S/MIME Implementation Guide�Interoperability Profiles, Version 2
S/MIME Editor
Draft
Revised October 8August 28, 1996
1. Overview
This paper provides implementation requirements and recommendations to ensure a base level of interoperability among S/MIME implementations.
The Internet electronic mail environment is comprised of a number of Message Transfer Agents and User Agents from various manufacturers on heterogeneous platforms. Interoperability is achieved through the adoption and implementation of message standards, i.e. RFC 822. Similarity of user experience has evolved to where a common set of basic features is present in most user agents.
Security services for Internet e-mail need to be interoperable not only at the message format layer but also in the support, treatment and presentation of security-critical information to ensure some commonality in the user experience.
The PKCS-MIME integration draft, “S/MIME Message Specification: PKCS Security Services for MIME,” specifies message formats for secure MIME messaging. [It is intended that tThis specification behas been submitted to the IETF for consideration as an RFC, it is currently an Internet Draft: draft-dusse-mime-msg-spec-00.txt]. The security portion of the messages is defined by the PKCS #7 and #10. [The full suite of PKCS standards is available on-line from RSA Data Security, Inc., "ftp://ftp.rsa.com/pub/pkcs/".] PKCS #7 is a flexible and extensible message format for representing the results of cryptographic operations on some data. Section 2 of this paper addresses some of the PKCS #7 algorithm and content options when using public-key cryptographic services. Section 3 of this paper addresses some of the message processing options in different environments. The PKCS #7 message format requires that public keys are bound to keyholder names within public key certificates. Section 4 of this paper provides implementation guidelines for the support of the distinguished name components within certificates. Section 5 of this paper deals with certificate processing. Section 6 deals with the generation of certification requests. Appendix A lists official Object Identifiers (OIDs) for the algorithms and attributes referenced in this paper.
Throughout this paper, there are separate requirements and recommendations made for the handling of incoming messages versus the creation of outgoing messages. In general, the often quoted, proverbial strategy is to “be liberal in what you receive and conservative in what you send”. Most of the requirements are placed on the handling of incoming messages while the recommendations are mostly on the creation of outgoing messages. To rewrite the proverb somewhat, “you are required to be liberal in what you receive and it is recommended that you be conservative in what you send.” These requirements and recommendations are intended to form the basis of an S/MIME implementor's agreement for North American developers. With respect to cryptographic algorithms and key sizes, two distinct profiles are described in this paper representing two levels of cryptographic service provision; unrestricted and restricted. Restrictions exist on the export of software from North America which contains cryptography. As such, developers of software in North America may choose to create two distinct S/MIME offerings, one for domestic use with strong (unrestricted) cryptography and the other for export with weaker (restricted) cryptography. Cryptographic strength is often measured against an ever-changing base of computing power per dollar. As such, understanding about what is cryptographically “strong” as well as what is exportable will inevitably change over time. Accordingly, it is anticipated that this will be revised in the future by standards efforts and market forces. Separate implementation profiles for other communities of interest (alternative key management, US Government, foreign) are also anticipated.
2. PKCS #7 - Implementation Options
The PKCS #7 message format allows for a wide variety of options in content and algorithm support. This section puts forth a number of support requirements and recommendations in order to achieve a base level of interoperability among all S/MIME implementations. It should be noted that cryptographic compatibility can be achieved between PKCS #7 and Internet PEM (RFCs 1421-1424). This is addressed in detail throughout the PKCS #7 specification.
The following sections refer to specific sections in the PKCS #7 Version 1.5.
2.1 CertificateRevocationLists (PKCS #7: Section 6.1)
For incoming messages, support for the Certificate Revocation List (CRL) format defined by Internet RFC 1422 is required. Over time, it is anticipated that there will be a transition to the use of the X.509 v2 CRL format, however, insufficient profiling has taken place to make this the default, therefore support for the X.509 v2 CRL format in incoming messages is recommended but not required.
If CRLs are included in outgoing messages (see Section 5.5) then the CRL format defined by Internet RFC1422 is recommended.
2.2 ContentEncryptionAlgorithmIdentifier (PKCS #7: Section 6.2)
Due to US Government export regulations, an S/MIME agent which supports a strong content encryption algorithm such as DES would not be freely exportable outside of North America. US software manufacturers have been compelled to incorporate an exportable or "restricted" content encryption algorithm in order to create a widely exportable version of their product. S/MIME agents intended for domestic use (or use under special State Department export licenses) can utilize stronger, "unrestricted" content encryption, however, in order to achieve interoperability such agents must support whatever exportable algorithm is incorporated in restricted S/MIME agents.
RSA’s RC2 symmetric encryption algorithm has been approved by the US Government for “expedited” export licensing at certain key sizes. Consequently support for RSA's RC2 algorithm in CBC mode is required for baseline interoperability in all S/MIME implementations. Support for RC2 at higher key sizes and other strong symmetric encryption algorithms such as RC5 CBC, DES CBC, and DES EDE3-CBC for content encryption is strongly encouraged where possible.recommended for unrestricted implementations.
This dichotomy of restricted and unrestricted capabilities may lead to confusion as to which symmetric algorithm and key size to use for a particular message. Section 2.11 describes a mechanism to transmit a particular S/MIME user’s symmetric capabilities in outgoing signed messages. In absence of this information, we attempt in this profile to make some reasonable assumptions about these capabilities from information contained within S/MIME recipients’ public key certificates. These assumptions are imperfect in that they are based on the current understanding of the US export restrictions at the date of this revision. If there is any doubt about a recipient’s capabilities then it is better to default to a higher level of protection in an outgoing message. Although this may lead to occasional failed decryption (and subsequent “negotiation” of a weaker algorithm/key size) this paradigm is viewed as more secure than the paradigm of always defaulting to a weaker algorithm and key size.
2.2.1 Restricted Profile
For incoming messages, a restricted S/MIME agent is required to support decryption usingof RC2 in CBC mode at a key sizes of 40 bits and 64 bits.
For outgoing messages, a restricted S/MIME agent is required to support encryption using RC2 in CBC mode at a key size of 40 bits.
Support for RC2 CBC at higher key sizes and other strong encryption algorithms in encouraged but is only possible in restricted (exportable) agents under special arrangements with the U.S. Department of State.
2.2.2 Unrestricted Profile
For incoming messages, an unrestricted S/MIME agent is required to support decryption usingof DES EDE3 CBC and RC2 in CBC mode at key sizes of 40 bits, 64 bits and 128 bits. Support for decryption usingof DES CBC, DES EDE3 CBC, and RC5 CBC Pad /32(64 bit blocks, 16 rounds)/12/ at key sizes of 40 bits, 64 bits and 128 bits is recommended.
For outgoing messages, an unrestricted S/MIME agent is required to support encryption using RC2 CBC at a key sizes of 4064 bits and 128 bitsDES EDE3 CBC. Support for encryption using RC2 CBC at key sizes of 64 bits and 128 bits, DES CBC and RC5 (64 bit blocks, 16 rounds) at key sizes of 40 bits, 64 bits and 128 bits is recommended.
The presence of multiple symmetric content encryption algorithms requires that an appropriate algorithm to be selected for each outgoing message. S/MIME includes a mechanism and some additional heuristics to aid in this selection. First, signed messages may contain a symmetric-capabilities attribute which describes the signer’s preferences for symmetric content encryption algorithms (see section 2.11.2). Upon receipt of a signed message containing this attribute, the recipient’s user agent may create a "profile" for the public key that will be used to send encrypted messages back to the sender. When sending outgoing mail, a recipient’s profile should be used to select a symmetric content encryption algorithm, generally by selecting the first algorithm in the list that is supported by the sender’s agent.
When an S/MIME agent encrypts a message for a recipient for which there exists no definitive capabilities information, the following initial assumptions are recommended; if the recipient’s public key size is 512 bits, the message should be encrypted using RC2 CBC at 4064 bits. If the recipient’s public key size is greater than 512 bits, then the message should be encrypted using DES EDE3 CBCRC2 CBC at 128 bits. Use of an alternative content encryption algorithm is recommended where there is some mechanism (e.g. the presence of symmetric capabilities information in an earlier incoming message) to indicate that the intended recipient(s) can support it.
While other methods of selecting symmetric algorithms are allowed, implementors are reminded that the selection mechanisms form a protocol between sender and reciever, and are encouraged to take special care in ensuring that the resulting protocol is sound.
2.3 DigestAlgorithmIdentifier (PKCS #7: Section 6.3)
For incoming messages, support for SHA-1 and RSA’s MD5 is required.
For outgoing messages, SHA-1 is strongly recommended.
2.4 DigestEncryptionAlgorithmIdentifier (PKCS #7: Section 6.4)
Support for rsaEncryption (defined by PKCS #1) is required of all S/MIME agents.
For incoming messages, support for verification of signatures using RSA public key sizes from 512 bits to 1024 bits is required.
