

Amendment to
PKCS#11

for support of

WTLS and TLS PRF

This document extends

Title Document No
PKCS#11 v2.11: Cryptographic
Token Interface Standard

RSA Laboratories November 2001
http://www.rsasecurity.com/rsalabs/PKCS/pkcs-
11/index.html

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

http://www.rsasecurity.com/rsalabs/PKCS/pkcs-11/index.html
http://www.rsasecurity.com/rsalabs/PKCS/pkcs-11/index.html

TABLE OF CONTENTS:

1 INTRODUCTION .. 3
1.1 TERMINOLOGY.. 3
1.2 REFERENCES ... 3

2 NEW GENERAL DATA TYPES ... 4
2.1 NEW OBJECT TYPES.. 4
2.2 NEW DATA TYPES FOR MECHANISMS.. 4

3 NEW OBJECTS.. 4
3.1 MODIFIED AND NEW CERTIFICATE OBJECTS.............................. 4
3.1.1 X.509 PUBLIC KEY CERTIFICATE OBJECTS 6
3.1.2 X.509 ATTRIBUTE CERTIFICATE OBJECTS 7
3.1.3 WTLS PUBLIC KEY CERTIFICATE OBJECTS.................... 7

4 NEW MECHANISMS.. 9
4.1 TLS MECHANISM PARAMETERS ... 9
4.1.1 CK_TLS_PRF_PARAMS .. 9
4.2 TLS MECHANISMS .. 9
4.2.1 PRF (PSEUDO RANDOM FUNCTION)................................ 9
4.3 WTLS MECHANISM PARAMETERS.. 10
4.3.1 CK_WTLS_RANDOM_DATA ... 10
4.3.2 CK_WTLS_MASTER_KEY_DERIVE_PARAMS 10
4.3.3 CK_WTLS_PRF_PARAMS... 11
4.3.4 CK_WTLS_KEY_MAT_OUT... 11
4.3.5 CK_WTLS_KEY_MAT_PARAMS 12
4.4 WTLS MECHANISMS ... 13
4.4.1 PRE MASTER SECRET KEY GENERATION FOR RSA

KEY EXCHANGE SUITE .. 13
4.4.2 MASTER SECRET KEY DERIVATION 13
4.4.3 MASTER SECRET KEY DERIVATION FOR DIFFIE-

HELLMAN AND ELLIPTIC CURVE CRYPTOGRAPHY 14
4.4.4 PRF (PSEUDO RANDOM FUNCTION).............................. 15
4.4.5 SERVER KEY AND MAC DERIVATION 15
4.4.6 CLIENT KEY AND MAC DERIVATION 16

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

Introduction 1

1.1

This document contains proposals for amendments to the PKCS#11 Cryptographic Token
Interface Standard. The purpose of these amendments is to provide support for WTLS. We also
propose an amendment for TLS support. New data types and mechanisms are described.

We suggest a standardized way to support WTLS, a TLS derived transport security layer that is
used in WAP environments.

Terminology
Definition/Abbreviation Explanation
IV Initialization vector
PKCS Public-Key Cryptography Standards
PRF Pseudo random function
RSA The RSA public key crypto system
TLS Transport Layer Security
WIM Wireless Identification Module
WTLS Wireless Transport Layer Security

1.2 References
No Title Document No
1 PKCS#11 v2.11: Cryptographic Token Interface

Standard
RSA Laboratories November 2001
http://www.rsasecurity.com/rsalabs/
PKCS/pkcs-11/index.html

2 Wireless Transport Layer Security
Version 06-Apr-2001

Wireless Application Protocol
WAP-261-WTLS-20010406-a
http://www.wapforum.org/

3 The TLS Protocol Version 1.0 RFC 2246
The Internet Engineering Task
Force, January 1999
http://www.ietf.org/

4 PKCS #15 v1.1: Cryptographic Token
Information Syntax Standard

RSA Laboratories June 6, 2000
http://www.rsasecurity.com/rsalabs/
PKCS/pkcs-15/index.html

5 Java MIDP 2.0 Specification.

Java Community Process
http://jcp.org/jsr/detail/118.jsp

6 Wireless Identity Module

Wireless Identity Module
WAP-260-WIM-20010712-a
http://www.wapforum.org/

7 WPKI

WPKI
WAP-217-WPKI-20010424-a
http://www.wapforum.org/

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

http://www.rsasecurity.com/rsalabs/PKCS/pkcs-11/index.html
http://www.rsasecurity.com/rsalabs/PKCS/pkcs-11/index.html
http://www.wapforum.org/
http://www.ietf.org/
http://www.rsasecurity.com/rsalabs/PKCS/pkcs-15/index.html
http://www.rsasecurity.com/rsalabs/PKCS/pkcs-15/index.html
http://jcp.org/jsr/detail/118.jsp
http://www.wapforum.org/
http://www.wapforum.org/

New general data types 2

2.1

2.2

3

3.1

This chapter contains additions to chapter 9 of [1].

