
ctions
cripts
this

it is so

cated
one or
f/then/
nd in

hor-
ying
m the

tes an
htfor-
ay:
How to Avoid Learning Expect
— or —

Automating Automating Interactive Programs

Don Libes
National Institute of Standards and Technology

Abstract:

Expect is a tool for automating interactive programs. Expect is
controlled by writing Tcl scripts, traditionally a manual process.
This paper describes Autoexpect – a tool that generates Expect
scripts automatically by watching actual interactions and then
writing the appropriate script. Using Autoexpect, it is possible to
create Expect scripts without writing any actual Expect statements
and without any knowledge of Expect.

Keywords: Autoexpect; Expect; interaction automation; Tcl

Introduction

Autoexpect is a tool that generates Expect scripts automatically by watching actual intera
and then writing the appropriate script. Using Autoexpect, it is possible to create Expect s
without writing any actual Expect statements and without any knowledge of Expect. While
may sound useful only to beginners, even Expect experts now turn to Autoexpect because
effective at what it does.

Background

Expect is a tool for automating interactive programs. It is possible to make very sophisti
Expect scripts. For example, different patterns can be expected simultaneously either from
many processes, with different actions in each case. Traditional control structures such as i
else, procedures, and recursion are available. A thorough description of Expect is fou
[Libes95].

Expect’s language facilities are provided by Tcl, a very traditional scripting language. (A t
ough description of Tcl is found in [Ouster].) Traditionally, users write Expect scripts by stud
the interaction to be automated and writing the corresponding Expect commands to perfor
interaction.

Autoexpect is a program which watches a user interacting with another program and crea
Expect script that reproduces the interactions. In its simplest use, Autoexpect is quite straig
ward. For example, consider an ftp session to ftp.uu.net. Normally, it would start out this w
1

only

efore.
fault,
of
pro-

plica-
itially
eract,
ther
ob
job or
repro-

dy-to-

, users
nts into
dless
% ftp ftp.uu.net

At this point, the user would then interact with ftp. To have Autoexpect automate this, the
difference would be to start the interaction with this line:

% autoexpect ftp ftp.uu.net

The remainder of the interaction would be the same – the user would interact with ftp as b
Upon exiting ftp, Autoexpect would also exit and present them with an Expect script, by de
called “script.exp”. This is graphically shown in the following figure. This mimics the style
the UNIX script command which similarly transparently watches a session and at the end
vides a log of the session to the user.

Autoexpect can automate multiple interactive applications as easily as a single interactive ap
tion. Autoexpect does this exactly the same way that a user does – through the shell. By in
spawning a shell (the default if Autoexpect is called with no arguments), the user can int
running multiple programs, switching attention from one to another using job control, and o
arbitrary interactions. Autoexpect will dutifully note everything and reproduce it faithfully. J
control is supported with no extra effort. For example, the user may press ^Z to suspend a
^C to generate an interrupt signal. Autoexpect will generate the appropriate statements to
duce these so that the interaction can be repeated.

Autoexpect Audience

Autoexpect can be used with zero knowledge of Expect. Autoexpect creates a complete rea
run program. Thus, Autoexpect is a good fit for people who know nothing about Expect.

Autoexpect is also useful for users who already have some Expect knowledge. For example
may want to generalize the resulting scripts, such as by changing repeated sets of stateme
loops. Even for Expect experts, Autoexpect is a convenient tool for automating the more min

interactive processes

generated
Expect
script

Figure 1: Autoexpect watches an interactive session
and generates an Expect script to reproduce it.
2

han to

tional
xpect
ogram

rmedi-
some-

0

again

go

f not
users
the

ly per-
fford

ert to

it nec-
is usu-

ever,
dems)
ait-

is sent.

ring its
for the
ble
parts of an interaction. It is much easier to cut/paste hunks of Autoexpect scripts together t
write them from scratch.

Autoexpect provides a similar value to beginning and intermediate Expect users. An addi
benefit is that Autoexpect always provides perfect patterns to match output. Budding E
users find it useful to run Autoexpect and examine the patterns it has chosen to match pr
output.