Outgoing messages are signed with a user’s private key. The required/recommended key sizes for a user’s private key(s) are dictated during key generation. For key generation requirements and recommendations, see Section 6.1.
2.5 ExtendedCertificateOrCertificate (PKCS #7: Section 6.5)
The PKCS #7 message format supports a choice of certificate formats, X.509 and PKCS #6 Extended Certificates in public key content types. The PKCS #6 format is not in widespread use. In addition, recent proposed revisions of X.509 certificates address much of the same functionality (flexibility) as was intended in the PKCS #6. Hence, the support and use of PKCS #6 extended certificates is not recommended.
For incoming messages, support for X.509 v1, v2 and v3 certificates is required. Since there is still some profiling work yet to be done for v3 certificates, the requirement to support v3 certificates must be qualified. A more thorough discussion of certificate support and processing is included in section 5. Particular requirements and recommendations on v3 certificate extensions are described in section 5.8.
Where certificates are included in outgoing messages (see section 2.6) they are typically of the type and version that has been decided during the certification request/fulfillment process (see section 6).
2.6 ExtendedCertificateAndCertificates (PKCS #7: Section 6.6)
PKCS #7 supports the inclusion of certificates in signed messages.
For incoming messages, an agent must be able to handle an arbitrary number of certificates of arbitrary relationship to the message sender and to each other in arbitrary order. In many cases, the certificates included in a signed message may represent a chain of certification from the sender to a particular root. There may be, however, situations where the certificates in a signed message may be unrelated and included for convenience. Certificate processing is discussed in more detail in Section 5.
For outgoing messages, it is recommended that a message originator include any certificates for the user’s public key(s) and associated issuer certificates. This increases the likelihood that the intended recipient can establish trust in the originator’s public key(s). This is especially important when sending a message to recipients that may not have access to the sender’s public key through any other means or when sending a signed message to a new recipient. The inclusion of certificates in outgoing messages can be omitted when e-mail is used within a group of correspondents that has established access to each other’s certificates by some other means (e.g. shared directory or manual certificate distribution).
2.7 KeyEncryptionAlgorithmIdentifier (PKCS #7: Section 6.8)
Support for rsaEncryption (defined by PKCS #1) is required of all S/MIME agents.
Incoming encrypted messages contain symmetric keys which are to be decrypted with a user’s private key. The required/recommended key sizes for a user’s private key(s) are dictated during key generation. For key generation recommendations, see Section 6.1.
For outgoing messages, support for encryption of symmetric keys with RSA public keys at key sizes from 512 bits to 1024 bits is required of all S/MIME agents, restricted and unrestricted.
2.8 General Syntax (PKCS #7: Section 7)
The PKCS #7 defines six distinct content types: data, signedData, envelopedData, signedAndEnvelopedData, digestedData, and encryptedData.
For incoming messages, support for four types - data, signedData, signedAndEnvelopedData, and envelopedData - is required. Support for the remaining types, digestedData and encryptedData, is recommended, however, this paper does not provide guidelines for interoperability using these content types.
For outgoing messages, the type of security service desired will dictate the data type to use. See the following sections for description of the various data types. Section 3 addresses recommendations for the use of the described data types.
2.9 Data content type (PKCS #7: Section 8)
The “data” content type shall be used as the content within other content types to indicate the MIME message content which has had security services applied to it.
2.10 Signed-data content type (PKCS #7: Section 9)
This content type is used to apply a digital signature to a MIME message or, in a degenerate case where there is no signature information, to convey certificate and CRL information.
2.11 SignerInfo type (PKCS #7: Section 9.2)
The SignerInfo type allows the inclusion of unauthenticated and authenticated attributes to be included along with a signature.
For incoming messages, handling and displaying of zero or one instance of each of the following signed attributes is required.
For outgoing messages, generation of one instance of each of the following signed attributes is recommended.
2.11.1 Signing-Time Attribute
The signing-time attribute is used to convey the time that a message was signed. Until there are trusted timestamping services, the time of signing will most likely be created by a message originator and therefore is only as trustworthy as the originator. The syntax of the signing-time attribute is defined in PKCS #9 Section 6.5.
2.11.2 Symmetric-Capabilities Attribute
The symmetric-capabilities attribute is used to convey a list of symmetric content encryption algorithms and associated key sizes that a user's S/MIME agent is capable of executing for incoming message decryption. The list contains comma-separated textual entries in order from the user's most-preferred (presumably corresponding to most secure) symmetric algorithm and key size to the user's least preferred symmetric algorithm and key size. The syntax of the symmetric-capabilities attribute is defined as follows:
Symmetric-capabilities attributes shall have the ASN.1 type symmetricCapabilities:
symmetricCapabilities :: = IA5String
Following is the list of textual entries used to indicate the symmetric content encryption algorithms and key sizes that are required and recommended in this version of the Implementation Guide.
Algorithm	Key Size	Textual Entry
RC2 in CBC mode	40	RC2-CBC/40
RC2 in CBC mode	64	RC2-CBC/64
RC2 in CBC mode	128	RC2-CBC/128
DES in CBC mode	56	DES-CBC
DES EDE3 in CBC mode	168	DES-EDE3-CBC
RC5 in CBC mode with padding�6432 bit blockword size and 1612 rounds	40	RC5-CBCPad/6432/1612/40
RC5 in CBC mode with padding�6432 bit blockword size and 1612 rounds	64	RC5-CBCPad/6432/1612/64
RC5 in CBC mode with padding�6432 bit blockword size and 1612 rounds	128	RC5-CBCPad/6432/1612/128
Following is an example of a the value of a symmetric capabilities attribute indicating a preference for DES EDE3 in CBC mode followed by RC2 in CBC mode at a key size of 128 bits followed by RC2 in CBC mode at a key size of 40 bits:
DES-EDE3-CBC, RC2-CBC/128, RC2-CBC/40
The following processing of the symmetric-capabilities attribute in incoming signed messages is recommended. If the receiving agent has not yet created a profile associated with the sender's public key, then, after verifying the signature on the incoming message, it should create a new profile containing the signing-time (see section 2.11.1) and symmetric-capabilities attributes. If there is already such a profile, then the agent should verify that the signing-time in the incoming message is greater than the signing time stored in the profile. If so, it should update both the signing-time and symmetric-capabilities of the profile. Values of signing-time that lie far in the future (i.e. a greater discrepancy than any reasonable clock skew) should be rejected.
2.12 Enveloped-data content type (PKCS #7: Section 10)
This content type is used to apply privacy protection to a MIME message. Use of this service requires a sender to have access to a public key for each intended message recipient. This content type does not provide authentication.
2.13 Signed-and-enveloped-data content type (PKCS #7: Section 10)
This content type is used to apply a digital signature as well as privacy protection to a MIME message. Use of this service requires a sender to have access to a public key for each intended message recipient. This content type is recommended only for PEM compatibility. The separate application of signing then enveloping is recommended where PEM compatibility is not required. See Section 3.1 for details.
3. Message Processing Options
The PKCS-MIME integration draft, “S/MIME Message Specification: PKCS Security Services for MIME,” specifies message formats for secure MIME messaging. Specifically, the S/MIME Message Specification details the MIME control information needed for S/MIME as well as the necessary steps in preparing an S/MIME body part. This section addresses some of the overall message processing options when implementing an S/MIME agent.
3.1 Nesting of S/MIME Security Services
MIME allows for an arbitrarily complex structure that is frequently limited in practice to a basic functional subset. While the MIME specification allows an arbitrary depth of MIME entities nested within other MIME entities, the addition of security services to a MIME message makes arbitrary nesting difficult to implement and challenging to convey to a user in a meaningful way. As with other areas in the S/MIME specification, requirements and recommendations are made which attempt to balance the concerns of utility versus simplicity.
If a user chooses to both sign and envelope a message to another user, this can be accomplished by creating a PKCS #7 signedAndEnvelopedData content type or by separately creating a signedData content type then using the result as input to create an envelopedData content type. In the former case, the resulting signedAndEnveloped message is cryptographically compatible with PEM (as described in RFC1421), however, concerns have been voiced about the fact that the identities of the S/MIME signatories are left "exposed" (i.e. the issuerAndSerialNumber for each signatory is not protected in the envelope). In order to accommodate the protection of signatory information within enveloped messages all S/MIME user agents are required to support the nesting of signed messages within enveloped messages in incoming and outgoing messages. In other words, if an incoming enveloped message is decrypted and the resulting MIME entity is a signed application/x-pkcs7-mime then the user agent should automatically process the resulting MIME entity and present the signature status and corresponding information to the user. Likewise if a user chooses to sign and encrypt an outgoing message (and compatibility with PEM is not required) then the user agent should automatically create an application/x-pkcs7-mime signed message then use the resulting message as input to the creation of an application/x-pkcs7-mime enveloped message. In the case of this signed/enveloped nesting, it is recommended that the inner signed message is left in its binary state and that the content transfer encoding on the inner signed message be indicated as binary.