New object types
This chapter contains additions to Chapter 9.4 of [1].

The following additional certificate type is defined.
#define CKC_WTLS 0x00000002

The following additional attribute types are defined.
#define CKA_CERTIFICATE_CATEGORY 0x00000087
#define CKA_JAVA_MIDP_SECURITY_DOMAIN 0x00000088
#define CKA_URL 0x00000089
#define CKA_HASH_OF_SUBJECT_PUBLIC_KEY 0x0000008A
#define CKA_HASH_OF_ISSUER_PUBLIC_KEY 0x0000008B

New data types for mechanisms
This chapter contains additions to Chapter 9.5 of [1].

The following additional mechanism types are defined.
#define CKM_WTLS_PRE_MASTER_KEY_GEN 0x000003D0
#define CKM_WTLS_MASTER_KEY_DERIVE 0x000003D1
#define CKM_WTLS_MASTER_KEY_DERVIE_DH_ECC 0x000003D2
#define CKM_WTLS_PRF 0x000003D3
#define CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE 0x000003D4
#define CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE 0x000003D5

#define CKM_TLS_PRF 0x00000378

New objects
This chapter contains additions to Chapter 10 of [1].

Modified and new certificate objects
This chapter replaces Chapter 10.6 of [1].

The following figure illustrates details of certificate objects and replaces figure 7 of [1]:

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

Certificate Type
Trusted
Certificate Category

Certificate

Owner
Issuer
Serial Number
Attribute Types Value

X.509 Attribute
Certificate

X.509 Public Key
Certificate

WTLS Public Key
Certificate

Subject
ID
Issuer
Serial Number
Value
URL
Hash Of Subject Public Key
Hash Of Issuer Public Key
Java MIDP Security Domain

Subject
Issuer
Value
URL
Hash Of Subject Public Key
Hash Of Issuer Public Key

Figure 1, Certificate Object Attribute Hierarchy

Certificate objects (object class CKO_CERTIFICATE) hold public-key or attribute certificates.
Other than providing access to certificate objects, Cryptoki does not attach any special meaning
to certificates. The following table defines the common certificate object attributes, in addition to
the common attributes listed in Table 15of [1] and Table19 of [1]:

Table: Common Certificate Object Attributes

Attribute Data type Meaning
CKA_CERTIFICATE_TYPE
1

CK_CERTIF
ICATE_TYP
E

Type of certificate

CKA_TRUSTED CK_BBOOL The certificate can be trusted for
the application that it was created.

CKA_CERTIFICATE_CAT
EGORY

CK_ULONG Categorization of the certificate:
0 = unspecified (default value),
1 = token user, 2 = authority, 3 =
other entity

1Must be specified when the object is created. The CKA_CERTIFICATE_TYPE attribute may
not be modified after an object is created.

The CKA_TRUSTED attribute cannot be set to TRUE by an application. It must be set by a
token initialization application. Trusted certificates cannot be modified.

The CKA_CERTIFICATE_CATEGORY attribute is used to indicate if a stored certificate is a
user certificate for which the corresponding private key is available on the token (“token user”), a
CA certificate (“authority”), or an other end-entity certificate (“other entity”). This attribute may
not be modified after an object is created.

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

The CKA_CERTIFICATE_CATEGORY and CKA_TRUSTED attributes will together be
used to map to the categorization of the certificates in [4]. A certificate in the certificates CDF in
[4] will be marked with category “token user”. A certificate in the trustedCertificates CDF or in
the usefulCertificates CDF will be marked with category “authority” or “other entity” depending
on the CommonCertificateAttribute.authority attribute and the CKA_TRUSTED attribute
indicates if it belongs to the trustedCertificates or usefulCertificates CDF.

3.1.1 X.509 public key certificate objects
This chapter replaces chapter 10.6.1 of [1] (which is not correctly numbered in [1]).

