above on page 28510626810.

It has a parameter, a CK_PBE_PARAMS gructure. The parameter specifies the input
information for the key generaion process and the location of the gpplication-supplied buffer
which will receive the 8-byte IV generated by the mechanism.

Copyright © 1994-1999 RSA Laboratories

Page 289

When the key and IV generated by this mechanism are used to encrypt or decrypt, the effective
number of bits in the RC2 search space should be set to 40. This ensures competibility with the
ASN.1 Object Identifier pbeW t hSHA1ANd40Bi t RC2- CBC.

The key and IV produced by this mechanism will typicaly be used for performing password-
basad encryption.

12.30.7 SHA-1-PBA for SHA-1-HMAC

SHA-1-PBA for SHA-1-HMAC, denoted CKM_PBA_SHA1 WITH_SHA1 HMAC,isa
mechanism used for generating a 160-bit generic secret key from a password and a sdt value
by using the SHA-1 digest agorithm and an iteration count. The method used to generate the
key is described above on page 28510626810.

It has a parameter, a CK_PBE_PARAMS dructure. The parameter specifies the input
information for the key generation process. The parameter aso has afied to hold the location of
an application-supplied buffer which will receive an 1V; for this mechaniam, the contents of this
field areignored, since authentication with SHA-1-HMAC does not requirean I V.

The key generated by this mechanism will typicaly be used for computing a SHA-1 HMAC to
perform password-based authentication (not password-based encryption). At the time of this
writing, thisis primarily done to ensure the integrity of a PKCS#12 PDU.

12.31 SET mechanism parameters

CK_KEY_WRAP_SET OAEP PARAMS;
CK_KEY_WRAP_SET_OAEP_PARAMS PTR

CK_KEY_WRAP_SET_OAEP_PARAM Sisadructure that provides the parametersto the
CKM_KEY_WRAP_SET_OAEP mechaniam. It isdefined asfollows:

typedef struct CK _KEY _WVRAP_SET_OAEP_PARAMS ({
CK_BYTE bBC;
CK_BYTE_PTR pX;
CK_ULONG ul XLen;
} CK_KEY_WRAP_SET_OAEP_PARAMS;
Thefidds of the structure have the following meanings.
bBC block contents byte

pX concatenation of hash of plaintext data (if present) and
extradata (if present)

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 290

ulXLen lengthin bytes of concatenation of hash of plaintext data (if
present) and extra data (if present). O if neither is present

CK_KEY_WRAP SET OAEP PARAMSPTR is a ponter to a
CK_KEY_WRAP_SET_OAEP_PARAMS

12.32 SET mechaniams

12.32.1 OAEP key wrapping for SET

The OAEP key wrapping for SET mechanism, denoted CKM_KEY_WRAP_SET_OAEP, is
a mechaniam for wrapping and unwrapping a DES key with an RSA key. The hash of some
plaintext data and/or some extra data may optionally be wrapped together with the DES key.
This mechanism is defined in the SET protocol specifications.

It takes a parameter, a CK_KEY_WRAP_SET_OAEP_PARAMS dtructure. This structure
holds the “Block Contents’ byte of the data and the concatenation of the hash of plaintext data
(if present) and the extra data to be wrapped (if present). If neither the hash nor the extra data
is present, thisisindicated by the ulXLen fidd having the vaue O.

When this mechanism is used to unwrap a key, the concatenation of the hash of plaintext data (if
present) and the extra data (if present) is returned following the convention described in Section
11.2 on producing output. Note that if the inputs to C_UnwrapKey are such that the extra
data is not returned (eg., the buffer upplied in the
CK_KEY_WRAP_SET_OAEP_PARAMS structure is NULL_PTR), then the unwrapped
key object will not be created, either.

Be aware that when this mechanism is used to unwrap a key, the bBC and pX fidds of the
parameter supplied to the mechanism may be modified.

If an gpplication uses C_UnwrapKey with CKM_KEY_WRAP_SET_OAEP, it may be
preferable for it smply to dlocate a 128-byte buffer for the concatenation of the hash of
plaintext data and the extra data (this concatenation is never larger than 128 bytes), rather than
cdling C UnwrapKey twice Each cdl of C_UnwrapKey with
CKM_KEY_WRAP_SET_OAEP requires an RSA decryption operation to be performed,
and this computationa overhead can be avoided by this means.

Copyright © 1994-1999 RSA Laboratories

Page 291

12.33 LYNKS mechaniams

12.33.1 LYNKSkey wrapping

The LYNKS key wrapping mechanism, denoted CKM_WRAP_LYNKS, isamechanism for
wrapping and unwrapping secret keys with DES keys. 1t can wrap any 8-byte secret key, and
it produces a 10-byte wrapped key, containing a cryptographic checksum.

It does not have a parameter.

To wrap a 8-byte secret key K with a DES key W, this mechanism performs the following
steps:

1. Initidize two 16-bit integers, sum, and sumy, to 0.

N

Loop through the bytes of K from first to lagt.
3. Set sumy= sumytthe key byte (treat the key byte as a number in the range 0-255).
4. Set sumy= sunp+ suM,.

5. Encrypt K with Win ECB mode, obtaining an encrypted key, E.

6. Concatenate the last 6 bytes of E with sumy, representing sum, mogt-sgnificant bit fird.
The result isan 8-byte block, T.

7. Encrypt T with Win ECB mode, obtaining an encrypted checksum, C.
8. Concatenate E with the last 2 bytes of C to obtain the wrapped key.

When unwrapping a key with this mechanism, if the cryptographic checksum does not check
out properly, an error isreturned. In addition, if a DES key or CDMF key is unwrapped with
this mechanism, the parity bits on the wrapped key must be set appropriately. If they are not
st properly, an error is returned.

