
THE IMPLEMENTATION OF Z39.50 IN THE

NATIONAL LIBRARY OF CANADA'S AMICUS SYSTEM

J. C Zeeman

Software Kinetics Limited.

Stittsville, Ontario

zeeman@sofkin.ca

Abstract

AMICUS is the National Library's new integrated bib-

liographic system. The initial phase of development,

released in the second quarter of 1995, supports cata-

loguing and catalogue products, bibliographic search-

ing and customer information management. The

search module is implemented as a Z39.50 server that

accesses the two database engines integrated into

AMICUS: a relational database for bibliographic data

management and a full text database for keyword

searching and future full text access. An overview of

the AMICUS applications is followed by a brief intro-

duction to the modelling of AMICUS bibliographic

information in the relational database. A more detailed

description of the architecture of the AMICUS search

engine is given, describing components, internal mes-

saging, query analysis, optimization, semantic map-

ping and record conversion. A description of the three

AMICUS clients concludes the paper.

Background

The National Library of Canada is the national copy-

right deposit library in Canada. It serves as the pri-

mary cataloguing agency for Canadian published ma-

terials and as the national agency for assignment of

International Standard Bibliographic Numbers

(ISBNs) and International Standard Serial Numbers

(ISSNs). It makes catalogue records available to a

large number of Canadian libraries and exchanges na-

tional level records with both the Library of Congress

and the British Library to make their records available

as source records in Canada. The NLC maintains a

large union catalogue of Canadian holdings and hosts

the catalogues of several other federal agencies in Ot-

tawa (the �full-service libraries�), notably the cata-

logue of the Canada Institute for Scientific and Tech-

nical Information (CISTI) � the library of the Na-

tional Research Council of Canada. Because Canada

is a bilingual country, cataloguing is done in both

English and French, and the NLC offers its products

and services in both languages.

The NLC began preparations for the replacement of its

bibliographic system, DOBIS, in the late 1980s. A

fundamental conclusion arising from extensive investi-

gation was that no vendor could provide an off-the-

shelf product that would meet the complex require-

ments of the National Library in terms of support for

multiple languages, standard number assignment, and

multiple overlapping databases to support:

· Canadiana cataloguing,

· multiple sets of source records for both biblio-

graphic items and authorities,

· the Canadian union catalogue incorporating records

of highly variable quality, and

· the individual library catalogues of the National

Library and its full-service partners.

In 1992 a Canadian systems integrator, Groupe CGI,

was competitively awarded the contract to develop a

new information system for the National Library.

Software Kinetics Limited teamed with CGI to develop

the winning proposal and acted as subcontractor dur-

ing design and implementation of the system, with

particular involvement in the design and development

of the bibliographic search engine.

.

Amongst other requirements the RFC specified that the

system must:

· be based on a relational database system(RDBMS)

for management of bibliographic data;

· support keyword searching;

· meet stringent performance requirements for both

cataloguing and searching;

· support Z39.50 access; and

· support an initial database in excess of 10 million

records, rising to 20 million over the life of the

system.

The winning bid proposed the use of Digital Equip-

ment's VAX hardware platform with the VMS operat-

ing system, the Ingres RDBMS and Fulcrum's

Ful/Text engine for keyword access. Catalogue access

would be provided for a Windows graphical user inter-

face (GUI) client and for a host-based terminal client.

Analysis, design and as much of implementation as

possible would be done using CASE tools.

Work on the project plan began in July 1992. Devel-

opment was largely completed by April 1995 and the

system went into production on 12 June 1995.

AMICUS applications

Cataloguing

Cataloguing is implemented as a Microsoft Windows-

based client-server application developed using the

Ingres OpenRoad application development tool.

Cataloguing is intimately connected with searching:

the cataloguing functions are available to authorized

users as menu options from the search windows and

vice-versa. The main cataloguing window appears as

a MARC-based worksheet. Cataloguers can copy-

catalogue from the large set of source records; edit

previously created records either to correct errors or to

create new records for similar items; or add new rec-

ords.

The basic worksheet is a blank form on which the

cataloguer can create a MARC-tagged record. The

same form is used for all record types, including

authorities. The cataloguer can input tags, indicators

and codes directly, from memory, or can choose ap-

propriate values from labelled pop-ups. All input is

validated and updates the database immediately.

The cataloguing application matches cataloguer input

for controlled headings, including names, titles, subject

headings, control numbers, classifications and call

numbers with data elements existing in the database.

If the cataloguer's input is matched, the access point

table for the appropriate heading is automatically up-

dated. If the input is not matched, the cataloguer may

browse existing values in the database to find the ap-

propriate term. If a term is not found, the cataloguer

may choose to add the term to the database, in which

case he or she is presented with a worksheet on which

to enter the required control information. When this

information is supplied, the original workform is

automatically updated with the new data element.