X.509 certificate objects (certificate type CKC_X_509) hold X.509 public key certificates. The
following table defines the X.509 certificate object attributes, in addition to the common
attributes listed in Table 15 of [1], Table19 of [1] and Table 21of [1]:

Table: X.509 Certificate Object Attributes

Attribute Data type Meaning
CKA_SUBJECT1 Byte array DER-encoding of the certificate

subject name
CKA_ID Byte array Key identifier for public/private

key pair (default empty)
CKA_ISSUER Byte array DER-encoding of the certificate

issuer name (default empty)
CKA_SERIAL_NUMBER Byte array DER-encoding of the certificate

serial number (default empty)
CKA_VALUE2 Byte array BER-encoding of the certificate
CKA_URL3 RFC2279

string
If not empty this attribute gives
the URL where the complete
certificate can be obtained
(default empty)

CKA_HASH_OF_SUBJECT
_PUBLIC_KEY4

Byte array SHA-1 hash of the subject public
key as defined in [4] (default
empty)

CKA_HASH_OF_ISSUER_
PUBLIC_KEY4

Byte array SHA-1 hash of the issuer public
key as defined in [4] (default
empty)

CKA_JAVA_MIDP_SECUR
ITY_DOMAIN

CK_ULONG Java MIDP security domain as
defined in [5]: 0 = unspecified
(default value), 1 = manufacturer,
2 = operator, 3 = third party

1Must be specified when the object is created. Can only be empty if CKA_VALUE is empty.
2Must be specified when the object is created. Must be non-empty if CKA_URL is empty.
3Must be non-empty if CKA_VALUE is empty.
 4Can only be empty if CKA_URL is empty.

Only the CKA_ID, CKA_ISSUER, and CKA_SERIAL_NUMBER attributes may be modified
after the certificate object has been created.

The CKA_ID attribute is intended as a means of distinguishing multiple public-key/private-key
pairs held by the same subject (whether stored in the same token or not). (Since the keys are
distinguished by subject name as well as identifier, it is possible that keys for different subjects
may have the same CKA_ID value without introducing any ambiguity.)

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

It is intended in the interests of interoperability that the subject name and key identifier for a
certificate will be the same as those for the corresponding public and private keys (though it is
not required that all be stored in the same token). However, Cryptoki does not enforce this
association, or even the uniqueness of the key identifier for a given subject; in particular, an
application may leave the key identifier empty.

The CKA_ISSUER and CKA_SERIAL_NUMBER attributes are for compatibility with PKCS
#7 and Privacy Enhanced Mail (RFC1421). Note that with the version 3 extensions to X.509
certificates, the key identifier may be carried in the certificate. It is intended that the CKA_ID
value be identical to the key identifier in such a certificate extension, although this will not be
enforced by Cryptoki.

The CKA_URL attribute enables the support for storage of the URL where the certificate can be
found instead of the certificate itself. Storage of a URL instead of the complete certificate is often
used in mobile environments [6][7].

The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and
CKA_HASH_OF_ISSUER_PUBLIC_KEY attributes are used to store the hashes of the public
keys of the subject and the issuer. They are particularly important when only the URL is
available to be able to correlate a certificate with a private key and when searching for the
certificate of the issuer.

The CKA_JAVA_MIDP_SECURITY_DOMAIN attribute associates a certificate with a Java
MIDP security domain [5].

The following is a sample template for creating an X.509 certificate object:
CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_CERTIFICATE_TYPE certType = CKC_X_509;
CK_UTF8CHAR label[] = “A certificate object”;
CK_BYTE subject[] = {...};
CK_BYTE id[] = {123};
CK_BYTE certificate[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_ID, id, sizeof(id)},
 {CKA_VALUE, certificate, sizeof(certificate)}
};

3.1.2

3.1.3

X.509 attribute certificate objects
This chapter remains unchanged compared to chapter 10.6.2 of [1] (which is not correctly
numbered in [1]).

WTLS public key certificate objects
Details can be found in [2].