12.34 SSL mechanism parameters

CK_SSL3 RANDOM_DATA

CK_SSL3 RANDOM_DATA is a dructure which provides information about the random
data of a client and a server in an SSL context. This dructure is used by both the
CKM_SSL3 MASTER_KEY_DERIVE and the
CKM_SSL3 KEY_AND_MAC_DERIVE mechaniams. It is defined as follows:

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 292

typedef struct CK _SSL3 RANDOM DATA {
CK_BYTE_PTR pCl i ent Random
CK_ULONG ul Cl'i ent RandonlLen;
CK_BYTE_PTR pSer ver Random
CK_ULONG ul Server RandonLen;

} CK_SSL3_RANDOM DATA;

The fidds of the structure have the following meanings:
pClientRandom pointer to the client’s random data
ulClientRandomLen length in bytes of the client’ s random data
pServerRandom pointer to the server’ srandom data
ul Server RandomLen length in bytes of the server’ s random data
CK_SSL3 MASTER_KEY_DERIVE_PARAMS;
CK_SSL3 MASTER _KEY_DERIVE_PARAMS PTR

CK_SSL.3 MASTER_KEY_DERIVE_PARAMS is a dructure that provides the
parameters to the CKM_SSL.3 MASTER_KEY _DERIVE mechaniam. It is defined as
follows

typedef struct CK _SSL3_MASTER_KEY_DERI VE_PARAMS ({
CK_SSL3_RANDOM DATA Random nf o;
CK_VERSI ON_PTR pVer si on;

} CK _SSL3_MASTER _KEY_DERI VE_PARAMS;

Thefields of the structure have the following meanings
Randoml nfo dient’s and server’ s random data information.

pVerson pointer to aCK_VERSI ON gructure which receives the
SSL protocol version information

CK_SSL3 MASTER KEY_DERIVE_PARAMS PTR is a pointer to a
CK_SSL3 MASTER _KEY_DERIVE_PARAMS
CK_SSL3 KEY_MAT_OUT; CK_SSL3 KEY_MAT_OUT PTR

CK_SSL3 KEY_MAT_OUT is a dructure that contains the resulting key handles and
intidization vectors ater peaforming a C DeiveKey function with the
CKM_SSL3 KEY_AND_MAC_DERIVE mechanism. It isdefined as follows

Copyright © 1994-1999 RSA Laboratories

Page 293

typedef struct CK SSL3 KEY_ MAT_OUT {
CK_OBJECT_HANDLE hCl i ent MacSecr et ;
CK_OBJECT_HANDLE hServer MacSecr et ;
CK_OBJECT_HANDLE hdCl i ent Key;
CK_OBJECT_HANDLE hSer ver Key;
CK_BYTE_PTR pl VCl i ent;
CK_BYTE_PTR pl VSer ver;

} CK_SSL3_KEY_MAT_QUT;

Thefields of the Sructure have the following meanings
hClientMacSecret key handle for the resulting Client MAC Secret key
hServerMacSecret key handle for the resulting Server MAC Secret key
hClientKkey key handle for the resulting Client Secret key
hServerKey key handle for the resulting Server Secret key

pl VClient pointer to alocation which recelves theinitidization vector
(1V) created for the client (if any)

plVServer pointer to alocation which receives the initiaization vector
(1V) crested for the server (if any)

CK_SSL3 KEY_MAT _OUT_PTR isapointer toaCK_SSL3 KEY_MAT_OUT.

CK_SSL3 KEY_MAT_PARAMS; CK_SSL3 KEY_MAT_PARAMS PTR

CK_SSL3 KEY_MAT_PARAMS is a dructure that provides the parameters to the
CKM_SSL.3 KEY_AND_MAC_DERIVE mechaniam. It isdefined asfollows.

typedef struct CK SSL3 _KEY_MAT_PARAMS {
CK_ULONG ul MacSi zel nBits;
CK_ULONG ul KeySi zel nBits;
CK_ULONG ul I VSi zel nBi ts;
CK_BBOOL bl sExport;
CK_SSL3_RANDOM DATA Random nf o;
CK_SSL3_KEY_MAT_OUT_PTR pRet ur nedKeyMat eri al ;
} CK_SSL3_KEY_MAT_PARAMS;

Thefields of the structure have the following meanings

ulMacSzelnBits thelength (in bits) of the MACing keys agreed upon during
the protocol handshake phase

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 294

ulKeySzelnBits thelength (in bits) of the secret keys agreed upon during
the protocol handshake phase

ullVSzelnBits thelength (in bits) of the IV agreed upon during the
protocol handshake phase. If no IV isrequired, the length
shouldbesetto O

bl sExport a Boolean vaue which indicates whether the keys have to
be derived for an export version of the protocol

Randoml nfo dient’s and sarver’ s random data information.

pReturnedKeyMaterial pointstoaCK_SSL. 3 KEY_MAT_OUT dgtructures
which receives the handles for the keys generated and the
IVs

CK_SSL3 KEY_MAT_PARAMS PTR is a pointer to a
CK_SSL3 KEY_MAT_PARAMS

12.35 SSL mechanisms

12.35.1 Pre_master key generation

Pre_magter key generation in SSL 3.0, denoted CKM_SSL.3 PRE_ MASTER_KEY_GEN,
is a mechanism which generates a 48-byte generic secret key. It is used to produce the
"pre_master” key used in SSL version 3.0.

It has one parameter, a CK_VERSION dgructure, which provides the client's SSL verson
number.

The mechanism contributes the CKA_CLASS, CKA KEY_TYPE, and CKA_VALUE
attributes to the new key (as well asthe CKA_VALUE_LEN atribute, if it is not supplied in
the template). Other attributes may be specified in the template, or else are assigned default
values.

The template sent dong with this mechanism during a C_GenerateK ey cdl may indicate that
the object classisCKO_SECRET_KEY, the key typeis CKK_GENERIC_SECRET, and
the CKA_VALUE_LEN dtribute has vaue 48. However, sSnce these facts are dl implicit in
the mechanism, there is no need to specify any of them.