There are a number of useful security functions that can be achieved by allowing additional nesting of security services. In general, it is recommended that an S/MIME user agent allow for automatic processing of one or two additional layers of S/MIME entities nested in other S/MIME entities. Where additional nesting is not automatically handled, it is strongly recommended that provision is made to handle additional nesting manually, i.e. through some explicit user action such as the resubmission of the resulting message to the user agent.
3.2 Choice of S/MIME Message Types
The PKCS-MIME integration draft, “S/MIME Message Specification: PKCS Security Services for MIME,” specifies two distinct mechanisms for conveying a signed message; a signed, self-contained application/x-pkcs7-mime construct and a multipart/signed construct (where the signature is conveyed separate from the signed data in an application/x-pkcs7-signature body part). S/MIME clients are required to support application/x-pkcs7-mime in incoming and outgoing messages. In many internet-to-internet mail transactions, there is a reasonable expectation from e-mail agents and intermediate gateways that are compliant with the latest MIME specifications that MIME messages will be delivered intact. However, because of the limitations inherent in a significant portion of existing e-mail infrastructure (e.g. major on-line services and some "popular" extensible commercial e-mail agents), not all S/MIME-enabled clients will be able to correctly receive and/or process multipart/signed messages. Some older gateways and "popular" message transfer agents will treat unknown multipart messages such as multipart/signed as multipart/mixed and discard the MIME packaging for the signed message, leading to unverifiable signatures. Therefore it is recommended (but not required) that an S/MIME agent support multipart/signed. To be specific, one of the greatest values of the multipart/signed construct is in the ability of e-mail agents which are not S/MIME-enabled to be able to handle the (otherwise unencoded) body of the message that was signed. As such, the use of multipart/signed is recommended when a signed message is being sent to a set of recipients, not all of which are known to have S/MIME-enabled clients. Where all of the intended recipients are known to be S/MIME-capable, the use of a signed application/x-pkcs7-mime message is recommended as it has a greater possibility of successful receipt. The availability of certificates for all intended message recipients may be a good indication that all recipients are S/MIME-capable.
Implementors of S/MIME clients should be aware that one of the important benefits of multipart/signed messages is that their text portions are readable (but not verifyable) by non-S/MIME and by non-MIME recipients. If signedData is sent, it will only be readable by recipients with S/MIME tools. Therefore, implementors of S/MIME clients must ensure that signedData messages are never sent to public forums which have participation from non-S/MIME-enabled users. For the forseeable future, this will include USENET newsgroups, and most public mailing lists.
If an S/MIME client cannot generate multipart/signed, and the user of that client wants to sign a message that is being sent to a recipient who has not explicitly advertised support for signedData, then the recipient must be warned that some users may not be able to read the message at all if sent in signed form, and that they should only proceed if they are confident that all recipients have S/MIME capability.
Since one generally cannot know all of the recipients of a mailing list, or all of the readers of a newsgroup, the use of signedData should be strongly discouraged for messages sent to public mailing lists and newsgroups, and that if allowed at all, appropriate warnings must be issued as specified above.
For sending a certificates and CRLs messages (without any signed content) the application/x-pkcs7-mime message format is to be used to convey a degenerate PKCS #7 signedData “certs-only” message.
For sending an enveloped message to a recipient, the application/x-pkcs7-mime message format is to be used to convey a PKCS #7 envelopedData content.
For sending a certificate-signing request, the application/x-pkcs10 message format is to be used to convey a PKCS #10 certificate-signing request.
To summarize, the following chart describes when to use each MIME type:
MIME Type�When to use:��application/x-pkcs7-mime�When sending envelopedData or signedAndEnvelopedData.
When sending signedData to only S/MIME-capable recipients where multipart/signed is known to not arrive intact.
When sending a certs-only message.��Multipart/signed�Default for When sending a signedData message. Required when sending a signed message to a mix of recipients where S/MIME-capabilities are not known for all recipients.��application/x-pkcs10�When sending a certification request to a certification authority.��3.3 Relationship to File-Based MIME Security
The use of S/MIME is not limited to the on-line e-mail environment. By associating standard file extensions to the various S/MIME content types, useful automatic conversion can occur between e-mail agents and file-based S/MIME processing capabilities at the mail client or operating system level. MIME provides an optional parameters; "name=", for the Content-Type field and an optional field, "Content-Disposition: attachment" with an optional parameter, "filename=" for such extended functionality.
It is recommended that S/MIME clients are required to emit the optional “name” parameter for the Content-Type fields, and the optional “filename=” parameter with the optional Content-Disposition: attachment fields consistent with the content type. It is strongly recommended that S/MIME clients emit the optional “name=” parameter for the Content-Type field for compatability with older systems. Both of these parameters should be set to the same filename with extension. For support of legacy systems (i.e. DOS) the filename should be limited to eight characters followed by a period followed by a three letter extension. The eight character filename base can be any distinct name, however, the use of the filename “smime” is recommended to indicate that the MIME entity is associated with S/MIME.
If the name and filename parameters are included, tThe filename extensions are required to correspond to the S/MIME message types according to the following table:
S/MIME Type�File Extension��application/x-pkcs7-signature�.P7Mp7s��application/x-pkcs7-mime�(for signedData and envelopedData)�.P7Mp7m��application/x-pkcs7-mime�(degenerate signedData “certs-only” message)�.p7c��application/x-pkcs10�.P10p10��
For instance:
Content-Type: application/x-pkcs7-mime;name=”filesmime.p7m”�Content-Transfer-Encoding: base64�Content-Disposition: attachment;filename=”filesmime.p7m”��<base64 data goes here>
If this message were of type application/x-pkcs10, then the filename would be something like “filesmime.p10”.
It is further recommended that if S/MIME constructs are saved or imported from disk that these same file extensions are used. This allows for static registry of the filename extension and a particular associated “helper” application in certain application environments.
Last, it should be noted that certain older MIME agents and gateways automatically convert unknown application/ subtypes to application/octet-stream. By including the optional name parameter and the optional Content-Disposition: attachment;filename= parameter, there is at least some indication that the included MIME entity is an S/MIME entity. It is therefore recommended that S/MIME agents and “helper” applications be capable of processing application/octet-stream messages with recognized S/MIME filename extensions either automatically or by explicit user action.
4. Distinguished Names in Certificates
4.1 Using Distinguished Names for e-mail
The format of an X.509 certificate includes fields for the subject name and issuer name. (The X.509 v1 certificate syntax is reproduced in Appendix A to PKCS #6).
The subject name identifies the owner of a particular public key/private key pair while the issuer name is meant to identify the entity that "certified" the subject (i.e. signed the subject's certificate). The subject name and issuer name are defined by X.509 as Distinguished Names.
Distinguished Names are defined by a CCITT standard X.501. A Distinguished Name is broken into one or more Relative Distinguished Names. Each Relative Distinguished Name is comprised of one or more Attribute-Value Assertions. Each Attribute-Value Assertion consists of a Attribute Identifier and its corresponding value information, e.g. CountryName = US. Distinguished Names were intended to identify entities in the X.500 directory tree. Each Relative Distinguished Name can be thought of as a node in the tree which is described by some collection of Attribute-Value Assertions. The entire Distinguished Name is some collection of nodes in the tree that traverse a path from the root of the tree to some end node which represents a particular entity.
� EMBED Word.Picture.6 ���
Figure 4.1 Example of a Distinguished Name
The (rather lofty) goal of the directory was to provide an infrastructure to uniquely name every communications entity everywhere (hence the Distinguished in Distinguished Name).
Adoption of a global X.500 directory infrastructure has been a little slower than expected. Consequently, there is no requirement for X.500 directory service provision in the S/MIME environment, although such provision would almost undoubtedly be of great value in facilitating key management for S/MIME.
The use of Distinguished Names in accordance with the X.500 directory is not very widespread. By contrast, RFC 822 e-mail addresses are used almost exclusively in the Internet environment to identify originators and recipients of messages. However, Internet e-mail addresses bear no resemblance to X.500 Distinguished Names (except, perhaps, that they are both hierarchical in nature). Some method is needed to map Internet e-mail addresses to entities that hold public keys. Some have suggested that the X.509 certificate format should be abandoned in favor of other binding mechanisms. (This is analogous to throwing out the baby with the bath water.) We recommend keeping the X.509 certificate and Distinguished Name mechanisms while tailoring the content of the naming information to suit the Internet e-mail environment. (This is a lot like throwing out the baby and keeping the bath water.) At a minimum, either the Distinguished Name used to identify an Internet e-mail entity must include an RFC 822 e-mail address or some other mechanism must be implemented in the user agent to provide for Distinguished Name to e-mail address mapping. Where some Distinguished Name to e-mail address mapping mechanism is used, the mapping database must be protected from tampering to defend against malicious insertion of non-trusted certificates, CRLs and chains.