WTLS certificate objects (certificate type CKC_WTLS) hold WTLS public key certificates. The
following table defines the WTLS certificate object attributes, in addition to the common
attributes listed in Table 15 of [1], Table19 of [1] and Table 21of [1]:

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

Table: WTLS Certificate Object Attributes

Attribute Data type Meaning
CKA_SUBJECT1 Byte array WTLS-encoding (Identifier type)

of the certificate subject
CKA_ISSUER Byte array WTLS-encoding (Identifier type)

of the certificate issuer (default
empty)

CKA_VALUE2 Byte array WTLS-encoding of the certificate
CKA_URL3 RFC2279

string
If not empty this attribute gives
the URL where the complete
certificate can be obtained

CKA_HASH_OF_SUBJECT
_PUBLIC_KEY4

Byte array SHA-1 hash of the subject public
key as defined in [4] (default
empty)

CKA_HASH_OF_ISSUER_
PUBLIC_KEY4

Byte array SHA-1 hash of the issuer public
key as defined in [4] (default
empty)

1Must be specified when the object is created. Can only be empty if CKA_VALUE is empty.
2Must be specified when the object is created. Must be non-empty if CKA_URL is empty.
3Must be non-empty if CKA_VALUE is empty.
 4Can only be empty if CKA_URL is empty.

Only the CKA_ISSUER attribute may be modified after the object has been created.

The CKA_URL attribute enables the support for storage of the URL where the certificate can be
found instead of the certificate itself. Storage of a URL instead of the complete certificate is often
used in mobile environments [6][7].

The CKA_HASH_OF_SUBJECT_PUBLIC_KEY and
CKA_HASH_OF_ISSUER_PUBLIC_KEY attributes are used to store the hashes of the public
keys of the subject and the issuer. They are particularly important when only the URL is
available to be able to correlate a certificate with a private key and when searching for the
certificate of the issuer.

The following is a sample template for creating a WTLS certificate object:
CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_CERTIFICATE_TYPE certType = CKC_WTLS;
CK_UTF8CHAR label[] = “A certificate object”;
CK_BYTE subject[] = {...};
CK_BYTE certificate[] = {...};
CK_BBOOL true = TRUE;
CK_ATTRIBUTE template[] =
{
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_CERTIFICATE_TYPE, &certType, sizeof(certType)};
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_SUBJECT, subject, sizeof(subject)},
 {CKA_VALUE, certificate, sizeof(certificate)}
};

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

4

4.1

4.1.1 CK_TLS_PRF_PARAMS

4.2

4.2.1

New mechanisms
This chapter contains additions to Chapter 12 of [1].

TLS mechanism parameters
Details can be found in [3].

CK_TLS_PRF_PARAMS is a structure, which provides the parameters to the
CKM_TLS_PRF mechanism. It is defined as follows:
typedef struct
{
 CK_BYTE_PTR pSeed;
 CK_ULONG ulSeedLen;
 CK_BYTE_PTR pLabel;
 CK_ULONG ulLabelLen;
 CK_BYTE_PTR pOutput;
 CK_ULONG_PTR pulOutputLen;
} CK_TLS_PRF_PARAMS;

The fields of the structure have the following meanings:

pSeed pointer to the input seed

ulSeedLen length in bytes of the input seed

pLabel pointer to the identifying label

ulLabelLen length in bytes of the identifying label

pOutput pointer receiving the output of the operation

pulOutputLen pointer to the length in bytes that the output to be
created shall have, has to hold the desired length
as input and will receive the calculated length as
output

CK_TLS_PRF_PARAMS_PTR is a pointer to a CK_TLS_PRF_PARAMS.

TLS mechanisms
Details can be found in [3].

PRF (pseudo random function)
PRF (pseudo random function) in TLS, denoted CKM_TLS_PRF, is a mechanism used to
produce a securely generated pseudo-random output of arbitrary length. The keys it uses are
generic secret keys.

It has a parameter, a CK_TLS_PRF_PARAMS structure, which allows for the passing of the
input seed and its length, the passing of an identifying label and its length and the passing of the
length of the output to the token and for receiving the output.

This mechanism produces securely generated pseudo-random output of the length specified in the
parameter.

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

This mechanism departs from the other key derivation mechanisms in Cryptoki in not using the
template sent along with this mechanism during a C_DeriveKey function call, which means the
template shall be a NULL_PTR. For most key-derivation mechanisms, C_DeriveKey returns a
single key handle as a result of a successful completion. However, since the CKM_TLS_PRF
mechanism returns the requested number of output bytes in the CK_TLS_PRF_PARAMS
structure specified as the mechanism parameter, the parameter phKey passed to C_DeriveKey is
unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then no output will be generated.