For this mechaniam, the ulMinKeySze and uMaxKeySze fidds of the
CK_MECHANISM _INFO gructure both indicate 48 bytes.

Copyright © 1994-1999 RSA Laboratories

Page 295

12.35.2 Master key derivation

Master key derivation in SSL 3.0, denoted CKM_SSL.3 MASTER_KEY_DERIVE, isa
mechanism used to derive one 48-byte generic secret key from another 48-byte generic secret
key. It is used to produce the "master_secret" key used in the SSL protocol from the
"pre_mader” key. This mechanism returns the vaue of the client verson which is built into the
"pre_master” key aswel as ahandle to the derived "master_secret” key.

It has a parameter, a CK_SSL. 3 MASTER_KEY_DERIVE_PARAMS dructure, which
dlows for the passing of random data to the token as well as the returning of the protocol
verson number which is part of the pre-master key. This structureis defined in Section 12.34.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well asthe CKA_VALUE_LEN atribute, if it is not supplied in
the template). Other attributes may be specified in the template, or else are assigned default
values.

The template sent dong with this mechaniam during a C_GenerateK ey cdl may indicate that
the object classisCKO_SECRET_KEY, the key typeis CKK_GENERIC_SECRET, and
the CKA_VALUE_LEN atribute has vaue 48. However, snce these facts are dl implicit in
the mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sengtivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE atributes in the template for the
new key can both be specified to be either TRUE or FALSE. If omitted, these attributes
each take on some default vaue.

If the base key has its CKA_ALWAYS SENSITIVE attribute set to FALSE, then the
derived key will as well. If the base key hasits CKA_ALWAYS SENSITIVE aitribute
st to TRUE, then the derived key has its CKA_ALWAYS SENSITIVE dtribute set to
the samevdueasits CKA_SENSITIVE dtribute.

Smilarly, if the base key has its CKA_NEVER_EXTRACTABLE atribute set to
FALSE, then the derived key will, too. If the base key has its
CKA_NEVER_EXTRACTABLE attribute set to TRUE, then the derived key has its
CKA_NEVER_EXTRACTABLE atribute st to the opposite vdue from its
CKA_EXTRACTABLE attribute.

For this mechaniam, the ulMinKeySze and uMaxKeySze fidds of the
CK_MECHANISM _INFO gructure both indicate 48 bytes.

Note that the CK_VERSION sructure pointed to by the
CK_SSL3 MASTER_KEY_DERIVE_PARAMS dructureés pVersion fidd will be

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 296

modified by the C_DeriveKey cdl. In particular, when the cal returns, this structure will hold
the SSL version associated with the supplied pre_magter key.

12.35.3 Key and MAC derivation

Key, MAC and v derivation in SSL 3.0, denoted
CKM_SSL.3 KEY_AND_MAC _DERIVE, is a mechanism is used to deive the
gppropriate cryptographic keying materia used by a"CipherSuite" from the "master_secret” key
and random data. This mechanism returns the key handles for the keys generated in the process,
aswdl asthe |Vs created.

It has a parameter, a CK_SSL3 KEY_MAT_PARAMS dructure, which dlows for the
passing of random data as well as the characteristic of the cryptographic materid for the given
CipherSuite and a pointer to a structure which receives the handles and IVs which were
generated. This dtructure is defined in Section 12.34.

This mechanism contributes to the creation of four distinct keys on the token and returns two
Vs (if Vs are requested by the cdler) back to the cdler. The keys are dl given an object class
of CKO_SECRET_KEY.

The two MACing keys ("client write MAC secret” and "server write MAC_secret”) are
aways given atype of CKK_GENERIC_SECRET. They are flagged as vdid for sgning,
verification, and derivation operations.

The other two keys ("client_write key" and "server_write key") are typed according to
information found in the template sent dong with this mechanism during a C_DeriveKey
function call. By default, they are flagged as vadid for encryption, decryption, and derivation
operations.

IVs will be generated and returned if the ullVSzelnBits fidd of the
CK_SSL_KEY_MAT_PARAMS fidd has a nonzero vdue. If they are generated, their
length in bits will agree with the vdue in the ull VS zel nBitsfidd.

All four keys inherit the vaues of the CKA_SENSITIVE, CKA_ALWAYS SENSITIVE,
CKA EXTRACTABLE, and CKA_NEVER_EXTRACTABLE atributes from the base
key. The template provided to C_DeriveKey may not specify vaues for any of these
attributes which differ from those held by the base key.

Note that the CK _SSL3 KEY_MAT OUT dructure pointed to by the
CK_SSL.3 KEY_MAT_PARAM Sdtructure' s pReturnedKeyMaterial fidd will by modified
by the C _DeriveKey cdl. In paticular, the four key handle fidds in the
CK_SSL3 KEY_MAT_OUT dructure will be modified to hold handles to the newly-created
keys, in addition, the buffers pointed to by the CK_SSL.3 KEY_MAT_OUT dructure's
plVClient and plVServer fidds will have IVs returned in them (if 1Vs are requested by the

Copyright © 1994-1999 RSA Laboratories

Page 297

cdler). Therefore, these two fidds must point to buffers with sufficient space to hold any Vs
that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned
information. For most key-derivation mechanisms, C_DeriveK ey returns a single key handle
as a reult of a successtul completion. However, gnce the
CKM_SSL.3 KEY_AND_MAC _DERIVE mechaniam returns dl of its key handles in the
CK_SSL3 KEY_MAT_OUT dructure pointed to by the
CK_SSL.3 KEY_MAT_PARAMS dructure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveK ey isunnecessary, and should beaNULL_PTR.

If acdl to C_DeriveK ey with this mechaniam fails, then none of the four keys will be crested
on the token.
12.35.4 MD5MACingin SSL 3.0

MD5 MACIing in SSL3.0, denoted CKM_SSL.3 MD5 MAC, is a mechanism for angle-
and multiple-part Sgnatures (data authentication) and verification usng MD5, based on the SSL
3.0 protocal. Thistechniqueis very smilar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAM S which specifies the length in bytes
of the sgnatures produced by this mechaniam.

Condgraints on key types and the length of input and output data are summarized in the following
table:

Table 11531210910998, MD5 MACingin SSL 3.0: Key And Data Length

Function Key type Data Signature length
length
C Sgn generic secret ay 4-8, depending on
parameters
C Veify generic secret any 4-8, depending on
parameters

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO dructure specify the supported range of generic secret key Szes,
in bits.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 298

12.35.5 SHA-1 MACingin SSL 3.0

SHA-1 MACing in SSL3.0, denoted CKM_SSL.3 SHA1 MAC, is amechanian for sngle-
and multiple-part sgnatures (data authentication) and verification usng SHA-1, based on the
SSL 3.0 protocal. This technique is very smilar to the HMAC technique.

It has a parameter, a CK_MAC_GENERAL_PARAM S which specifies the length in bytes
of the signatures produced by this mechaniam.

Congraints on key types and the length of input and output data are summarized in the following
table:

Table 11631311011099, SHA-1 MACingin SSL 3.0: Key And Data L ength

Function Key type Data Signaturelength
length

C Sgn generic secret any 4-8, depending on parameters

C Veify generic secret any 4-8, depending on parameters

For this mechaniam, the ulMinKeySze and ulMaxKeySze fidds of the
CK_MECHANISM _INFO sructure specify the supported range of generic secret key Szes,
in bits.

12.36 Parametersfor miscellaneous simple key derivation mechanisms

CK_KEY_DERIVATION_STRING DATA;
CK_KEY_DERIVATION_STRING DATA_PTR

CK_KEY_DERIVATION_STRING_DATA is a gructure that holds a pointer to a byte
dring and the byte dgring's length. It provides the parameters for the
CKM_CONCATENATE_BASE_AND _DATA,
CKM_CONCATENATE_DATA_AND_BASE, and CKM_XOR_BASE_AND_DATA
mechanisms. It is defined asfollows:

typedef struct CK _KEY_DERI VATI ON_STRI NG _DATA {
CK_BYTE_PTR pDat a;

CK_ULONG ul Len;
} CK_KEY_DERI VATI ON_STRI NG_DATA;

Thefidds of the structure have the following meanings.

pData pointer to the byte siring

Copyright © 1994-1999 RSA Laboratories

Page 299

ulLen length of the byte string

CK_KEY_DERIVATION_STRING DATA PTR is a ponter to a
CK_KEY_DERIVATION_STRING_DATA.

CK_EXTRACT_PARAMS; CK_EXTRACT_PARAMS PTR

CK_KEY_EXTRACT_PARAMS provides the parameter to the
CKM_EXTRACT_KEY_FROM_KEY mechanism. It specifies which bit of the base key
should be used as the firgt bit of the derived key. It is defined asfollows:

typedef CK_ULONG CK_EXTRACT PARAMS:

CK_EXTRACT_PARAMS PTR isapointer toaCK_EXTRACT PARAMS

12.37 Miscellaneous ssimple key derivation mechanisms

12.37.1 Concatenation of a base key and another key

This mechaniam, denoted CKM_CONCATENATE_BASE_AND_KEY, derives a secret
key from the concatenation of two existing secret keys. The two keys are specified by handles;
the vaues of the keys specified are concatenated together in a buffer.

This mechanism takes a parameter, a CK_OBJECT_HANDLE. This handle produces the
key vdue information which is gppended to the end of the base key’s vadue information (the
base key isthe key whose handle is supplied as an argument to C_DeriveK ey).

For example, if the value of the base key is0x01234567, and the vaue of the other key is
0x89ABCDEF, then the vaue of the derived key will be taken from a buffer containing the
string0x0123456789ABCDEF-.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equd to the sum of the lengths of
the vaues of the two originad keys.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in thetemplate. If it doesn't, an error will be returned.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 300

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the two
origind keys vaues, an error is generated.

This mechanism has the following rules about key sengtivity and extractability:

If either of thetwo origina keyshasits CKA_SENSITIVE attribute set to TRUE, so does
the derived key. If not, then the derived key’'s CKA_SENSITIVE attribute is set either
from the supplied template or from a default value.

Smilarly, if either of the two origind keys hasits CKA_EXTRACTABLE dtribute set to
FALSE, so does the derived key. If not, then the derived key’'s CKA_EXTRACTABLE
attribute is set either from the supplied template or from a default vaue.

The derived key’'s CKA_ALWAYS SENSITIVE atribute is set to TRUE if and only if
both of the origind keys havether CKA_ ALWAYS SENSITIVE atributes set to TRUE.

Smilarly, the derived key’s CKA_NEVER_EXTRACTABLE dtribute is set to TRUE if
and only if both of the origind keys have ther CKA NEVER_EXTRACTABLE
attributes set to TRUE.

12.37.2 Concatenation of a base key and data

This mechanism, denoted CKM_CONCATENATE _BASE _AND_DATA, derives a secret
key by concatenating data onto the end of a specified secret key.

This mechanisn takes a paameer, a CK_KEY_DERIVATION_STRING DATA
gructure, which specifies the length and vaue of the data which will be appended to the base
key to derive another key.

For example, if the vaue of the base key is 0x01234567, and the vdue of the data is
0x89ABCDEF, then the vaue of the derived key will be taken from a buffer containing the
sring0x0123456789ABCDEF-.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equd to the sum of the lengths of
the value of the origind key and the data.

Copyright © 1994-1999 RSA Laboratories

Page 301

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
gpecified in the template. If it does't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the origina
key’svalue and the data, an error is generated.

This mechanism has the following rules about key sengtivity and extractability:

If the base key hasits CKA_SENSITIVE attribute set to TRUE, so does the derived key.
If not, then the derived key’s CKA_SENSITIVE dtribute is set either from the supplied
template or from a default vaue.

Smilarly, if the base key hasits CKA_EXTRACTABLE attribute set to FALSE, so does
the derived key. If not, then the derived key's CKA_EXTRACTABLE dttribute is set
ether from the supplied template or from adefault value.

The derived key’'s CKA_ALWAYS SENSITIVE atribute is set to TRUE if and only if
the base key hasits CKA_ALWAYS SENSITIVE atribute set to TRUE.

Smilarly, the derived key’sCKA_NEVER_EXTRACTABLE atribute is set to TRUE if
and only if the base key hasits CKA_NEVER_EXTRACTABLE attribute set to TRUE.

12.37.3 Concatenation of data and a base key

This mechanism, denoted CKM_CONCATENATE_DATA_AND_BASE, derives a secret
key by prepending data to the start of a specified secret key.

This mechanisn takes a paameer, a CK_KEY_DERIVATION_STRING DATA
gructure, which specifies the length and vaue of the data which will be prepended to the base
key to derive another key.

For example, if the vaue of the base key is 0x01234567, and the vdue of the data is
0x89ABCDEF, then the vaue of the derived key will be taken from a buffer containing the
string Ox89ABCDEF01234567.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 302

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equd to the sum of the lengths of
the data and the value of the origind key.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in thetemplate. If it doesn't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more bytes than are available by concatenating the data
and the origind key’'svaue, an error is generated.

This mechanism has the following rules about key sengtivity and extractability:

If the base key hasits CKA_SENSITIVE attribute set to TRUE, so does the derived key.
If not, then the derived key’s CKA_SENSITIVE datribute is set either from the supplied
template or from a default vaue.

Smilarly, if the base key hasits CKA_EXTRACTABLE attribute set to FALSE, so does
the derived key. If not, then the derived key’'s CKA_EXTRACTABLE attribute is set
ether from the supplied template or from a default vaue.

The derived key’'s CKA_ALWAYS SENSITIVE atribute is set to TRUE if and only if
the base key hasits CKA_ALWAYS SENSITIVE dtribute st to TRUE.

Smilarly, the derived key’s CKA_NEVER_EXTRACTABLE dtribute is st to TRUE if
and only if the base key hasits CKA_NEVER_EXTRACTABLE attribute set to TRUE.
12.37.4 XORing of akey and data

XORing key derivation, denoted CKM_XOR_BASE_AND_DATA, is a mechanism which
provides the cgpability of deriving a secret key by performing a bit XORing of a key pointed to
by a base key handle and some data.

This mechanisn takes a paameer, a CK_KEY_DERIVATION_STRING DATA
gructure, which specifies the data with which to XOR the origind key’ s vaue.

Copyright © 1994-1999 RSA Laboratories

Page 303

For example, if the value of the base key is 0x01234567, and the vaue of the data is
0x89ABCDEF, then the vaue of the derived key will be taken from a buffer containing the
sring0x88888888.

If no length or key type is provided in the template, then the key produced by this
mechanism will be a generic secret key. Its length will be equa to the minimum of the
lengths of the data and the value of the origind key.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
gpecified in the template. If it does't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more bytes than are available by taking the shorter of the
data and the origind key’svaue, an error is generated.

This mechanism has the following rules about key sengtivity and extractability:

If the base key hasits CKA_SENSITIVE attribute set to TRUE, so does the derived key.
If not, then the derived key’s CKA_SENSITIVE dtribute is set either from the supplied
template or from a default vaue.

Smilarly, if the base key hasits CKA_EXTRACTABLE attribute set to FALSE, so does
the derived key. If not, then the derived key's CKA_EXTRACTABLE dtribute is set
ether from the supplied template or from a default value.

The derived key’'s CKA_ALWAYS SENSITIVE atribute is set to TRUE if and only if
the base key hasits CKA_ALWAYS SENSITIVE atribute set to TRUE.

Smilarly, the derived key’sCKA_NEVER_EXTRACTABLE atribute is st to TRUE if
and only if the base key hasits CKA_NEVER_EXTRACTABLE attribute set to TRUE.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 304

12.37.5 Extraction of one key from another key

Extraction of one key from another key, denoted CKM_EXTRACT_KEY_FROM_KEY, is
a mechanism which provides the capability of cresting one secret key from the bits of another
secret key.

This mechanism has a parameter, a CK_EXTRACT_PARAMS, which specifies which bit of the
original key should be used as the first bit of the newly-derived key.

We give an example of how this mechanism works. Suppose a token has a secret key with the 4-
byte value 0x329F84A9. We will derive a 2-byte secret key from this key, starting at bit position 21
(i.e., the value of the parameter to the CKM_EXTRACT_KEY_FROM_KEY mechanism is 21).

1. We write the key’s value in binary: 0011 0010 1001 1111 1000 0100 1010 1001. We
regard this binary string as holding the 32 bits of the key, labelled as by, by, ..., bai.

2. We then extract 16 consecutive bits (i.e., 2 bytes) from this binary string, starting at bit bx. We
obtain the binary string 1001 0101 0010 0110.

3. The value of the new key is thus0x9526.

Note that when constructing the value of the derived key, it is permissible to wrap around the end
of the binary string representing the original key’s value.

If the original key used in this process is sensitive, then the derived key must also be sensitive for
the derivation to succeed.

If no length or key typeis provided in the template, then an error will be returned.

If no key type is provided in the template, but a length is, then the key produced by this
mechanism will be a generic secret key of the specified length.

If no length is provided in the template, but a key type is, then that key type must have a
well-defined length. If it does, then the key produced by this mechanism will be of the type
specified in thetemplate. If it doesn't, an error will be returned.