NOTE: The creation and use of a Distinguished Name which includes only an RFC 822 e-mail address as the subject name in an X.509 certificate is encouraged for initial deployment of S/MIME. Such a construct, however, does not conform to the CCITT standards for Distinguished Names and should be used only as a transitional strategy. In many environments, the eventual addition of classical Distinguished Name attributes to the RFC 822 address be of value (e.g. inter-organization commerce). The decision of what kind of Distinguished Name a user should construct will likely be influenced by the environment in which S/MIME is used as well as by whatever requirements are levied by the user's certifier or certification service provider.
4.2 Required Name Attributes
For incoming messages, support for parsing and display of zero, one, or more instances of each of the following set of name attributes within the Distinguished Names in certificates is required.
Inclusion of the RFC 822 e-mail address during Distinguished Name creation is highly recommended. Guidelines for the inclusion, omission, and ordering of the remaining name attributes during the creation of a distinguished name will most likely be dictated by the policies associated with the certification service which will certify the corresponding name and public key. See Section 6 for more discussion about certification requests.
Name Attribute	Description	
CountryName	X.520
StateOrProvinceName	X.520
Locality	X.520
CommonName	X.520
Title	X.520
Organization	X.520
OrganizationalUnit	X.520
StreetAddress	X.520
Postal Code	X.520
Phone Number	X.520
e-mailAddress	PKCS #9
5. Certificate Processing
5.1 Introduction
A public key certificate provides a mechanism to cryptographically demonstrate that the holder of the issuer key has signed and therefore bound the subject's public key to the subject's name. In most circumstances this indicates that the issuer has performed the service of verifying that the corresponding subject private key is held or controlled by the individual or entity identified by the subject public name. The issuer of a public key certificate is called a certifier or certification authority. The quality of this certification service (roughly corresponding to the veracity and trustworthiness of the binding) may vary greatly from one certifier to another. Different levels of service may be deemed appropriate for different applications. Certification authorities which provide a service within an organization will most likely do so in accordance with the needs and business practices of that organization. In general, certification authorities that provide services to others will publish a statement of policies and procedures which users can inspect to ascertain the level or quality of service provided. Where X.509 v3 certificates are issued, there may be information built into each certificate which includes or references the corresponding certification authority’s policies (see section 5.8).
5.2 Trust Models
The goal of certification in a secure e-mail environment is to provide some level of trust in the public keys used between a message originator and recipient. To this end, it is necessary to create or identify some certification path between the originator and recipient.
5.2.1 Direct Trust
In the instance where a certificate is created by the message recipient for the message originator's public key (and vice versa), then the message recipient will have a high level of trust in the public key used to verify the message originator's signature (and vice versa). This form is trust is referred to as "direct trust" as each correspondent directly establishes the identity and key of the other correspondent and certifies the other correspondent directly. This works very well for small communities (e.g. 2 users) but scales very poorly (for N correspondents there are roughly N2 certificates to issue and manage).
5.2.2 Indirect Trust
For small workgroups or enterprises, a much better model is afforded by appointing or identifying a single individual or entity to act as a certification authority for the entire group. The certification authority assumes the responsibility to identify each correspondent in the group and vouch for the binding between the correspondent’s name and public key by creating a certificate signed by the authority's private key. All of the corespondents can then indirectly trust the keys of the other correspondents by identifying and trusting a single public key, that of the certification authority which can be used to verify the signatures on the certificates for the other correspondent’s public keys. (The procedures that the certification authority uses to certify the other correspondents must be trusted also so it's always a good idea to select a trustworthy entity for your certification authority). While the role of a certification authority is logically distinct from that of a correspondent, the certification authority may, in fact be one of the actual correspondents. In this case, it may be helpful for the certification authority to maintain a separate (typically higher strength) keypair for the role of certification from the one that is used by the same individual for actual correspondence.
5.2.3 Hierarchical Trust
For e-mail environments that span multiple workgroups, multiple geographies or multiple enterprises, the use of a certification hierarchy is recommended. A certification hierarchy is created when a certification authority's public key is certified by another, higher level certification authority. The higher level certification authority may be an entity that is trusted by all parties or it may, in turn, be certified by an even higher level certification authority, and so on. The collection of certificates from some trusted high level authority to an end certificate (representing a user or e-mail correspondent) is called a "chain" of certificates. An example of an e-mail certification hierarchy is defined in the PEM-RFC 1422. In general, when an e-mail correspondent intends to correspond across geographical and organizational boundaries, consideration should be given to resolving trust decisions either through :
- indirect third-party certification authorities that act as inter-enterprise trust brokers(The procedures that the certification authority uses to certify lower level certification authorities must be trusted also so care should be taken to research and select the appropriate entity or organization for your certification authority)
- direct organization to organization trust relationships.(Once again, the procedures that the certification authority uses to cross certify directly with another certification authority must be trusted)
Support for indirect trust (workgroup trust) and hierarchical, centralized trust is recommended for secure e-mail. The use of direct or peer-to-peer trust is not recommended for secure e-mail integration as it is much more difficult to manage and scale. Where a small group of users (e.g. 2) wishes to communicate securely without the participation of an outside entity (third-party), a certification authority should be chosen among the group to manage a separate issuer key in an indirect trust model. This achieves an important goal, a single point of certification and correspondingly, a single point of revocation. It also allows for the use of secure e-mail by small groups with a smooth transition to certificate hierarchies.
5.3 Certificate Retrieval/Storage
A secure e-mail agent must provide some certificate retrieval mechanism in order to gain access to certificates for recipients of digital envelopes. There are a number of ways to implement certificate retrieval mechanisms. X.500 directory service is an excellent example of a certificate retrieval-only mechanism that is compatible with classic X.500 Distinguished Names. Another suggestion under consideration by the IETF is to provide certificate retrieval services as part of the existing Domain Name System (DNS). Until such mechanisms are widely used, their utility may be limited by the small number of correspondent’s certificates that can be retrieved. At a minimum, for initial S/MIME deployment, a user agent could automatically generate an e-mail message to an intended recipient requesting that recipient’s certificate in a signed return message.
It is recommended that a secure e-mail agent also provide a mechanism to allow a user to “store and protect” certificates for correspondents in such a way as to guarantee their later retrieval. In many environments, it may be desirable to link the certificate retrieval/storage mechanisms together in some sort of certificate database. In it’s simplest form, a certificate database would be local to a particular user and would function in a similar way as a “address book” that stores a user’s frequent e-mail correspondents. In this way, the certificate retrieval mechanism would be limited to the certificates that a user has stored (presumably from incoming messages). A comprehensive certificate retrieval/storage solution may combine two or more mechanisms to allow the greatest flexibility and utility to the user. For instance, a secure e-mail agent may resort to checking a centralized certificate retrieval mechanism for a certificate if it can not be found in a user’s local certificate storage/retrieval database.
It is further recommended that a secure e-mail agent provide a mechanism for the import and export of certificates, using a PKCS #7 certs-only message as the means. This allows for import and export of full certificate chains as opposed to just a single certificate.
5.4 Root Keys
It is important to provide some mechanism to "anchor" or "root" certificates for a particular user. A “root” key is one which is available (along with the associated name) to the user agent where the authentication mechanism is something other than a certificate signed by a higher level issuer .
5.4.1 Hard-Coded Root Keys