Standard Number management

The National Library acts as the Canadian numbering

authority for International Standard Book Numbers

(ISBNs) and for International Standard Serial Num-

bers (ISSNs). To facilitate its management obliga-

tions, AMICUS incorporates applications that allow

National Library staff to manage the assignment of

number blocks to publishers and trace number assign-

ment to individual items.

Bibliographic Searching

Bibliographic searching is supported for users of the

AMICUS Windows-based client and for users of ter-

minals connected to the host VAX computer via telnet

or Datapac, the Canadian public X.25 network. For

these latter users, two host-based search interfaces

have been implemented: a command-based search

interface for experienced searchers, modelled on the

NISO Z39.58 Common Command Language; and a

form-based interface for patrons of the National Li-

brary and CISTI reading rooms and reference services.

All these interfaces use the NISO Z39.50 Information

Retrieval protocol to communicate with the biblio-

graphic search engine located on the VAX computer.

The bibliographic database is maintained as a fully

normalized Ingres relational database, with keyword

indexes to bibliographic records maintained in the

Ful/Text component of the system. The bibliographic

search engine manages concurrent searching of both

database systems transparently from the user�s point

of view.

The AMICUS system allows the user to search a

number of databases. At present the following data-

bases are available:

· Canadiana bibliographic records,

· Canadiana authority records,

· Library of Congress Cataloguing Distribution

Service bibliographic records,

· the catalogue of the National Library�s collections,

· the catalogue of the CISTI collections,

· the catalogue of the AMICUS Full-Service librar-

ies,

· the Canadian Union Catalogue.

In addition the user can search the combination of all

the bibliographic databases as �Any AMICUS data-

base�.

These databases are implemented as logical subsets of

the single AMICUS physical database. The same

physical database record can be associated with mul-

tiple logical databases and different, possibly conflict-

ing, data elements can be part of the record in different

databases.

 User/Supplier Information

AMICUS includes applications to manage information

pertaining to the users of National Library systems and

information and also to the suppliers of information to

the National Library, including publishers participat-

ing the cataloguing-in-publication, ISBN and ISSN

programs and libraries contributing to the Union

Catalogue.

Products

The existing set of National Library bibliographic

products, including Canadiana, the national bibliogra-

phy, will be produced from AMICUS. The system

includes applications to generate and manage these

products.

Billing

The National Library has an obligation to recover a

portion of its costs and most of the bibliographic serv-

ices provided by the National Library to other libraries

are therefore charged services. AMICUS includes

applications to monitor usage and generate billing in-

formation for the production of invoices.

Functions Not Implemented

The current release of AMICUS does not support the

following functions, among others:

· circulation

· acquisitions and serials control

· ILL messaging

· financial management

· publishing and ad-hoc products

These functions are currently provided by legacy sys-

tems or by the Dynix integrated library system ac-

quired by the National Library to serve as an interim

measure until the functions can be integrated into

AMICUS.

The Relational Database

AMICUS is fundamentally a relational database. This

has a significant impact on how searches are per-

formed in the system.

A greatly simplified version of a portion of the logical

data model used for AMICUS bibliographic informa-

tion is shown in Figure 1 below. Arrows in the dia-

gram point in the direction of the �many� aspect of a

one-to-many relationship. The diagram shows how

some of the entities in the system are related to each

other. To keep the diagram simple many entities, such

as subject headings, notes, physical descriptions, loca-

tion information, etc. have been omitted. It should be

noted how names, titles, etc. are related to biblio-

graphic items and to authorities and also how biblio-

graphic items are related to physical copies and to each

other. There is a separate access point entity for each

entity that has a many-to-many relation with the bib-

liographic item. Most of the relationships shown in the

diagram are optional in the sense that not every in-

stance of the entity will have a corresponding access

point: for instance, some bibliographic items will have

no name heading related to them.

Each of the entities has a number of attributes that

specify both the data elements that form the entity and

the entity�s relationships with other entities. The

principal attributes for the three major types of

AMICUS entities are shown below.

Principal attributes of a headings entity:

· heading number

· heading type (e.g. "personal name inverted order"

for a name, etc.)

· heading display text

· heading searchable sort form

· heading inverse sort form

· control information (e.g. language, verification

level, etc.)

The �heading searchable sort form� is a normalized

form of the heading to allow the headings in the table

to be sorted in lexical order, for production of scan

lists, and to enable a heading be matched against a

searcher�s input term without having to worry about

variations in capitalization and punctuation. This

normalized form is stored as a distinct data element,

and is in fact the principal element used for searching.

The exact nature of the normalization performed de-

pends on the heading type. Typically punctuation and

MARC subfield codes are removed, all text is con-

verted to upper case, non-ASCII characters are

mapped to ASCII equivalents, etc.

The �heading inverse sort form� is present to allow

backwards movement in a scan list. ISO standard

SQL does not support moving backwards in a table, so

the inverse form contains a simple binary inversion of

the searchable form, which has the effect that moving

forwards in the order of the inverse sort form actually

moves backwards in the order of the searchable sort

form.