If both a key type and a length are provided in the template, the length must be compatible
with that key type. The key produced by this mechanism will be of the specified type and

length.

If a DES, DES2, DES3, or CDMF key is derived with this mechanism, the parity bits of the
key will be set properly.

If the requested type of key requires more bytes than the origina key has, an error is generated.

This mechanism has the following rules about key sengtivity and extractability:

Copyright © 1994-1999 RSA Laboratories

Page 305

If the base key hasits CKA_SENSITIVE attribute set to TRUE, so does the derived key.
If not, then the derived key’s CKA_SENSITIVE datribute is set either from the supplied
template or from a default vaue.

Smilarly, if the base key hasits CKA_EXTRACTABLE attribute set to FALSE, so does
the derived key. If not, then the derived key’'s CKA_EXTRACTABLE attribute is set
ether from the supplied template or from a default vaue.

The derived key’'s CKA_ALWAYS SENSITIVE atribute is set to TRUE if and only if
the base key hasits CKA_ALWAYS SENSITIVE dtribute st to TRUE.

Similarly, the derived key'sCKA_NEVER_EXTRACTABLE attribute is st to TRUE if
and only if the base key hasits CKA_NEVER_EXTRACTABLE attribute set to TRUE.

12.38 RIPE-MD 128 mechanisms

12.38.1 RIPE-MD 128

The RIPE-MD 128 mechanism, denoted CKM RIPEM D128, is a mechanism for message
digesting, following the RIPE-MD 128 message-digest algorithm.

It does not have a parameter.

Condraints on the length of data are summarized in the following table:

Table117134111111 RIPE-MD 128: Data L ength

[Function Data length|Digest length
C Digest awy 16

12.38.2 General-length RIPE-MD 128-HMAC

The generd-length RIPE-MD 128-HMAC mechanism, denoted
CKM RIPEMD128 HMAC GENERAL, isamechanism for Sgnatures and verificaion. It
uses the HMAC construction, based on the RIPE-MD 128 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK MAC GENERAL PARAMS which holds the length in bytes of
the dedired output. This length should be in the range 0-16 (the output Size of RIPE-MD 128 is
16 bytes). Sgnatures (MACSs) produced by this mechanism will be taken from the start of the
full 16-byte HMAC output.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 306

Table118115112112 General-length RIPE-MD 128-HMAC:

Data

length
C Sgn | generic secret aw |0-16, depending on parameterg
C Veify | generic secret aw |0-16, depending on parameterg

Function | Key type Signaturelength

12.38.3 RIPE-MD 128-HMAC

The RIPE-MD 128-HMAC mechanism, denoted CKM RIPEM D128 HMAC, is a specid
case of the generd-length RIPE-MD 128-HMAC mechanism in Section 12.38.2.

It has no parameter, and aways produces an output of length 16.

12.39 RIPE-MD 160 mechanisms

12.39.1 RIPE-MD 160

The RIPE-MD 160 mechanism, denoted CKM RIPEM D160, is a mechaniam for message
digesting, following the RIPE-MD 160 message-digest dgorithm defined in 1SO-10118.

It does not have a parameter.

Condgraints on the length of data are summarized in the following table:

Table 119316113113 RIPE-MD 160: Data L ength

[Function |Data length| Digest length
C Digest ay 20

12.39.2 General-length RIPE-MD 160-HMAC

The generd-length RIPE-MD 160-HMAC mechanism, denoted
CKM RIPEMD160 HMAC GENERAL, isamechaniam for sgnatures and verification. It
uses the HMAC congtruction, based on the RIPE-MD 160 hash function. The keys it uses are
generic secret keys.

It has a parameter, a CK. MAC GENERAL PARAMS which holds the length in bytes of
the desired output. This length should be in the range 0-20 (the output size of RIPE-MD 160 is
20 bytes). Signatures (MACs) produced by this mechanism will be taken from the gart of the
full 20-byte HMAC outpui.

Copyright © 1994-1999 RSA Laboratories

Page 307

Table 120317114114 General-length RIPE-MD 160-HMAC:

Data

length
C Sgn |genericsecret| any | 0-20, depending on parameters

Function | Key type Sonature length

C Veify [generic secret| any | 0-20, depending on parameters

12.39.3 RIPE-MD 160-HMAC

The RIPE-MD 160-HMAC mechanism, denoted CKM RIPEM D160 HMAC, is a specid
case of the generd-length RIPE-MD 160-HMAC mechanism in Section 1.

It has no parameter, and always produces an output of length 20.

13. Cryptoki tipsand reminders

In this section, we clarify, review, and/or emphasize a few odds and ends about how Cryptoki
works.

13.1 Operations, sessions, and threads

In Cryptoki, there are severd different types of operations which can be “active’ in a session.
An active operation is essentidly one which takes more than one Cryptoki function cal to
perform. The types of active operations are object searching; encryption; decryption; message-
digesting; Sgnature with gppendix; Sgnature with recovery; verification with appendix; and
verification with recovery.

A given session can have 0, 1, or 2 operations active a atime. It can only have 2 operations
active smultaneoudy if the token supports this; moreover, those two operations must be one of
the four following pairs of operations. digesting and encryption; decryption and digesting; Sgning
and encryption; decryption and verification.

If an application attempts to initidize an operation (make it active) in a sesson, but this cannot
be accomplished because of some other active operation(s), the gpplication receives the error
vaue CKR_OPERATION_ACTIVE. Thiseror vaue can aso be received if a session has an
active operation and the gpplication attempts to use that sesson to perform any of various
operations which do not become “active’, but which require cryptographic processing, such as
using the token’ s random number generator, or generating/wrapping/unwrapping/deriving akey.

Different threads of an gpplication should never share sessons, unless they are extremey careful
not to make function cdls a the same time. This is true even if the Cryptoki library was
initidized with locking enabled for thread-safety.