In a strictly hierarchical environment the collection of "root" public keys (those of the highest level certification authorities) may be embedded into the application in such a way as to make it difficult to alter without detection. This enables the user agent to conveniently utilize the trusted roots "out of the box" to verify certificates created by the highest level certification authorities for lower level certification authorities, the corresponding public keys can then be used to verify certificates for even lower level certification authorities and eventually for end-users. Although this provides the greatest simplicity, the risk of a root being compromised or otherwise needing replacement would necessitate that all of the software with such hard coded roots be replaced or otherwise "patched" in a trustworthy manner.
5.4.2 Configurable Root Keys
For indirect trust environments, the “root” keys are usually associated with some administrative entity such as the group leader or system administrator. As such, these keys are rarely known in advance and therefore difficult to “embed” into an application. In an indirect or mixed trust environment, the user agent must provide some mechanisms to allow the management (addition, deletion, etc.) of root keys on behalf of a user. These may be the keys of certification authorities that the user personally trusts, or more likely, the keys that a particular organization has established for certification. As such, the management of roots may be performed directly by the user or by some administrative entity. In either case, authentication of this information is critical to the security of the certificate information as the addition of a “rogue” root can create a significant weakness.
5.5 CRLs
A secure e-mail agent should have access to some certificate-revocation list retrieval mechanism in order to gain access to certificate-revocation information when validating certificate chains. It is recommended that a secure e-mail agent also provide a mechanism to allow a user to “store” incoming certificate-revocation information for correspondents in such a way as to guarantee its later retrieval, however, it is always better to get the latest information from the CA than to get information stored away from incoming messages.
It is recommended that secure agents retrieve and utilize CRL information every time a certificate is verified as part of a certificate chain validation even if the certificate was already verified in the past (see section 5.6), however, in many instances (such as off-line verification) access to the latest CRL information may be difficult or impossible. The use of CRL information, therefore, should be dictated by the value of the information that is protected. The value of the CRL information in a particular context is beyond the scope of this paper but may be governed by the policies associated with particular certificate hierarchies.
5.6 Certificate Chain Validation
In creating a user agent for secure e-mail, certificate, CRL and certificate chain validation must be as automated as possible while still acting in the best interests of the user. Certificate, CRL and chain validation must be performed when validating a correspondent’s public key. This is necessary when a) verifying a signature from a correspondent and, b) creating a digital envelope with the correspondent as the intended recipient.
Certificates and CRLs are made available to the chain validation procedure in two ways: a) incoming mail messages, and b) certificate and CRL retrieval mechanisms. Certificates and CRLs in incoming messages are not required to be in any particular order nor are they required to be in any way related to the sender or recipient of the message (although in most cases they will be related to the sender). Incoming certificates and CRLs should be cached for use in chain validation and optionally stored for later use. This temporary certificate and CRL cache should be used to augment any other certificate and CRL retrieval mechanisms for chain validation on incoming signed messages.
A certificate chain validation always starts with a certificate associated with the intended correspondent and ends when there is some collection of certificates which links the correspondent’s key to a “root” key that is known to the application or otherwise trusted by the user. In some cases, hierarchy associated with a particular root key may impose constraints on the depth of the certificate chain (number of certificates from the user to the root inclusive) as well as some constraints on the subordinance relationship between the issuer and the subject of certificates at a particular depth in the certificate chain. Subordinance is achieved when the issuer name is a subset of the subject name in a certificate.
It is required that some certificate depth constraint checking mechanism be supported on a per-root basis. It is recommended that some mechanism be supported to check the subordinance relationship between subject and issuer name at different levels in a certificate chain on a per-root basis. Where X.509 v3 certificates are used, there may be information built into any or all certificates which identifies constraints on the role of the certificate’s subject (i.e. end-user versus CA) and the authorized depth of any certificate chains below the corresponding certificate (see section 5.8).
The following procedure outlines a simplified certificate-chain checking procedure. More elaborate procedures may be appropriate where the certificate-chain environment is complex. Also, the choice of starting point and the applicability of each certificate in a certificate chain may be further constrained by the inclusion and corresponding value and criticality of any X.509 v3 certificate extensions present (see section 5.8). Starting with the end-user certificate as the candidate certificate, a secure e-mail agent should:
1. Check to see if the issuer name matches one of the agent’s trusted root certifier keys. If so, go to step 3. If not, proceed to step 2.
2. Attempt to retrieve a valid (non-expired, non-pending) certificate that has the candidate certificate’s issuer name as subject name (higher level certificates for the issuer). If none, chain validation fails.
3. Attempt to use the certifier’s public key (either within the higher level certificate or that of the root) to verify the signature on the candidate certificate. If the signature is not valid, chain validation fails. If the signature is valid, proceed to step 4.
4. Attempt to retrieve the latest, valid (non-expired, non-pending) Certificate-Revocation List for the certifier. If none, indicate failure and proceed to step 5. If found, check for candidate certificate’s serial number among list of revoked certificates. If found, indicate revocation, chain validation fails. If not found, proceed to step 5.
5. If certifier’s public key is not a trusted root, proceed to step 6. If certifier’s public key is a trusted root, check for maximum chain depth constraint. If number of recursions exceeds maximum chain depth, chain validation fails. Otherwise you are done, you have verified the chain of certificates successfully.
6. Using the new certifier’s certificate, go back to step 1.
When this certificate chain validation procedure is used for an incoming signed message, a user agent must present at a minimum the distinguished name information for the signer. It is recommended that some mechanism exist to present the name information for certifier’s in the validated certificate chain and it is strongly recommended that some indication is made as to which “root” key the chain validation terminated with. Requirements and recommendations for the handling and display of any X.509 v3 extensions in described in section 5.8.
5.7 Certificate and CRL Signing Algorithms
Certificates and Certificate-Revocation Lists (CRLs) are signed by the certificate issuer. Since the export is cryptography for authentication is largely unrestricted, it is required that a S/MIME agent be capable of verifying the signatures on certificates and CRLs made with the md2WithRSAEncryption, md5WithRSAEncryption, and sha-1WithRSAEncryption signature algorithms with key sizes from 512 bits to 2048 bits.
5.8 X.509 Version 3 Certificate Extensions
The X.509 v3 standard describes an extensible framework in which the basic certificate information can be extended and how such extensions can be used to control the process of issuing and validating certificates. Because the v3 standard is relatively new there are ongoing efforts to identify and create extensions which have value in particular certification environments. As such, there is still a fair amount of profiling work to be done before there is widespread agreement on which v3 extensions will be used. Meanwhile, there are active efforts underway to issue X.509 v3 certificates for business purposes. We therefore identify here the smallest set of certificate extensions which have the greatest value in the S/MIME environment. The following extensions (basicConstraints, keyUsage and certificatePolicies) are defined in the X.509 v3 draft; Amendment 1 to ISO/IEC 9594-8:1995.
An S/MIME agent is required to correctly handle and display the following v3 certificate extensions when they appear in end-user certificates. It is recommended that some mechanism exist to handle and display the following v3 certificate extensions when they appear in intermediate or CA certificates.
In the S/MIME environment, it is strongly recommended that CAs which issue v3 certificates include only the following extensions. For the following extensions it is recommended that with the criticality flag be set to False unless the proper handling and display of the corresponding extension is deemed critical to the correct interpretation of the associated certificate. Also, in an S/MIME environment, it is strongly recommended that when additional v3 extensions are included in a certificate that the corresponding criticality flags are set to False.
5.8.1 Basic Constraints Certificate Extension
The basic constraints extension serves to delimit the role and position of an issuing authority or end-user certificate plays in a chain of certificates.
For example, certificates issued to CAs and subordinate CAs contain a basic constraint extension that identifies them as issuing authority certificates. End-user subscriber certificates contain an extension that constrains the certificate from being an issuing authority certificate.
The ASN.1 definition of basicConstraints certificate extension follows:
basicConstraints basicConstraints EXTENSION ::= {
 SYNTAX BasicConstraintsSyntax
 IDENTIFIED BY { id-ce 19 }
}