Principal attributes of an access point entity:

· heading number (to provide access to and from

rows in the headings tables)

· bibliographic item number (to provide access to

and from rows in the items table)

· heading function (e.g. "added entry", etc.)

· control information

Bibliographic

item

Name

heading

Title

heading

Name access

point

Title access

point

Authority
Related

item

Copy

Control

number

Control no.

access point

Shelf list

Figure 1 - Portion of AMICUS Logical Data Model

The heading number and bibliographic item number

attributes allow instances of the bibliographic item

entity that are associated with a given heading to be

selected and vice versa. The heading function element

allows appropriate displays to be constructed on the

basis of the heading function and also allows selections

to be made on the basis of the type of relationship be-

tween the heading and the bibliographic item.

Principal attributes of the bibliographic item entity:

· bibliographic item number

· various coded elements (e.g. bibliographic level,

record type, country of publication, etc.)

· date of entry on file and of last transaction

· dates of publication

· control information.

It should be noted that the bibliographic item entity

contains none of the descriptive information or head-

ings normally considered to be part of the

�bibliographic� information.

This data model is used as the basis for the physical

design of the database. The database consists of a

series of tables, each corresponding to a single entity in

the logical model. The attributes of the entity become

the columns in the table and the data records become

rows. Any individual element in the database can

therefore be identified as the intersection of a row and

column in a particular table. The internationally stan-

dardized Structure Query Language (SQL) is used to

create the database and to access and manipulate all

the information in the database, and forms the only

valid means of accessing the data in the database.

An SQL statement to retrieve bibliographic records

related to a name would be as follows:

SELECT

itemNumber

FROM

nameHeading,

nameAccessPoint

WHERE

nameHeadingSearchForm IS LIKE

�JOHN SMITH %�

AND

nameHeading.nameHeadingNumber =

nameAccessPoint.nameHeading-

Number

This query selects values of the item-number column

in rows in the name-access-points table that are identi-

fied by having the same value in the name-heading-

number column as rows in the name-headings table

that are identified by having a value in the name-

heading-sort-form column beginning with the string

�JOHN SMITH �. It should be noted that it is not

necessary to access the bibliographic items table in

order to create a set of bibliographic item numbers.

An SQL statement like that shown above is readable

by a human operator. It represents, however, a very

simple case. When additional qualifiers are added,

such as heading types and heading functions, SQL

statements quickly become too long to be easily input

or even understood by a human operator. System us-

ers cannot be expected to routinely use SQL to query

the database and SQL is in fact normally generated by

an application that presents a more intuitive interface

to the user and shelters him or her from the physical

schema of the database and from the complexity of the

SQL syntax.

Although a large number of tables can theoretically be

joined in one query, experience has shown that per-

formance begins to degrade rapidly when an SQL Se-

lect statement requires accessing more than three ta-

bles. The AMICUS data model allows single-term

searches to be executed with only two-table accesses in

all but a very few instances; for these, three-table ac-

cesses are required. Four-table or more accesses are

never used in the AMICUS bibliographic search en-

gine.

The Full Text Engine

Keyword access to AMICUS bibliographic data is

provided by use of a separate database system � in-

dependent from the relational DBMS � the Ful/Text

DBMS. This system maintains keyword indexes of

all names, titles, subject headings and bibliographic

notes. Searching is performed via a proprietary Appli-

cation Programming Interface (API) that supports

Boolean operations, proximity searching, thesaurus

look-up and substitution, and relevance ranking of re-

sults. The last two features are not used in the current

AMICUS implementation, although they will offer

considerable power in later phases of development

when full text and other data is added to AMICUS.

A Ful/Text database is modelled as a set of documents

that are searchable via the engine. To allow specificity

of searching, a document can be divided into a number

of �zones� that can be searched individually or in

combination. For AMICUS records the following

zones have been defined, �author�, �title�, �subject�,

�publisher� and �notes�. Zones in a Ful/Text query

are specified using numeric zone identifiers.

Ful/Text does not require the documents themselves to

be stored as part of its database. Documents can be

external entities to which Ful/Text maintains search-

able indexes together with a catalogue of pointers back

to the documents themselves. AMICUS thus main-

tains no bibliographic data in the Ful/Text database.

Instead, the Ful/Text indexes refer to the bibliographic

records in the Ingres database.

The simplest Ful/Text query consists of a single word

to be found: e.g., �SMITH�. This will build a result

set of documents containing the word �SMITH� any-

where in the document. Searches can be restricted to

specific parts of documents by using a �zone opera-

tor�: to find a word used as part of an author�s name,

the search string would be �\C40s SMITH�, where

�\C� represents an escape sequence, �s� is the zone

operator and �40� the parameter indicating the zone

value to which the search is to be restricted. More

complex queries are created by adding Boolean,

proximity and other operators.