Copyright © 1994-1999 RSA Laboratories.

PKCS#11 v2.1: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD 308

13.2 Multiple Application Access Behavior

When multiple applications, or multiple threads within an gpplication, are accessng a set of
common objects the issue of object protection becomes important. This is especidly the case
when application A activates an operation using object O, and application B attempts to delete
O before application A has finished the operation. Unfortunately, variation in device capabilities
makes an absolute behavior specification impractical. Generd quiddines are presented here for
object protection behavior.

Whenever possible, deleting an object in one application should not cause that object to
become unavailable to another gpplication or thread tha is usng the object in an active
operation until that operation is complete. For instance, application A has begun a sgnature
operation with private key P and gplication B attempts to ddete P while the Sgnature is in
progress. In this case, one of two things should happen. The object is deleted from the device
but the operation is dlow to complete because the operation uses a temporary copy of the
object, or the delete operation blocks until the signature operation has completed. If neither of
these actions can be supported by an implementation, then the eror code
CKR OBJECT HANDLE INVALID may be returned to application A to indicate that the
key being used to perform its active operation has been deleted.

Whenever possible, changing the value of an object attribute should impact the behavior d
active operations in _other applications or threads. If this can not be supported by an
implementation, then the appropriate error code indicating the reason for the failure should be
returned to the application with the active operation.

13.3 Objects, attributes, and templates

In Cryptoki, every object (with the possible exception of RSA private keys) aways possesses
all possible attributes specified by Cryptoki for an object of itstype. This means, for example,
that a Diffie-Hellman private key object always possesses a CKA_VALUE_BITS dtribute,
even if that attribute wasn’t specified when the key was generated (in such a case, the
proper vaue for the attribute is computed during the key generation process).

In generd, a Cryptoki function which requires a template for an object needs the template to
pecify—eaither explicitly or implicitly—any attributes that are not specified elsewhere. If a
template specifies a particular atribute more than once, the function can return
CKR_TEMPLATE_INVALID or it can choose a particular vaue of the attribute from among
those specified and use that value. 1n any event, object attributes are dways single-val ued.

13.4 Sgning with recovery
Sgning with recovery is a generd dternative to ordinary digita sgnatures (“signing with

aopendix”) which is supported by certan mechanisms. Recdl tha for ordinary digita

Copyright © 1994-1999 RSA Laboratories

Page 309

dgnatures, a sgnature of a message is computed as some function of the message and the
sgner’s private key; this Sgnature can then be used (together with the message and the signer’s
public key) as input to the verification process, which yieds a smple “sgnature valid/sgnature
invaid’ decison.

Signing with recovery dso creates a Sgnaure from a message and the sgner’s private key.
However, to verify this Sgnature, no message is required as input. Only the signature and the
ggner’s public key are input to the verification process, and the verification process outputs
ather “dgnature invdid’ or—if the Sgnature is vaid—the origind message.

Congder a smple example with the CKM_RSA_X 509 mechanism. Here, a message is a
byte string which we will congder to be a number modulo n (the Signer’s RSA modulus). When
this mechanism is used for ordinary digitd sgnatures (Sgnatures with gopendix), a Sgnature is
computed by raising the message to the signer’s private exponent modulo n. To verify this
ggnature, a verifier raises the sgnature to the signer’s public exponent modulo n, and accepts
the sgnature as vdid if and only if the result matches the origind message.

If CKM_RSA_X 509 is used to create signatures with recovery, the signatures are produced
in exactly the same fashion. For this particular mechanism, any number modulo n is a vdid
ggnature. To recover the message from a signature, the signature is raised to the sgner’ s public
exponent modulo n.

Copyright © 1994-1999 RSA Laboratories.

APPENDIX A Page 311

Appendix A: Token Profiles

This gppendix describes “profiles” i.e., sets of mechanisms, which a token should support for
various common types of application. It is expected that these sets would be standardized as
parts of the various gpplications, for ingance within a list of requirements on the module that
provides cryptographic services to the application (which may be a Cryptoki token in some
cases). Thus, these profiles are intended for reference only at this point, and are not part of this
standard.

The following table summarizes the mechaniams rdevant to two common types of goplication:

Table A-1, Mechanisms and profiles

Application
Government Cellular Digital

M echanism Authentication-only Packet Data
CKM_DSA_KEY_PAIR_GEN v

CKM_DSA v

CKM_DH_PKCS KEY_PAIR_GEN v
CKM_DH_PKCS _DERIVE v
CKM_RC4_KEY_GEN v
CKM_RC4 v
CKM_SHA 1 v

A.1 Gover nment authentication-only

The U.S. government has standardized on the Digita Signature Algorithm as defined in FIPS
PUB 186 for sgnatures and the Secure Hash Algorithm as defined in FIPS PUB 180-1 for
message digesting. The rdevant mechanisams include the following:

DSA key generation (512-1024 bits)
DSA (512-1024 bits)
SHA-1

Note that this verson of Cryptoki does not have amechanism for generating DSA parameters.

A.2 Cdlular Digital Packet Data

Cdlular Digitd Packet Data (CDPD) is a set of protocols for wirdess communication. The
basic set of mechanisms to support CDPD gpplications includes the following:

Diffie-Hellman key generation (256-1024 bits)

Copyright © 1994-1999 RSA Laboratories.

Page312 PKCS#11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01

Diffie-Hellman key derivation (256-1024 bits)
RC4 key generation (40-128 bits)
RC4 (40-128 bits)

(Theinitid CDPD security specification limits the size of the Diffie-Helman key to 256 bits, but
it has been recommended that the Size be increased to at least 512 hits.)

Note that this verson of Cryptoki does not have a mechanism for generating Diffie-Hellman
parameters.

Copyright © 1994-1999 RSA Laboratories

APPENDIX B

Page 313

Appendix B: Comparison of Cryptoki and Other APIs

This gppendix compares Cryptoki with the following cryptographic APIs.

ANSl N13-%4 - Guiddine X9.TG-12-199X, Using Tessera in Financid Systems. An
Application Programming Interface, April 29, 1994

X/Open GCS-API - Generic Cryptographic Service API, Draft 2, February 14, 1995

B.1FORTEZZA CIPG, Rev. 1.52

This document defines an API to the FORTEZZA PCMCIA Crypto Card. It is & a leve
amilar to Cryptoki. The following table ligts the FORTEZZA CIPG functions, together with the

equivaent Cryptoki functions:

TableB-1, FORTEZZA CIPG vs. Cryptoki

FORTEZZA CIPG Equivalent Cryptoki

Cl_ChangePIN C_InitPIN, C_SetPIN

Cl_CheckPIN C Login

Cl_Close C_CloseSession

Cl_Decrypt C_Decryptlnit, C_Decrypt, C_DecryptUpdate,

C_DecryptFind

Cl_DéeteCertificate C_DestroyObject

Cl_DeleteKey C_DestroyObject

Cl_Encrypt C_Encryptinit, C_Encrypt, C_EncryptUpdate,
C_EncryptFind

Cl_ExtractX C_WrapKey

Cl_Generatel V C_GenerateRandom

Cl_GenerateMEK C_GenerateKey

Cl_GenerateRa C_GenerateRandom

Cl_GenerateRandom C_GenerateRandom

Cl_GenerateTEK C_GenerateKey

Cl_GenerateX C_GenerateKeyPair

Cl_GetCetificate C_FindObjects

Cl_Configuration C_GetTokeninfo

Cl_GetHash C Digestinit, C_Digest, C_DigestUpdate, and

C_DigestFind

Copyright © 1994-1999 RSA Laboratories.

Page 314PK CS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01 DRAFT

FORTEZZA CIPG Equivalent Cryptoki

Cl_GetlV No equivaent

Cl_GetPersondityList C_FindObjects

Cl_GetState C_GetSessoninfo

Cl_GetStatus C_GetTokeninfo

Cl_GetTime C_GetTokeninfo

Cl_Hash C _Digestinit, C_Digest, C_DigestUpdate, and
C DigestFind

Cl_Initidize C Initidize

Cl_InitidizeHash C Digedtinit

Cl_IngdlX C _UnwrapKey

Cl_L oadCertificate C_CreateObject

Cl_LoadDSAParameters C_CreateObject

Cl_LoadInitVaues C_SeedRandom

Cl_LoadlV C_Encryptinit, C_Decryptlnit

Cl_LoadK C_Sgninit

Cl_LoadPublicKkeyParameters | C_CreateObject

Cl_LoadPIN C_SetPIN

Cl_LoadX C_CreateObject

Cl_Lock Implicit in sesson management

Cl_Open C_OpenSession

Cl_RdayX C WrapKey

Cl_Rest C_CloseAllSessons

Cl_Restore Implicit in sesson management

Cl_Save Implicit in sesson management

Cl_Sdlect C_OpenSession

Cl_SetConfiguration No equivadent

Cl_SetKey C_Encryptinit, C_Decryptlnit

Cl_SetMode C_Encryptinit, C_Decryptlnit

Cl_SetPersonality C_CreateObject

Cl_SaTime No equivadent

Cl_Sgn C_Signinit, C_Sign

Cl_Terminate C CloseAllSessons

Cl_Timestamp C_Signinit, C_Sign

Cl_Unlock Implicit in sesson management

Cl_UnwrapKey C _UnwrapKey

Copyright © 1994-1999 RSA Laboratories

APPENDIX B

Page 315

FORTEZZA CIPG

Equivalent Cryptoki

Cl_VeifySignature

C Vdifylnit, C_Verify

Cl_VeifyTimestamp

C_Veifylnit, C Verify

Cl_WrapKey C_WrapKey
Cl_Zeroize C_InitToken
B.2 GCSAPI

This proposed standard defines an API to high-level security services such as authentication of
identities and data-origin, non-repudiation, and separation and protection. It is at a higher leve
than Cryptoki. The following table ligs the GCS-AP functions with the Cryptoki functions
used to implement the functions. Note that full support of GCS-AP! isleft for future versions of

Cryptoki.

Table B-2, GCS-API vs. Cryptoki

GCSAPI Cryptoki implementation
retrieve CC

release CC

generate_hash C _Digedtinit, C_Digest

generate_random_number

C_GenerateRandom

generate checkvaue

C_Signinit, C_Sign, C_SignUpdate, C_SignFind

verify checkvaue C Veifylnit, C Veify, C VerifyUpdate,
C VeifyFind

data_encipher C_Encryptinit, C_Encrypt, C_EncryptUpdate,
C_EncryptFina

data_decipher C_Decryptlnit, C_Decrypt, C_DecryptUpdate,
C _DecryptFind

create CC

derive key C DeriveKey

generate key C_GenerateKey

store CC

delete CC

replicate CC

export_key C WrapKey

import_key C_UnwrapKey

archive CC C WrapKey

restore CC C_UnwrapKey

Copyright © 1994-1999 RSA Laboratories.

Page 316PK CS #11: CRYPTOGRAPHIC TOKEN INTERFACE STANDARD V2.01 DRAFT

GCSAPI Cryptoki implementation
set_key date

generate key pattern

verify_key pattern

derive clear _key C DeriveKey
generate clear_key C_GenerateKey
load key parts

clear_key_encipher C_WrapKey
clear_key decipher C_UnwrapKey
change key context

load initid_key

generae initia_key

set_current_master_key

protect_under_new_master_key

protect_under_current_ master_key

initidise_random_number_generator C_SeedRandom

ingall_agorithm

de ingdl_agorithm

dissble dgorithm

enable agorithm

st defaults

Copyright © 1994-1999 RSA Laboratories