BasicConstraintsSyntax ::= SEQUENCE {
 cA BOOLEAN DEFAULT FALSE,
 pathLenConstraint INTEGER (0..MAX) OPTIONAL
}

5.8.1 Key Usage Certificate Extension
The key usage extension serves to limit the technical purposes for which a public key listed in a valid certificate may be used. Issuing authority certificates may contain a key usage extension that restricts the key to signing certificates, certificate revocation lists and other data.
For example, a certification authority may create subordinate issuer certs which contain a keyUsage extension which specifies that the corresponding public key can be used to sign end user certs and sign CRL's.
The ASN.1 definition of keyUsage certificate extension follows:
keyUsage EXTENSION ::= {
 SYNTAX KeyUsage
 IDENTIFIED BY { id-ce 15 }
}

KeyUsage ::= BIT STRING {
 digitalSignature (0),
 nonRepudiation (1),
 keyEncipherment (2),
 dataEncipherment (3),
 keyAgreement (4),
 keyCertSign (5),
 cRLSign (6)
}

5.8.1 Certificate Policy Certificate Extension
The certificate policy extension limits a certificate to the practices required by relying parties.
The ASN.1 definition of certificatePolicies certificate extension follows:
certificatePolicies EXTENSION ::= {
 SYNTAX CertificatePoliciesSyntax
 IDENTIFIED BY { id-ce 32 }
}