It does not take long to acquire a moderate competency of Expect. Nonetheless, both inte
ate and expert Expect users often find themselves in a common scenario: As they are typing
thing for the second or third time, they start thinking:

“Gee, this could be automated using Expect. But that could take 5 minutes to write and 1
minutes to debug and I can simply do the interaction itself in 2 minutes, so I can’t justify
stopping and automating it with Expect.”

This is sound reasoning – today. Of course, if the user does the same thing tomorrow and
and again, they soon start to lose time by not automating. Only by taking a step back (“Is this
interaction likely to be repeated in the future?”) can the correct choice be made – whether to
ahead and manually interact or to stop and invest the time in automating the interaction.

The shorter and simpler the interaction is, the more likely it is for users to fall into the trap o
considering the advantages of an Expect script. This may seem counterintuitive. In fact,
recognize the value of Expect for long interactions. The more lengthy, painful, or boring
interaction, the more quickly people turn to Expect. But even expert Expect users repeated
form interactions that are quick and brief, believing that they’re in a rush and that they can’t a
to stop and automate a problem that they don’t have to think about today.

In short, Autoexpect is worth knowing wherever a user is on the Expect spectrum – from exp
total newcomer.

Potential Pitfalls

It is important to understand that Autoexpect does not guarantee a working script because
essarily has to guess about certain things – and occasionally it guesses wrong. However, it
ally very easy to identify and fix these problems. The typical problems are:

Timing

By default, Autoexpect produces an interaction designed to run as quickly as possible. How
a surprisingly large number of programs (e.g., rn, ksh, zsh, telnet) and devices (e.g., mo
ignore keystrokes that arrive “too quickly” after prompts. If a generated script hangs while w
ing for a prompt at one spot, a brief pause may be necessary before the previous command

Fortunately, these spots are rare. For example, telnet ignores characters only after ente
escape sequence. Characters are ignored immediately after connecting to some modems
first time. A few programs exhibit this behavior all the time but typically have a switch to disa
it. For example, rn’s –T flag disables this behavior (which rn refers to astypeahead). The next
listing shows how a script must be written to deal with poorly-designed modems.
3

t will
is suffi-
under

tim-
ssible,
e a cor-
ercy of

xpect

see
oed, it

ginally
spawn tip modem
expect "Connected" ;# tip says it has allocated modem
sleep 0.1 ;# pause allows modem to enable UART
send "ATD1234567\r" ;# otherwise this would be ignored
expect "CONNECT" ;# and this would hang forever

Autoexpect supports a “conservative” mode. By enabling this mode, the generated scrip
pause briefly before sending each character. The pause is not noticeable to humans but
cient to pacify sensitive programs. This mode can be enabled all the time or interactively
control of the user.

It is possible to use precise character inter-arrival times to reproduce the original interaction
ings. However, this is not desired by most users who want scripts that interact as fast as po
not at the same speed as humans. Slowing down scripts to human speeds doesn’t guarante
rect result either since few programs make timing guarantees. Instead, users are at the m
the operating system scheduler.

Echoing

Many program echo characters. For example, if a user types “cat” to a shell, what Autoe
actually sees is:

user typed ‘c’
computer typed ‘c’,
user typed ‘a’,
computer typed ‘a’,
user typed ‘t’,
computer typed ‘t’,
user typed \r
computer typed \r\n

A literal rendering into Expect looks like this:

send "c"
expect "c"
send "a"
expect "a"
send "t"
expect "t"
send "\r"
expect "\r\n"

Without specific knowledge of the program, it is impossible to know if the user is waiting to
each character echoed before typing the next. If Autoexpect sees characters being ech
assumes that it can send them all as a group rather than interleaving them the way they ori
appeared. Thus, Autoexpect rewrites the fragment above as:

send "cat\r"
4

e user

rmally
in to

le until
ands

nly one

fter
this

com-
tput had

irable
can be

com-

uce a

line
e) and

ariety
d com-

this is
oex-

ore
ions in
e and
expect "cat\r\n"

This makes the script more pleasant to read. However, it could conceivably be incorrect if th
really had to wait to see each character echoed.

The additional \n at the end of the previous expect is added because the terminal driver no
echoes a return character with a return-linefeed sequence. This knowledge is not wired
Autoexpect. In this situation, Autoexpect merely consumes as many characters as possib
the user resumes typing. This makes scripts very “tight”. Rather than three expect comm
(one each for the echoed command, the command output, and the subsequent prompt), o
expect command is generated which matches everything.

As an aside, most human-written scripts would not bother with the “expect "cat\r"” either. A
all, Expect itself will just skip over extraneous output. Autoexpect could be made to make
optimization except that it raises the concern that the following output could resemble the
mand. In that case, the generated script would execute the next send before the desired ou
actually appeared.

Change

By default, Autoexpect records every character from the interaction in the script. This is des
because it gives the user the ability to make judgements about what is important and what
replaced with a pattern match.

On the other hand, the generated scripts are not going to be correct if interactions involve
mands whose output differs from run to run. For example, the “date” commandalwaysproduces
different output. So using the date command while running Autoexpect is a sure way to prod
script that will require editing in order for it to work.

Autoexpect supports a “prompt” mode. In this mode, Autoexpect will only look for the last
of program output – which is usually the prompt. This handles the date problem (see abov
most others.

Style? Not!

Autoexpect scripts will not be mistaken for humanly-generated scripts. Autoexpect uses a v
of features that were always intended for machine-generated scripts. For example, all sen
mands generated by Autoexpect use the “--” flag, as in:

send -- "more"

The “--” suppresses any possible interpretation of the next argument as a flag. Obviously,
redundant here. “more” is not a flag. However, by using the “--”, it is not necessary for Aut
pect to check whether or not “more” is a flag. Thus, for Autoexpect, it is simpler to use the m
verbose form. For users, it is simpler to use the less verbose form. There are many operat
Expect that follow this convention. Thus, Autoexpect scripts tend to look somewhat verbos
peculiar.
5

pos-
ning
model

itself,
is that

things
e

. For
output
users

oach
ripts

g by
part
to inte-

own
more

, but

s to
being
There are useful things to be gained by studying the output of Autoexpect. For example, it is
sible to see how any string must be quoted in order to use it in a Tcl script simply by run
Autoexpect and typing the strings in. But in general, Autoexpect should not be held up as a
of human programming style. That is not its goal.

Implementation Notes

Autoexpect is implemented as an Expect script. The Expect script is rather interesting in
however discussion of the techniques is beyond the scope of this paper. One relevent item
Autoexpect includes a hefty template, inserted at the beginning of each script describing
about the generated code – just in case the userdoeslook at the script, they should have a littl
introduction to Autoexpect’s surprising style.

Despite its implementation in pure Expect, the script easily keeps pace with interactive use
instance, large chunks of output are processed with a single read() and appended to an
buffer. Only when the user types a character are the script output buffers flushed. And since
type slowly (relatively speaking), this processing is not noticeable. This is similar to the appr
taken in Kibitz, and also in Tk in general in which events are handled entirely using Tcl sc
([Libes93]).

Todd Richmond (Legato, Inc.) demonstrated the feasibility of automating Expect scriptin
modifying Expect itself. Written in 1991, this experiment was never publicly released, in
merely because it was based on a much earlier version of Expect and no one had the time
grate it back into the current version.

In retrospect, a script-based Autoexpect provides much more flexibility and without loading d
the Expect core. Like Tcl and Tk, we should resist changes to the Expect core that can be
profitably accomplished using Tcl itself.

Work In Progress

The publicly-distributed Autoexpect produces straight-line code. This may sound simplistic
it is valid.

Work is currently in progress on “loop rolling” – the removal of statements by creating loop
produce the equivalent effect. This section describes several example problems that are
studied.

Creation of Counted Loops

Consider the following sequence. It has a repeating send/expect sequence:

send A
expect B
send A
expect B
send C
6

for

gh it
y” is

ultiple
pported.
This can be rewritten as:

for {set i 0} {$i<2} {incr i} {
send A
expect B

}
send C

This rewrite is not particularly valuable with only two repetitions, but it shows the possibility
handling more repetitions.

Creation of Output-dependent Loops

Consider the following sequence. It has a repeating expect/send sequence:

expect B
send A
expect B
send A
expect C

If this interaction is repeating until the appearance of C, this is better rewritten as:

expect {
B {

send A
}
C

}

If the interaction is not repeating until the appearance of C, this form can still be used althou
might be better not to use this form unless there are many repetitions (however “man
defined). The earlier counted-loop may be more meaningful, however.

Other Problems

These solutions must be generalized. For example, repeated statements may consist of m
send-expect sequences, not just one. Similarly, nested expect statements must also be su
For example, consider this interaction:

expect B
send C
expect D
send E
expect B
send C
expect D
send E
expect F
7

e other

ritten
t and
for one

r-driven
“roll-
tten in

xpect
erac-
from

t than

pub-
e Ray

ciate

t.tar.Z
send

are
o. 5,
This could be rewritten:

expect {
B {

send C
expect D
send E

}
F

}

User interactions occasionally require commands other than send and expect. So thes
statements must be handled as well.

Unfortunately, there are no optimal rewriting algorithms. Some script fragments can be rew
in several ways. Straight-line scripts easily solve the goal of reproduction. The more difficul
less definable goals are appropriateness to a particular task. And what makes good sense
task may not make much less sense for another. One approach to consider is having a use
generator with a graphical interface. The graphical interface would present various ways of
ing” the code. As the user would select and unselect them, the code would be shown rewri
the various forms.

Conclusion

For many scripts, Autoexpect saves substantial time over writing scripts by hand. Even E
experts will find it convenient to use Autoexpect to automate the more mindless parts of int
tions. It is much easier to cut/paste hunks of Autoexpect scripts together than to write them
scratch. And beginners may be able to get away with learning nothing more about Expec
how to call Autoexpect.

Acknowledgments and Availability

Thanks to Jeff Bowyer (Institute of Computer Science, Masaryk University, Brno, Czech Re
lic) and Henry Spencer for assistance in the development of Autoexpect. Thanks to Stev
and Jim Fowler for providing suggestions which improved this paper.

Expect and Autoexpect are freely available. However, the author and NIST would appre
credit if this software, documentation, ideas, or portions of them are used.

The scripts and programs described in this document may be ftp’d as pub/expect/expec
from ftp.cme.nist.gov. The software will be mailed to you if you send the mail message “
pub/expect/expect.tar.Z” (without quotes) to library@cme.nist.gov.

References

[Libes93] Libes, D., “Kibitz – Connecting Multiple Interactive Programs Together”, Softw
– Practice & Experience, John Wiley & Sons, West Sussex, England, Vol. 23, N
May 1993.
8

e

pect
NIX

n is
ctroni-
[Libes95] Libes, D., “Exploring Expect: A Tcl-Based Toolkit for Automating Interactiv
Programs”, O’Reilly and Associates, January 1995.

[Ouster] Ousterhout, J. K., “Tcl and the Tk Toolkit”, Addison-Wesley, 1994.

Author Biography

Don Libes is the creator of Expect as well as the author of its definitive text, Exploring Ex
(O’Reilly, 1995). Don has written over 80 computer science papers and articles plus two U
classics: Life With UNIX (Prentice Hall) and Obfuscated C and Other Mysteries (Wiley). Do
a computer scientist at the National Institute of Standards and Technology. Reach him ele
cally as libes@nist.gov.
9

	How to Avoid Learning Expect — or — Automating Automating Interactive Programs
	Don Libes
	National Institute of Standards and Technology
	Introduction
	Background
	Autoexpect Audience
	Potential Pitfalls
	Timing
	Echoing
	Change

	Style? Not!
	Implementation Notes
	Work In Progress
	Creation of Counted Loops
	Creation of Output-dependent Loops
	Other Problems

	Conclusion
	Acknowledgments and Availability
	References
	Author Biography