In addition to the zone operator, Ful/text supports a

number of other operators that act on multiple words.

The syntax of these operators requires a leading escape

(represented by �\C�), one or more optional parame-

ters, the operator identifier, the words the operator is

to be applied to and a final escape following the term

plus a closing brace (�\C}�) to indicate the limit of the

scope of the operator. The proximity operator, for

example is �\C<distance>p ... \C}�. A phrase is

searched as two adjacent words by using the proximity

operator with a distance parameter of zero, so the

Ful/Text query for a phrase used in an author�s name

is: �\C40s \C0p SMITH JOHN \C}�. Operators can

be nested and can occur in any order.

The basic search unit of Ful/Text is the word, and all

operators other than proximity apply to one or more

words. The only distance unit supported for proximity

is character distance. AMICUS therefore, also sup-

ports only the character unit for proximity distance.

The result of a Ful/Text search is a result set of docu-

ment ids maintained by the Ful/Text engine. The bib-

liographic search engine obtains these ids from a

Ful/Text search to use as either an interim result set or

as the final result set of the search as appropriate.

The Bibliographic Search Engine

The bibliographic search engine is at the heart of the

AMICUS bibliographic information management and

retrieval functions.

The principal requirements to be met by the AMICUS

search engine were as follows:

· to integrate search access of the relational and the

full text databases;

· to integrate with the cataloguing application being

developed using Ingres Windows-4GL;

· to support a very large database;

· to provide a Z39.50 version 2 target;

· to support up to 250 simultaneous users;

· to meet stringent performance requirements.

The design approach was to modularize searching as

much as possible into separate components, each dedi-

cated to a specific role in executing the Z39.50 query

and each operating independently and simultaneously.

The general architecture of the search engine is shown

in Figure 2 below (acronyms are explained below).

The search engine thus consists of a number of proc-

esses that together implement the search functionality

supported by AMICUS. Each of the processes in the

search engine operates independently of all others, and

uses asynchronous messaging to communicate with the

other processes as needed. Each process maintains its

own message queue and deals with each message in the

queue in turn. While the message queue is currently

implemented using the VMS mailbox utility that pro-

vides efficient low-level support for interprocess com-

munication, message handling is sufficiently isolated

that a different messaging mechanism, such as RPC,

could be implemented without major disruption should

the engine be transferred to a different platform.

Each of the processes is dedicated to a specific task in

responding to a Z39.50 protocol message.

EIT The External IR Target implements the

Z39.50 protocol machine for non-AMICUS

users. It is based on the IR Toolkit software

developed by Software Kinetics Ltd. for the

National Library of Canada. It implements

version 2 of the protocol as specified in the

1992 standard. All services of version 2 are

currently supported with the exception of Ac-

cessControl, DeleteResultSet, and Resour-

ceReport.

The EIT polls for incoming Z39.50 Applica-

tion Protocol Data Units (APDUs). When an

InitRequest APDU is received, it decodes the

APDU and issues a message to the MISR pro-

cess (see below) requesting validation of the

user�s authentication information and the sup-

ply of session information such as the various

resource limits to apply to searches and the set

of databases the user is allowed to search.

The protocol machine uses the response from

the MISR to formulate the InitResponse

APDU.

APM The AMICUS Protocol Manager process im-

plements a proprietary protocol developed for

use between AMICUS clients and the biblio-

graphic search engine. This protocol acts as a

wrapper around Z39.50 protocol messages

and other messages used by AMICUS clients.

AMICUS clients offer additional search serv-

ices not available to external Z39.50 clients,

such as saving queries and result sets. These

services were not available in the 1992 text of

Z39.50 and what became the 1995 specifica-

tions were not sufficiently stable when the

AMICUS design was finalized in early 1993

to allow them to be implemented. Therefore, a

proprietary protocol has been used.

EIT

MISR

MIR

PIQ1

PIQn

MIRE1

MIREn

SQL

Ful/Text

Z39.50

Client

AMICUS

Client

APM

Figure 2: Bibliographic Search Engine Architecture

The AMICUS protocol is also used by

AMICUS clients to request that a MARC rec-

ord image be placed in an Ingres table for sub-

sequent use by the client. The AMICUS pro-

tocol is furthermore designed to permit the

transfer of Z39.50 messages to and from a

remote Z39.50 host via a client gateway on the

AMICUS server. None of these services are

available to non-AMICUS Z39.50 clients.

The APM includes the same Z39.50 protocol

machine as the EIT and generally behaves in

the same way. Principal differences lie in the

internal naming of result sets and in the crea-

tion of records. AMICUS clients do not use

Z39.50 to obtain records for display, but in-

stead manage their own displays directly from

the Ingres database.

MISR The Manage IR Security and Resources proc-

ess finds the message in its queue and executes

the appropriate SQL statements to obtain

authorization and session information. If the

user has supplied a valid user id and password

the MISR obtains the necessary session infor-

mation, such as resource limits that apply to

the user and databases the user is allowed to

search, and makes it available to other proc-

esses for use as required.

MIR Query analysis, optimization and execution is

managed by the Manage Information Re-

trieval process. There is a single MIR process

that continuously loops through all outstand-

ing searches, analyzing queries and dealing

with messages from other processes as neces-

sary.

The query analyzer receives a decoded query

from the protocol engine (APM or EIT) and

builds a query execution tree based on the

logic of the query. Figure 3 below illustrates

the query tree that would be built from the

common command language query �find TW

cats or dogs and SU pets or animals and DA >

1993� (find records with title word �cats� or

�dogs� and with subject heading �pets� or

�animals� and with publication date greater

than 1993). As illustrated in Figure 3 below,

each term in the query becomes a leaf of the

tree and leaves are joined into branches with

the operators in the query. Execution of the

query begins with the bottom left-hand leaf

and proceeds upwards and to the right.

Branches of the tree may be optimized to

make most effective use of the database en-

gines' native query optimizers while minimiz-

TW = cats TW = dogs SU = pets SU =

animals

DA > 1993

OR

AND

AND

OR

Figure 3 - Query Execution Tree

ing query execution time. In this query, the ti-

tle-word terms are passed to the Ful/Text en-

gine as a single subquery, and the subject-

heading terms are passed to the Ingres engine

as a single subquery using the SQL �union�

operator. The result of each search is an In-

gres table holding the intermediate result.

These two subquery results are next joined

into a single intermediate result and, since date

of publication is not indexed in the Ingres da-

tabase, the intermediate result will finally be

joined with the date attribute in the biblio-

graphic items table to form the final result set.

Query execution is implemented as a finite

state machine that makes recursive passes

through the query tree, optimizing where pos-

sible, dispatching subqueries to a database in-

terface process (a PIQ, see below), interpret-

ing results and changing the state of the vari-

ous nodes as appropriate. Each query node

may be in any one of the following states:

�incomplete�, �wait for dependent�, �wait for

PIQ�, �wait for result�, �complete�. The

query is reprocessed until the top-most

(�root�) node reaches the �complete� state at

which point the query has been fully processed

and the result set (if any) has been built.

When the MIR receives a message from a PIQ

that a subquery has been processed, it finds

the node associated with that PIQ and changes

the state of the node as appropriate. It then re-

analyzes the query, changing the state of other

nodes as necessary. For instance, if the de-

pendents of a query node have all reached the

�complete� state, the node can then be

changed from �wait for dependent� to �wait

for PIQ�, at which point the subquery speci-

fied by the node will be executed.

MIRE The Manage IR External process manages the

creation of MARC records for return to an

external Z39.50 user. There are multiple

MIRE processes active simultaneously; the

number is specified at search engine startup

time, allowing system managers to tune this

number for optimal use of system resources

and performance. If the SearchRequest con-

tains a �piggy-backed� present, the MIR will

ask the next idle MIRE to create one record

required for the response. If multiple records

have been requested, multiple requests will be

passed to one or more MIRE processes. If the

EIT receives a PresentRequest it will repeat-

edly ask the next idle MIRE to create the next

record required for the response. To create

the record the MIRE executes a database pro-

cedure that extracts the required data from the

various database tables and then assembles

this data into the MARC exchange format. At

present only the CanMARC format is sup-

ported for output.

PIQ All search interaction with the two database

engines is handled by a Process IR Query

process. As with the MIREs, there are multi-

ple PIQ processes active simultaneously, with

their use managed by the MIR. The number

of simultaneous PIQs is specified when the

search engine is started. Each PIQ can inter-

act with both the RDBMS and the full text

engine. Since execution of SQL statements by

the RDBMS is synchronous (i.e. the process

blocks until the query completes), using mul-

tiple PIQs allows multiple subqueries to be

executed simultaneously.

The PIQ executes the database interaction and

builds either an intermediate or a final result

set. These sets are placed in RDBMS tables.

Each PIQ processes a single subquery, which

may be an SQL select statement to evaluate a

single term, an optimized query that contains

several terms, an SQL statement to perform a

Boolean operation on the results of previous

terms, or a full-text query.

Full-text queries are always optimized as

much as possible. The result of a full-text

query is a list of matching bibliographic item

keys, which is copied into an Ingres table as

the final or an intermediate result set.

Semantics Tables

The query analyzer has no built-in knowledge of the

semantics of the AMICUS databases or of an

AMICUS search. All the semantic knowledge relating

to the physical data model of Ingres and the Ful/Text

database structure resides in separately maintained

semantics tables used by the query analyzer to gener-

ate subqueries for execution by a PIQ. There is one

semantics table for each record type in the system that

requires different semantic processing. In AMICUS at

present there are separate semantics tables for author-

ity records and for bibliographic items. Adding search

support for other record types may involve as little

work as defining a new semantics table.

The query analyzer has a only basic understanding of

how to construct an SQL statement that involves a

two- or three-table join and how to construct a

Ful/Text query. It also incorporates a growing set of

deterministic optimization cases based on comparison

of tables names and other data from the semantics ta-

bles.

The semantics tables are held as Ingres tables for ease

of maintenance, but for performance reasons are stored

in memory while the search engine is running. This

permits the search semantics to be altered in the data-

base tables as required, without interfering with the

operation of the search engine. Alterations will take

effect the next time the engine is restarted (normally

daily).

The semantics table for a database lists every Z39.50

Bib-1 attribute combination supported for that data-

base, and, for each, specifies the semantics of the

subquery that corresponds to the attribute combina-

tion. Some of these combinations specify full-text

searches, others specify SQL searches of the Ingres

database. For every term in a query the attribute

combination is looked up in the table. If a row is not

found, an "unsupported attribute combination" diag-

nostic is returned and the search is failed. If the row is

found the query elements are placed in a memory

structure used by the MIR to construct a subquery that

is passed to a PIQ for execution.

Each row in a semantics table contains the following

information:

· the attribute combination,

· parameters used in generating the searchable form

of the term,

· a flag to indicate whether the attributes specify an

indexed or unindexed database element, and either

· a skeleton Ful/Text query or

· the components of the SQL query.

The elements of the last item are used to create an

SQL select statement for the subquery and may be

used to optimize several subqueries into a single more

complex select.

For example, the attribute combination:

use = 4 (title),

position = 1 (first-in-field),

relation = 3 (equality),

structure = 1 (phrase),

truncation = 100 (do not truncate),

completeness = 1 (incomplete subfield)

retrieves the following parameters from the semantics

table:

primary search table = titleHeading

first join table = titleAccessPoint

second join table = null

key of primary table = titleHeadingNumber

join table key for first join = titleHeading-

Number

join table key for second join = null

element name from which to select record id =

bibliographicItemNumber

element name in primary table in which to

match term = titleHeadingSearchForm

SQL operator = LIKE

variable string containing the search term =

�%s %%�

string constant to add to the SQL statement =

null

These parameters lead to the creation of the following

SQL statement (assuming the user�s search term is

�Rape of the lock�:

SELECT bibliographicItemNumber

FROM titleHeading, titleAccessPoint

WHERE

titleHeading.titleHeadingNumber =

titleAccessPoint.titleHeadingNumber

AND

titleHeading.titleHeadingSearchForm

IS LIKE �RAPE OF THE LOCK %�

Note that the C-language �sprintf()� function is used

to place the term into the SQL statement. This func-

tion replaces a �%s� in the input string with a variable

(in this case the search term). To use �%� as a literal

character in the output string requires that it be re-

peated in the input string, thus � �%s %%� �. The

single quotes are literal characters in the output string

that are required by the SQL syntax.

Most of the data in a bibliographic record (in particu-

lar, almost all coded data elements in a MARC record)

can be searched using the search engine.. To support

searching these coded elements, some 240 local use

attributes have been added to the basic Bib-1 attribute

set. Not all these elements are indexed, however. If

these unindexed elements were searched on their own,

complete Ingres table reads would be required to sat-

isfy the query, a process which would take hours, if

not days, in a database of 20 million bibliographic rec-

ords. The search engine therefore enforces rules as to

the combination of indexed and unindexed terms that

may be searched. Any unindexed term may be

searched in combination with a result set, with an in-

dexed term or with an intermediate result. Otherwise,

if query optimization would result in an unindexed

term on its own (or a combination of unindexed terms)

forming an SQL statement, a user-authentication pa-

rameter obtained during initialization is examined to

determine whether the user has the privilege to initiate

searches of unindexed terms (very few users will have

such permission). If the user does not have permis-

sion, the entire search is failed and an appropriate di-

agnostic is returned.

To allow users to search for multiple values of the

same unindexed element (e.g. language English or

French or German) in a single query without having to

input a query with complex nesting of parentheses and

repetition of terms, the search engine allows lists of

such values to be sent as a single term, which the en-

gine processes as an SQL "... IN (value,...,value)"

statement, e.g., code-language = eng, fre, ger. Queries

of this form are handled very efficiently by the

RDBMS.

AMICUS Clients

Three separate user interfaces have been created for

the AMICUS system. One is a Microsoft Windows

interface intended for use by cataloguing and other

technical services staff; one, Access AMICUS, is a

VMS host-based interface using a command-driven

paradigm, intended for use by subscribers to the

NLC�s MARC record distribution, union catalogue

and ILL services; and the last, ISAAC, developed for

CISTI, is also a VMS host-based interface but using a

menu and form-driven paradigm, and intended for use

by patrons of the NLC�s and CISTI�s reading rooms

and reference services. There are French and English

language versions of each of these interfaces, and us-

ers can switch freely between the two languages.

The Windows interface provides access to all

AMICUS functionality, including bibliographic

searching and cataloguing. Access AMICUS supports

bibliographic searching, ILL requesting and notifica-

tion of holdings. ISAAC supports bibliographic

searching and the creation of requests for the NLC�s

ILL system and CISTI�s document delivery system.

All the clients support complex searching using nested

Boolean operators, keyword searching and proximity

searching. They all support the use of at least the

previous result set as an operator in the query. They

all support index scanning and generation of searches

from index terms and offer multiple record display

formats that are user selectable.

Each of these interfaces uses the same Z39.50 origin

software, based on the IR Toolkit developed by Soft-

ware Kinetics Ltd. The use of the Z39.50 protocol is,

however, invisible to users of the AMICUS interfaces.

The interfaces initialize a Z39.50 session when they

are started. Subsequently they use the Search service

only. The Z39.50 client portion of each interface re-

ceives a Z39.58 Common Command Language (CCL)

query string from the user interface, together with

other search parameters (such as the name of the data-

base to search), parses the query into a Z39.50 type 1

or 101 query, and generates a SearchRequest message

which is wrapped inside an AMICUS Protocol mes-

sage and sent to the search engine. The CCL query

string may be either input directly by the user or gen-

erated by the user interface in response to mouse clicks

or form filling.

None of the clients currently request records to be re-

turned from the Z39.50 search. Instead they access

the result set in the Ingres database directly to obtain

display information, using the proprietary IngresNet

protocol. If a search results in a single record, it is

displayed to the user in the session default display

format. Numerous predetermined display formats are

currently supported by AMICUS, including brief and

full labelled formatted displays for specific uses such

as interlibrary loan or reference services, and two

CanMARC displays, one oriented toward descriptive

cataloguers and one for subject cataloguers. If a

search results in multiple records, a tabular display of

result set records is presented, from which the user can

select one or more records for a fuller display.

Similarly, index scanning and result set sorting are

implemented through IngresNet access to the Ingres

database. When the architectural model for the client

was prepared, the 1995 Z39.50 Scan and Sort services

were insufficiently stable to permit their use in the

AMICUS clients. Future versions of the client may

implement the Scan and Sort services.

Each of the clients contains a query parser that gener-

ates Z39.50 queries from user input. The same parser

is implemented on all clients. This parser accepts a

Z39.58 Common Command Language (CCL) string as

input and generates as output a Z39.50 version 2

query of type 1 (or 101 if the query contains a prox-

imity operator). The parser uses a table to control the

mapping of CCL index names to Z39.50 attribute

combinations. This table specifies an attribute value

combination for every index name recognized by the

parser. Thus, for the Title Keyword index, (�TW�)

the table specifies the following attribute values: Use

= 4, Position = 3, Completeness = 1. Values of other

attributes are shown as 0, meaning that the parser

should calculate correct values to send on the basis of

the query term. If the term contains multiple words,

the parser will set the Structure attribute to 1, for

�phrase�; if the term contains a final �?�, the parser

will set the Truncation attribute to 1 for �right trun-

cated�, etc. A calculation is not specified for every

case; if there is no calculation, the query omits the at-

tribute type completely, allowing the server to use its

default value for that attribute. If the input term con-

tains no explicit truncation mark, for instance, no trun-

cation attribute will be contained in the Z39.50 query

for that term and the default value of the server will be

used. For the AMICUS server the default value for

truncation is 100, �do not truncate�.

The index table is maintained as an Ingres table, from

which configuration files are extracted for use by the

clients. For speed at startup, the index table is main-

tained as two files that are read when the user interface

is initialized. The clients implement a paradigm of

indexes and limiters, with �indexes� referring to those

searchable elements for which physical indexes are

maintained, and �limiters� referring to those elements

that are not indexed in the database and are intended to

be used only to modify sets created by a search of a

primary index (although a few users have permission

to search directly on limiters, as described above).

There is an index name corresponding to almost every

distinct element in the AMICUS data model.

Query strings of almost unlimited complexity can be

built through the use of parentheses in the CCL query

string, with the limitation that a single query may not

exceed 1000 characters and a single term may not ex-

ceed 200 characters. Multiple index names can be

applied to a single term (e.g. �tw sw nuclear physics�),

which the parser interprets as a Boolean OR of the

single term applied to the each of the index names (

�tw nuclear physics OR sw nuclear physics�).

Proximity searching is fully supported by the clients,

using the CCL �within� operator for ordered proximity

and the CCL �near� operator for unordered proximity.

Searchers may use the client�s default value for dis-

tance, may change the default for a session or may

supply a specific value on a case-by-case basis. As

mentioned earlier, only the �character� unit is sup-

ported for distance.

The Windows client is designed to support searching

of both the AMICUS databases and databases at re-

mote servers via a Z39.50 client gateway on the

AMICUS server. To support this, the user can

choose which system to connect to, and which data-

base at the system to search. The index tables support

this model by maintaining different attribute combina-

tions for each index name depending on the system and

the database being searched. Only searching of the

AMICUS databases will be supported for the initial

release of the AMICUS clients, however.

The Windows Interface

The Windows interface permits the searcher to con-

struct queries either by typing in a CCL query string

directly or by choosing the various elements of the

query from selection lists. It is expected that frequent

users of the interface will normally prefer to enter their

queries directly, while occasional users will prefer the

point-and-click approach. When the searcher uses a

selection list to choose an index that requires system-

controlled term values, such as a language code or

physical description code, a list of the allowed values

is presented to the searcher. Selecting a value inserts

the index name and value in the query. The searcher

can type in operator names directly or click on buttons

to select them.

Every AMICUS user has a default database name to

which all searches are applied. The searcher can select

from the list of AMICUS databases a different data-

base to search. This selection applies for the remainder

of the session, or until changed again.

To simplify the input of complex repeated queries, a

user can save all or portions of queries for subsequent

insertion into a query string. The searcher selects from

a list of these �Search qualifiers� and the user inter-

face includes functions that allow a user to manage his

or her personal list.

The interface maintains a log of searches that have

been performed in the current session. The searcher

can examine the log; display records from any previ-

ous search; select a previous result set to use as an

operand in a subsequent search. The 25 most recent

queries are maintained by the log, and the searcher can

delete individual queries from the log as desired.

The Access AMICUS Interface

The Access AMICUS interface presents a host-based

command-oriented search interface to the National

Library�s Search Service subscribers across Canada.

This interface is deliberately designed to resemble the

DOBIS search interface, to minimize the amount of

retraining required by the 500-plus Search Service

users. The query language is uses the CCL Find and

Scan commands, with the exception that single-

character commands, �F� for �find� and �S� for

�scan�, are required, as opposed to the full name and

three-character acronyms specified by CCL.

Users of Access AMICUS enter CCL commands to

scan indexes and search the AMICUS databases. The

interface also allows users to download CanMARC

records for cataloguing purposes, notify the National

Library of local holdings and make ILL requests for

items in the National Library�s and CISTI�s collec-

tions.

The interface does not support a number of the fea-

tures of the Windows interface: search logs are not

maintained; search qualifiers are not available; pop-up

lists of term values are limited to only the most com-

monly used indexes and have limited sets of values.

The interface is not currently designed to allow

searching of systems other than AMICUS.

The ISAAC Interface

The ISAAC interface is designed for use by untrained

end-users of the CISTI and National Library collec-

tions. The interface is implemented as a set of menus

that lead to search templates, with each template pre-

senting the user an input form that, when completed,

specifies a search to be performed. There are tem-

plates for performing a �quick search� (name, title

and/or distinguishing number such as ISBN or

AMICUS number); for searching for monographs,

serials, and a number of special types of material such

as technical reports, theses, newspapers, audio-visual

material, music; and for doing subject searching. Each

of these templates uses a dialogue tailored for the spe-

cific type of material identified by the template. The

interface uses the template and data supplied by the

searcher to construct a CCL query string which is

passed to the client query parser for generation of a

Z39.50 SearchRequest.

When records have been found the user can initiate a

dialogue to narrow the search, broaden the search or to

�find more like this�.

ISAAC offers access to only the National Library col-

lections, CISTI collections and Union Catalogue data-

bases. Only a limited subset of AMICUS indexes is

used.

Since the National Library and CISTI are both closed-

stack libraries, ISAAC allows the user to issue a re-

quest for delivery of an item to a reading room or (for

CISTI staff) to an office; it allows the user to issue

ILL and document delivery requests to CISTI or the

National Library.

Conclusion

This paper has described how Z39.50 provides the

core functionality of the AMICUS bibliographic

search engine. The server has been designed to pro-

vide maximum efficiency in searching and offers sub-

second responses in building result sets for common

queries. It is designed to be highly flexible and can be

adapted to different data models with relative ease.

The underlying database technology can be changed

without requiring major alterations to the engine, and

the system can be ported to different hard-

ware/software platforms with little difficulty.

Z39.50 is used to provide transparent search access to

heterogeneous database systems and also to provide

access to the National Library of Canada�s core in-

formation to the widest possible range of clients.

AMICUS demonstrates that Z39.50 can successfully

be used to provide a public search interface to SQL

databases.

One positive effect of the client-server technology used

has been the feasibility of creating multiple user inter-

faces for different purposes, as shown by the three in-

terfaces created for AMICUS.

AMICUS is a significant new bibliographic system,

designed from the ground up to meet the needs of two

large research institutions, one of which has the addi-

tional requirements of a national library.