CertificatePoliciesSyntax ::=
 SEQUENCE SIZE (1..MAX) OF PolicyInformation

PolicyInformation ::= SEQUENCE {
 policyIdentifier CertPolicyId,
 policyQualifiers SEQUENCE SIZE (1..MAX) OF
 PolicyQualifierInfo OPTIONAL
}

CertPolicyId ::= OBJECT IDENTIFIER

PolicyQualifierInfo ::= SEQUENCE {
 policyQualifierId
 CERT-POLICY-QUALIFIER.&id
({SupportedPolicyQualifiers}),
qualifier CERT-POLICY-QUALIFIER.&Qualifier

({SupportedPolicyQualifiers}{@policyQualifierId})
 OPTIONAL }

SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= { }

CERT-POLICY-QUALIFIER ::= CLASS {
 &id OBJECT IDENTIFIER UNIQUE,
 &Qualifier OPTIONAL
}
WITH SYNTAX {
 POLICY-QUALIFIER-ID &id
 [QUALIFIER-TYPE &Qualifier]
}
6. Generating Keys and Certification Requests
6.1 Key Pair Generation
A secure e-mail user agent (or some related administrative utility or function) must be capable of generating RSA key pairs on behalf of the user. It is recommended that each key pair is generated from a good source of non-deterministic random input and protected in a secure fashion.
Due to US Government export regulations, an S/MIME agent which supports the generation of large RSA key sizes for key management would not be freely exportable outside of North America. US software manufacturers have been compelled to limit the key sizes of RSA keys generated for key management in order to create a widely exportable "restricted" version of their product. S/MIME agents intended for domestic use (or use under special State Department export licenses) can generate larger key sizes, however, in order to achieve the widest possible interoperability such agents must limit the size of generated keys to those supported in restricted S/MIME agents.
6.1.1 Restricted Profile
A restricted S/MIME agent is required to generate 512 bit RSA key pairs for key management. In many cases, the same RSA key pair is used both for key management and signatures. Where there are mechanisms to support the separation of keying material for signatures versus key management, (i.e. dual key crypto systems) it is recommended that a restricted agent generate and use RSA keys with key sizes from 768 bits to 1024 bits for signatures.
6.1.2 Unrestricted Profile
For unrestricted S/MIME agents, it is recommended that RSA key pairs be generated at a minimum key size of 768 bits and a maximum key size of 1024 bits as this is the largest key size which can be used by restricted S/MIME agents for key management.
6.2 Binding Names and Keys
A secure e-mail user agent (or some related administrative utility) must be capable of generating a certification request given a user’s public key and associated name information. In most cases, the user’s public key/private key pair will be generated simultaneously, however, there are cases where the keying information may be generated by an external process (e.g. when a key pair is generated on a cryptographic token or by a “key recovery” service).
At no time should there exist multiple valid (i.e. non-expired, non-revoked) certificates for the same key pair bound to different Distinguished Names. Otherwise, a security flaw exists where an attacker can substitute one valid certificate for another in such a way that can not be detected by a message recipient. If a users wishes to change their name (or create an alternate name), the user agent should generate a new key pair. If the user wishes to reuse an existing key pair with a new or alternate name, the user should first have any valid certificates for the existing public key revoked.
In general, it is possible for a user to request certification for the same name and key from multiple certification authorities. This is not recommended, however, as the policies of different certification authorities may vary and this may create confusion among a user’s correspondents as to which policy was used to certify the user.
In general, it is possible for a user to request certification for the same name with multiple key pairs from the same or different certification authorities. Although this may be somewhat confusing, this is acceptable for end-user certificates because the use of the Issuer Name/Serial Number pair in the PKCS #7 automatically disambiguates each user certificate. The use of the same name with different key pairs is not recommended, however, for issuer keys, since certificate chain processing would be made more difficult by the task of having to “try” each different issuer key when validating a certificate created by that issuer.
6.3 Using PKCS #10 for Certification Requests
The PKCS-MIME integration draft, “PKCS Security Services for MIME” specifies the PKCS #10 message format for certification requests. PKCS #10 is a flexible and extensible message format for representing the results of cryptographic operations on some data. The choice of naming information is largely dictated by the policies and procedures associated with the intended certification service. Minimal requirements and recommendations for naming support are described in section 3.
In addition to key and naming information, the PKCS #10 format supports the inclusion of optional attributes, signed by the entity requesting certification. This allows for information to be conveyed in a certification request which may be useful to the request process, but not necessarily part of the Distinguished Name being certified.
For incoming requests, support for parsing and display of zero or one instance of each of the following set of certification-request attributes is required of certification-authorities.
Inclusion of the following attributes during the creation and submission of a certification-request will most likely be dictated by the policies associated with the certification service which will certify the corresponding name and public key.
Attribute	Description	
postalAddress	X.520�challengePassword	PKCS #9�unstructuredAddress	PKCS #9�unstructuredName	PKCS #9