4.3

4.3.1 CK_WTLS_RANDOM_DATA

4.3.2 CK_WTLS_MASTER_KEY_DERIVE_PARAMS

WTLS mechanism parameters
Details can be found in [2].

CK_WTLS_RANDOM_DATA is a structure, which provides information about the random
data of a client and a server in a WTLS context. This structure is used by the
CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as follows:
typedef struct
{
 CK_BYTE_PTR pClientRandom;
 CK_ULONG ulClientRandomLen;
 CK_BYTE_PTR pServerRandom;
 CK_ULONG ulServerRandomLen;
} CK_WTLS_RANDOM_DATA;

The fields of the structure have the following meanings:

pClientRandom pointer to the client's random data

ulClientRandomLen length in bytes of the client's random data

pServerRandom pointer to the server's random data

ulServerRandomLen length in bytes of the server's random data

CK_WTLS_RANDOM_DATA_PTR is a pointer to a CK_WTLS_RANDOM_DATA.

CK_WTLS_MASTER_KEY_DERIVE_PARAMS is a structure, which provides the
parameters to the CKM_WTLS_MASTER_KEY_DERIVE mechanism. It is defined as
follows:
typedef struct
{
 CK_MECHANISM_TYPE DigestMechanism;
 CK_WTLS_RANDOM_DATA RandomInfo;
 CK_BYTE_PTR pVersion;
} CK_WTLS_MASTER_KEY_DERIVE_PARAMS;

The fields of the structure have the following meanings:

DigestMechanism the mechanism type of the digest mechanism to
be used (possible types can be found in [2])

RandomInfo Client's and server's random data information

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

pVersion pointer to a CK_BYTE which receives the
WTLS protocol version information

CK_WTLS_MASTER_KEY_DERIVE_PARAMS_PTR is a pointer to a
CK_WTLS_MASTER_KEY_DERIVE_PARAMS.

4.3.3 CK_WTLS_PRF_PARAMS

4.3.4 CK_WTLS_KEY_MAT_OUT

CK_WTLS_PRF_PARAMS is a structure, which provides the parameters to the
CKM_WTLS_PRF mechanism. It is defined as follows:
typedef struct
{
 CK_MECHANISM_TYPE DigestMechanism;
 CK_BYTE_PTR pSeed;
 CK_ULONG ulSeedLen;
 CK_BYTE_PTR pLabel;
 CK_ULONG ulLabelLen;
 CK_BYTE_PTR pOutput;
 CK_ULONG_PTR pulOutputLen;
} CK_WTLS_PRF_PARAMS;

The fields of the structure have the following meanings:

DigestMechanism the mechanism type of the digest mechanism to
be used (possible types can be found in [2])

pSeed pointer to the input seed

ulSeedLen length in bytes of the input seed

pLabel pointer to the identifying label

ulLabelLen length in bytes of the identifying label

pOutput pointer receiving the output of the operation

pulOutputLen pointer to the length in bytes that the output to be
created shall have, has to hold the desired length
as input and will receive the calculated length as
output

CK_WTLS_PRF_PARAMS_PTR is a pointer to a CK_WTLS_PRF_PARAMS.

CK_WTLS_KEY_MAT_OUT is a structure that contains the resulting key handles and
initialization vectors after performing a C_DeriveKey function with the
CKM_WTLS_SEVER_KEY_AND_MAC_DERIVE or with the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism. It is defined as follows:
typedef struct
{
 CK_OBJECT_HANDLE hMacSecret;
 CK_OBJECT_HANDLE hKey;
 CK_BYTE_PTR pIV;
} CK_WTLS_KEY_MAT_OUT;

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

The fields of the structure have the following meanings:
hMacSecret Key handle for the resulting MAC secret key

hKey Key handle for the resulting secret key

pIV Pointer to a location which receives the
initialisation vector (IV) created (if any)

CK_WTLS_KEY_MAT_OUT _PTR is a pointer to a CK_WTLS_KEY_MAT_OUT.

4.3.5 CK_WTLS_KEY_MAT_PARAMS
CK_WTLS_KEY_MAT_PARAMS is a structure that provides the parameters to the
CKM_WTLS_SEVER_KEY_AND_MAC_DERIVE and the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanisms. It is defined as follows:
typedef struct
{
 CK_MECHANISM_TYPE DigestMechanism;
 CK_ULONG ulMacSizeInBits;
 CK_ULONG ulKeySizeInBits;
 CK_ULONG ulIVSizeInBits;
 CK_ULONG ulSequenceNumber;
 CK_BBOOL bIsExport;
 CK_WTLS_RANDOM_DATA RandomInfo;
 CK_WTLS_KEY_MAT_OUT_PTR pReturnedKeyMaterial;
} CK_WTLS_KEY_MAT_PARAMS;

The fields of the structure have the following meanings:

DigestMechanism the mechanism type of the digest mechanism to
be used (possible types can be found in [2])

ulMacSizeInBits the length (in bits) of the MACing key agreed
upon during the protocol handshake phase

ulKeySizeInBits the length (in bits) of the secret key agreed upon
during the handshake phase

ulIVSizeInBits the length (in bits) of the IV agreed upon during
the handshake phase. If no IV is required, the
length should be set to 0.

ulSequenceNumber The current sequence number used for records
sent by the client and server respectively

bIsExport a boolean value which indicates whether the keys
have to be derived for an export version of the
protocol. If this value is true (i.e. the keys are
exportable) then ulKeySizeInBits is the length of
the key in bits before expansion. The length of
the key after expansion is determined by the
information found in the template sent along with
this mechanism during a C_DeriveKey function
call (either the CKA_KEY_TYPE or the
CKA_VALUE_LEN attribute).

RandomInfo client’s and server’s random data information

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

pReturnedKeyMaterial points to a CK_WTLS_KEY_MAT_OUT
structure which receives the handles for the keys
generated and the IV

CK_WTLS_KEY_MAT_PARAMS_PTR is a pointer to a
CK_WTLS_KEY_MAT_PARAMS.

WTLS mechanisms 4.4

4.4.1

4.4.2

Details can be found in [2].

Pre master secret key generation for RSA key exchange suite
Pre master secret key generation for the RSA key exchange suite in WTLS denoted
CKM_WTLS_PRE_MASTER_KEY_GEN, is a mechanism, which generates a variable length
secret key. It is used to produce the pre master secret key for RSA key exchange suite used in
WTLS. This mechanism returns a handle to the pre master secret key.

It has one parameter, a CK_BYTE, which provides the client’s WTLS version.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the
template). Other attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_GenerateKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute indicates the length of the pre master secret key.

For this mechanism, the ulMinKeySize field of the CK_MECHANISM_INFO structure shall
indicate 20 bytes.

Master secret key derivation
Master secret derivation in WTLS, denoted CKM_WTLS_MASTER_KEY_DERIVE, is a
mechanism used to derive a 20 byte generic secret key from variable length secret key. It is used
to produce the master secret key used in WTLS from the pre master secret key. This mechanism
returns the value of the client version, which is built into the pre master secret key as well as a
handle to the derived master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which
allows for passing the mechanism type of the digest mechanism to be used as well as the passing
of random data to the token as well as the returning of the protocol version number which is part
of the pre master secret key.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the
template). Other attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute has value 20. However, since these facts are all implicit in the
mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key
can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on some
default value.

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set
to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 20 bytes.

Note that the CK_BYTE pointed to by the CK_WTLS_MASTER_KEY_DERIVE_PARAMS
structure’s pVersion field will be modified by the C_DeriveKey call. In particular, when the call
returns, this byte will hold the WTLS version associated with the supplied pre master secret key.

Note that this mechanism is only useable for key exchange suites that use a 20-byte pre master
secret key with an embedded version number. This includes the RSA key exchange suites, but
excludes the Diffie-Hellman and Elliptic Curve Cryptography key exchange suites.

4.4.3 Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography
Master secret derivation for Diffie-Hellman and Elliptic Curve Cryptography in WTLS, denoted
CKM_WTLS_MASTER_KEY_DERIVE_DH_ECC, is a mechanism used to derive a 20 byte
generic secret key from variable length secret key. It is used to produce the master secret key
used in WTLS from the pre master secret key. This mechanism returns a handle to the derived
master secret key.

It has a parameter, a CK_WTLS_MASTER_KEY_DERIVE_PARAMS structure, which
allows for the passing of the mechanism type of the digest mechanism to be used as well as
random data to the token. The pVersion field of the structure must be set to NULL_PTR since the
version number is not embedded in the pre master secret key as it is for RSA-like key exchange
suites.

The mechanism contributes the CKA_CLASS, CKA_KEY_TYPE, and CKA_VALUE
attributes to the new key (as well as the CKA_VALUE_LEN attribute, if it is not supplied in the
template). Other attributes may be specified in the template, or else are assigned default values.

The template sent along with this mechanism during a C_DeriveKey call may indicate that the
object class is CKO_SECRET_KEY, the key type is CKK_GENERIC_SECRET, and the
CKA_VALUE_LEN attribute has value 20. However, since these facts are all implicit in the
mechanism, there is no need to specify any of them.

This mechanism has the following rules about key sensitivity and extractability:

The CKA_SENSITIVE and CKA_EXTRACTABLE attributes in the template for the new key
can both be specified to be either TRUE or FALSE. If omitted, these attributes each take on some
default value.

If the base key has its CKA_ALWAYS_SENSITIVE attribute set to FALSE, then the derived
key will as well. If the base key has its CKA_ALWAYS_SENSITIVE attribute set to TRUE,
then the derived key has its CKA_ALWAYS_SENSITIVE attribute set to the same value as its
CKA_SENSITIVE attribute.

Similarly, if the base key has its CKA_NEVER_EXTRACTABLE attribute set to FALSE, then
the derived key will, too. If the base key has its CKA_NEVER_EXTRACTABLE attribute set
to TRUE, then the derived key has its CKA_NEVER_EXTRACTABLE attribute set to the
opposite value from its CKA_EXTRACTABLE attribute.

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

For this mechanism, the ulMinKeySize and ulMaxKeySize fields of the
CK_MECHANISM_INFO structure both indicate 20 bytes.

Note that this mechanism is only useable for key exchange suites that do not use a fixed length
20-byte pre master secret key with an embedded version number. This includes the Diffie-
Hellman and Elliptic Curve Cryptography key exchange suites, but excludes the RSA key
exchange suites.

4.4.4

4.4.5

PRF (pseudo random function)
PRF (pseudo random function) in WTLS, denoted CKM_WTLS_PRF, is a mechanism used to
produce a securely generated pseudo-random output of arbitrary length. The keys it uses are
generic secret keys.

It has a parameter, a CK_WTLS_PRF_PARAMS structure, which allows for passing the
mechanism type of the digest mechanism to be used, the passing of the input seed and its length,
the passing of an identifying label and its length and the passing of the length of the output to the
token and for receiving the output.

This mechanism produces securely generated pseudo-random output of the length specified in the
parameter.

This mechanism departs from the other key derivation mechanisms in Cryptoki in not using the
template sent along with this mechanism during a C_DeriveKey function call, which means the
template shall be a NULL_PTR. For most key-derivation mechanisms, C_DeriveKey returns a
single key handle as a result of a successful completion. However, since the CKM_WTLS_PRF
mechanism returns the requested number of output bytes in the CK_WTLS_PRF_PARAMS
structure specified as the mechanism parameter, the parameter phKey passed to C_DeriveKey is
unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then no output will be generated.

Server Key and MAC derivation
Server key, MAC and IV derivation in WTLS, denoted
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE, is a mechanism used to derive the
appropriate cryptographic keying material used by a cipher suite from the master secret key and
random data. This mechanism returns the key handles for the keys generated in the process, as
well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the
passing of the mechanism type of the digest mechanism to be used, random data, the
characteristic of the cryptographic material for the given cipher suite, and a pointer to a structure
which receives the handles and IV which were generated. This structure is defined in Section
4.3.4

This mechanism contributes to the creation of two distinct keys and returns one IV (if an IV is
requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The MACing key (server write MAC secret) is always given a type of
CKK_GENERIC_SECRET. It is flagged as valid for signing, verification and derivation
operations.

The other key (server write key) is typed according to information found in the template sent
along with this mechanism during a C_DeriveKey function call. By default, it is flagged as valid
for encryption, decryption, and derivation operations.

An IV (server write IV) will be generated and returned if the ulIVSizeInBits field of the
CK_WTLS_KEY_MAT_PARAMS field has a nonzero value. If it is generated, its length in
bits will agree with the value in the ulIVSizeInBits field

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key.
The template provided to C_DeriveKey may not specify values for any of these attributes that
differ from those held by the base key.

Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will be modified
by the C_DeriveKey call. In particular, the two key handle fields in the
CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-created
keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT structure’s pIV
field will have the IV returned in them (if an IV is requested by the caller). Therefore, this field
must point to a buffer with sufficient space to hold any IV that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned
information. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a
result of a successful completion. However, since the
CKM_WTLS_SERVER_KEY_AND_MAC_DERIVE mechanism returns all of its key
handles in the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created.

4.4.6 Client key and MAC derivation
Client key, MAC and IV derivation in WTLS, denoted
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE, is a mechanism used to derive the
appropriate cryptographic keying material used by a cipher suite from the master secret key and
random data. This mechanism returns the key handles for the keys generated in the process, as
well as the IV created.

It has a parameter, a CK_WTLS_KEY_MAT_PARAMS structure, which allows for the
passing of the mechanism type of the digest mechanism to be used, random data, the
characteristic of the cryptographic material for the given cipher suite, and a pointer to a structure
which receives the handles and IV which were generated. This structure is defined in Section
4.3.4

This mechanism contributes to the creation of two distinct keys and returns one IV (if an IV is
requested by the caller) back to the caller. The keys are all given an object class of
CKO_SECRET_KEY.

The MACing key (client write MAC secret) is always given a type of
CKK_GENERIC_SECRET. It is flagged as valid for signing, verification and derivation
operations.

The other key (client write key) is typed according to information found in the template sent
along with this mechanism during a C_DeriveKey function call. By default, it is flagged as valid
for encryption, decryption, and derivation operations.

An IV (client write IV) will be generated and returned if the ulIVSizeInBits field of the
CK_WTLS_KEY_MAT_PARAMS field has a nonzero value. If it is generated, its length in
bits will agree with the value in the ulIVSizeInBits field

Both keys inherit the values of the CKA_SENSITIVE, CKA_ALWAYS_SENSITIVE,
CKA_EXTRACTABLE, and CKA_NEVER_EXTRACTABLE attributes from the base key.
The template provided to C_DeriveKey may not specify values for any of these attributes that
differ from those held by the base key.

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

Filename: C:\magnus\labs\pkcs-11v2-11a2.doc Create Date: 03-06-10 22:40 Print Date: 03-06-10 22:40

Note that the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure’s pReturnedKeyMaterial field will be modified
by the C_DeriveKey call. In particular, the two key handle fields in the
CK_WTLS_KEY_MAT_OUT structure will be modified to hold handles to the newly-created
keys; in addition, the buffer pointed to by the CK_WTLS_KEY_MAT_OUT structure’s pIV
field will have the IV returned in them (if an IV is requested by the caller). Therefore, this field
must point to a buffer with sufficient space to hold any IV that will be returned.

This mechanism departs from the other key derivation mechanisms in Cryptoki in its returned
information. For most key-derivation mechanisms, C_DeriveKey returns a single key handle as a
result of a successful completion. However, since the
CKM_WTLS_CLIENT_KEY_AND_MAC_DERIVE mechanism returns all of its key handles
in the CK_WTLS_KEY_MAT_OUT structure pointed to by the
CK_WTLS_KEY_MAT_PARAMS structure specified as the mechanism parameter, the
parameter phKey passed to C_DeriveKey is unnecessary, and should be a NULL_PTR.

If a call to C_DeriveKey with this mechanism fails, then none of the two keys will be created.

REMARK: When comparing the existing TLS mechanisms in Cryptoki with these extensions to
support WTLS one could argue that there would be no need to have distinct handling of the client
and server side of the handshake. However, since in WTLS the server and client use different
sequence numbers, there could be instances (e.g. when WTLS is used to protect asynchronous
protocols) where sequence numbers on the client and server side differ, and hence this motivates
the introduced split.

	Introduction
	Terminology
	References

	New general data types
	New object types
	New data types for mechanisms

	New objects
	Modified and new certificate objects
	X.509 public key certificate objects
	X.509 attribute certificate objects
	WTLS public key certificate objects

	New mechanisms
	TLS mechanism parameters
	CK_TLS_PRF_PARAMS

	TLS mechanisms
	PRF (pseudo random function)

	WTLS mechanism parameters
	CK_WTLS_RANDOM_DATA
	CK_WTLS_MASTER_KEY_DERIVE_PARAMS
	CK_WTLS_PRF_PARAMS
	CK_WTLS_KEY_MAT_OUT
	CK_WTLS_KEY_MAT_PARAMS

	WTLS mechanisms
	Pre master secret key generation for RSA key exchange suite
	Master secret key derivation
	Master secret key derivation for Diffie-Hellman and Elliptic Curve Cryptography
	PRF (pseudo random function)
	Server Key and MAC derivation
	Client key and MAC derivation