A PKCS #10 request includes the public key of the entity to be certified and the request is signed by the entity requesting certification. Use of RSA keys is required.
For incoming requests, support for the identification of an RSA key with the rsa OID defined in X.509 and the rsaEncryption OID is required. In addition, support for the verification of signatures on certificate requests made with sha-1WithRSAEncryption, mdMD5WithRSAEncryption and MD2WithRSAEncryption signature algorithms is required of certification-authorities.
For the creation and submission of certification-requests, it is recommended that RSA keys are identified with the rsaEncryption OID and signed with the sha-1WithRSAEncryption signature algorithm.
6.4 Fulfilling a Certification Request
It is recommended that certification authorities use the sha-1WithRSAEncryption signature algorithms when signing certificates.
6.5 Using PKCS #7 for Fulfilled Certificate Response
PKCS #7 supports a degenerate case of the SignedData content type where there are no signers on the content (and hence, the content value is “irrelevant”). This degenerate case is used to convey certificate and CRL information. Certification authorities are required to use this format for returning certificate information resulting from the successful fulfillment of a certification request. At a minimum, the inclusion of the actual subject certificate (corresponding to the information in the certification request) in the fulfilled certificate response is required. The inclusion of other certificates which link the issuer to higher level certification authorities and corresponding certificate-revocation lists is recommended. Unrelated certificates and revocation information is also acceptable.
Secure e-mail user agents are required to parse this degenerate PKCS #7 message type and handle the certificates and CRLs according to the requirements and recommendations in Section 5.
Appendix A - Object Identifiers & Syntax
A.1 Content Encryption Algorithms
RC2-CBC OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) encryptionAlgorithm(3) 2}
For the effective-key-bits (key size) other than 32 and less than 256, the RC2-CBC algorithm parameters are encoded as follows:
RC2-CBC parameter ::= SEQUENCE {�	rc2ParameterVersion INTEGER,�	iv OCTET STRING (8)}
For the effective-key-bits of 40, 64, and 128, the rc2ParameterVersion values are 160, 120, 58 respectively.
RC5-CBCPad OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) encryptionAlgorithm(3) 9}
RC5_CBC_PARAMETER ::= SEQUENCE {�	version INTEGER (v1_0(16)),�	rounds INTEGER (8..127),�	blockSizeInBits INTEGER (64, 128),�	iv OCTET STRING OPTIONAL}
For S/MIME, we use 16 rounds and a 64 bit block size.
DES-CBC OBJECT IDENTIFIER ::=�	{iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 7}
DES-EDE3-CBC OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) encryptionAlgorithm(3) 7}
For DES-CBC and DES-EDE3-CBC, the parameter should be encoded as:
CBCParameter :: IV
where IV ::= OCTET STRING -- 8 octets.
A.2 Digest Algorithms
md2 OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) digestAlgorithm(2) 2}
md5 OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) digestAlgorithm(2) 5}
sha-1 OBJECT IDENTIFIER ::=�	{iso(1) identified-organization(3) oiw(14) secsig(3) algorithm(2) 26}
A.3 Asymmetric Encryption Algorithms
rsaEncryption OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) pkcs-1(1) 1}
rsa OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) algorithm(8) encryptionAlgorithm(1) 1}
A.3 Signature Algorithms
md2WithRSAEncryption OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) pkcs-1(1) 2}
md5WithRSAEncryption OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) pkcs-1(1) 4}
sha-1WithRSAEncryption OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) pkcs-1(1) 5}
A.4 Signed Attributes
signingTime OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) pkcs-9(9) 5}
symmetricCapabilities OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) pkcs-9(9) 15????}
The ASN.1 definition of symmetricCapabilities follows:
symmetricCapabilities :: = IA5String
A.5 Name Attributes
e-mailAddress OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) pkcs-9(9) 1}
CountryName OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) attributeType(4) 6}
StateOrProvinceName OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) attributeType(4) 8}
locality OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) attributeType(4) 7}
CommonName OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) attributeType(4) 3}
Title OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) attributeType(4) 12}
Organization OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) attributeType(4) 10}
OrganizationalUnit OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) attributeType(4) 11}
StreetAddress OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) attributeType(4) 9}
Postal Code OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) attributeType(4) 17}
Phone Number OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) attributeType(4) 20}
A.6 Certification Request Attributes
postalAddress OBJECT IDENTIFIER ::=
	{joint-iso-ccitt(2) ds(5) attributeType(4) 16}
challengePassword OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) pkcs-9(9) 7}
unstructuredName OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) pkcs-9(9) 2}
unstructuredAddress OBJECT IDENTIFIER ::=�	{iso(1) member-body(2) US(840) rsadsi(113549) pkcs(1) pkcs-9(9) 8}
A.7 X.509 V3 Certificate Extensions
basicConstraints OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) 29 19 }
The ASN.1 definition of basicConstraints certificate extension follows:
basicConstraints basicConstraints EXTENSION ::= {�	SYNTAX BasicConstraintsSyntax�	IDENTIFIED BY { id-ce 19 } }
BasicConstraintsSyntax ::= SEQUENCE {�	cA BOOLEAN DEFAULT FALSE,�	pathLenConstraint INTEGER (0..MAX) OPTIONAL }

keyUsage OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) 29 15 }
The ASN.1 definition of keyUsage certificate extension follows:
keyUsage EXTENSION ::= {�	SYNTAX KeyUsage�	IDENTIFIED BY { id-ce 15 }}
KeyUsage ::= BIT STRING {�	digitalSignature (0),�	nonRepudiation (1),�	keyEncipherment (2),�	dataEncipherment (3),�	keyAgreement (4),�	keyCertSign (5),�	cRLSign (6)}

certificatePolicies OBJECT IDENTIFIER ::=�	{joint-iso-ccitt(2) ds(5) 29 32}
The ASN.1 definition of certificatePolicies certificate extension follows:
certificatePolicies EXTENSION ::= {�	SYNTAX CertificatePoliciesSyntax�	IDENTIFIED BY { id-ce 32 }}
CertificatePoliciesSyntax ::=�	SEQUENCE SIZE (1..MAX) OF PolicyInformation
PolicyInformation ::= SEQUENCE {�	policyIdentifier CertPolicyId,�	policyQualifiers�		SEQUENCE SIZE (1..MAX) OF PolicyQualifierInfo OPTIONAL }
CertPolicyId ::= OBJECT IDENTIFIER
PolicyQualifierInfo ::= SEQUENCE {�	policyQualifierId CERT-POLICY-QUALIFIER.&id�		({SupportedPolicyQualifiers}),�	qualifier CERT-POLICY-QUALIFIER.&Qualifier
({SupportedPolicyQualifiers}{@policyQualifierId}) OPTIONAL }
SupportedPolicyQualifiers CERT-POLICY-QUALIFIER ::= {...}
CERT-POLICY-QUALIFIER ::= CLASS {�	&id OBJECT IDENTIFIER UNIQUE,�	&Qualifier OPTIONAL }�	WITH SYNTAX {�		POLICY-QUALIFIER-ID &id [QUALIFIER-TYPE &Qualifier] }
Author's address
S/MIME Editor�RSA Data Security, Inc.	(415) 595-8782�100 Marine Parkway, #500	(415) 595-1873 (fax)�Redwood City, CA 94065 USA	smime-editor@rsa.com
OUTSTANDING ISSUES: 10/4/96
register/get OID for symmetric capabilities
Copyright (1995-1996 RSA Data Security, Inc.	Page � PAGE �2826�

Copyright (1995 RSA Data Security, Inc.�

