
Building A Z39.50 Client
Ralph LeVan

OCLC Online Computer Library Center Inc.

6565 Frantz Rd.

Dublin, OH 43017

email: rrl@oclc.org

Abstract
The core functionality for a Z39.50 Client Applica-
tion is described. This core functionality consists of
Connection, Initialization, Search, Present and Dis-
connection. A Z39.50 Client API is described which
provides the core functionality. Also included are
brief descriptions of TCP/IP, the abstract syntax
ASN.1, BER records and USMARC records. Code
for implementing the Client API, TCP/IP access, en-
coding/decoding BER records and decoding
USMARC records is freely available.

1. Introduction
Z39.50, the ANSI/NISO Information Retrieval Pro-
tocol, is perceived by potential implementors as being
difficult to implement. I will demonstrate that this is
not so by developing a Z39.50 client during the
course of this article. The code produced, while
copyrighted, is freely available for anyone to use.

In this article, I will stick to the “core” functionality
of Z39.50; features that are widely implemented and
have the greatest chance of interoperability. You will
learn how to initialize a Z39.50 session, how to do
searches using simple Boolean operators (type-1
queries) and how to retrieve USMARC and simple
text (SUTRS) records. To do this, I will show you
how to build a Z39.50 Client Application Program
Interface (API) which will allow you to embed
Z39.50 client functionality in your applications. I
will show you how to build Z39.50 messages and
how to send and receive them using standard TCP/IP
socket protocols. I will also give you a simple tool
for displaying USMARC records. Finally, I will
wrap all these tools up in a simple Z39.50 client
(zdemo).

This article is intended primarily for implementors.
It is sprinkled liberally with C code fragments. The
complete source code is available at OCLC’s anony-

mous FTP site. (See the section on Source Code
Availability at the end of the article.)

2. The Z39.50 Standard

2.1 Who Developed It?
The Z39.50 standard was initially developed in the
library community. It was built to satisfy a require-
ment to search and retrieve USMARC-formatted
bibliographic records. Those roots still show today:
the core attribute set for Z39.50 (which includes the
list of types of things that can be searched for) is
named bib-1 and the most widely interoperable record
syntax is still USMARC. However, the standard has
grown considerably beyond the original modest re-
quirements. Today there are organizations using
Z39.50 to deliver full-text documents based on natu-
ral language queries. Other organizations support
complex chemical structure searching and display.

2.2 Who Maintains It?
The Z39.50 standard started life as the product of a
standards committee. The committee considered its
work complete with the successful balloting of the
original 1988 version of the standard. At that point a
Maintenance Agency was appointed by the National
Information Standards Organization (NISO) and the
original committee was disbanded. Members of the
Z39.50 committee met occasionally to discuss possi-
ble implementation of the standard and in 1990 the
Z39.50 Implementors Group (ZIG) was founded.
Today, changes to the standard are developed jointly
by the ZIG and the Maintenance Agency. Because
the standard is being enhanced by real implementors,
the standard now reflects their real-world require-
ments.

2.3 Where Can I Get It?
The Maintenance Agency for the Z39.50 standard is
the Library of Congress. It maintains an anonymous
FTP server at ftp.loc.gov where many documents
related to Z39.50 are available. Among those docu-
ments is the latest version of the standard. Paper
copies of the standard can be purchased directly from
NISO. Contact them by phone at (800) 282-NISO.

3. Z39.50 Overview
Unlike other Internet protocols such as HTTP or
WAIS, Z39.50 is a session oriented protocol. That
means that a connection to a Z39.50 server is made
and a persistent session is started. The connection
with the server is not closed until the session is com-
pleted. Session oriented applications are often called
“stateful” applications and transaction oriented appli-
cations are often called “stateless”.

A session oriented protocol is considerably more ef-
ficient than a transaction oriented protocol that re-
quires that the connection with the server be reestab-
lished with every message. Session orientation also
allows clients iterative refinement of search result
sets and multiple record retrieval requests against the
same result set. It also allows the client and server to
negotiate behavior, such as the kinds of services it
needs, and to have that negotiation persist for the du-
ration of the session. In HTTP, much of the message
traffic from the client contains descriptions of pre-
ferred server behavior that needs to be repeated with
every transaction.

In its simplest form, Z39.50 is a synchronous proto-
col. That is, the client sends a message to the server
and waits for the server to respond. The client that is
developed in this article (zdemo) will use this form.
It is possible to negotiate much more complex behav-
ior. The client can have multiple outstanding re-
quests to the Z39.50 server and the Z39.50 server
can interrupt those client requests with requests of its
own that must be responded to before the original
client request can be completed. The Client API will
not negotiate for that functionality, but it can be
readily extended to provide it.

4. Z39.50 Messages
There are two logical parts to the definition of
Z39.50 messages (called Protocol Data Units or

PDU’s in the standard). First is the definition of the
content of the messages and second is the encoding
rules for converting the logical content into a physical
message that can be transmitted. In Z39.50, the mes-
sages are defined in the Abstract Syntax Notation 1
(ASN.1) grammar and the encoding rules are defined
by the Basic Encoding Rules (BER).

4.1 Defining The Message: Abstract Syntax
Notation 1
ASN.1 is an ISO standard (ISO 8824) for defining
the content of messages. It is used to define all the
ISO protocol messages and is used in the Internet
world to define Simple Network Management Proto-
col (SNMP) messages. ASN.1 is a very rich lan-
guage. What follows is a simple description of
ASN.1; seek a higher authority for a more definitive
description.

ASN.1 defines records as being composed of combi-
nations of atomic and constructed data types. The
atomic data types are things like INTEGER and
BITSTRING. You will recognize them in ASN.1,
because they are usually in capital letters. Con-
structed data types are things like Queries and Op-
tions. They always begin with an initial capital letter.

All data types have a number (usually called a tag)
assigned to them. The tags for atomic data types are
assigned by the BER encoding rules. The tags for
constructed data types are assigned in the ASN.1
where they are defined and are specified inside square
brackets.

Because tags are simply numbers, there is the pos-
sibility the two applications will choose the same tags
to mean the different things. One possible way to
avoid this would be to reserve ranges of tags for
ASN.1 data types. Instead, ASN.1 defines four types
of tags: UNIVERSAL, APPLICATION, CONTEXT
and PRIVATE. UNIVERSAL tags are expected to be
recognized wherever they are used in a record. (i.e.,
a tag of [UNIVERSAL 8] is always an INTEGER.)
CONTEXT tags can have different meanings in dif-
ferent contexts. A tag of [CONTEXT 1] might be a
query in one part of a record and a count in another.
The meaning of the tag is defined by its context.

For example, the ASN.1 definition ReferenceId ::=
[2] IMPLICIT OCTETSTRING defines a constructed
data type named ReferenceId, whose tag is 2. The

type of tag was not specified and defaults to
CONTEXT. The ReferenceId is composed of the
atomic data type OCTETSTRING. The IMPLICIT in
that statement says that the tag for the
OCTETSTRING must not be included inside the Ref-
erenceId.

If IMPLICIT had been omitted from the above defi-
nition (i.e., ReferenceId ::= [2] OCTETSTRING)
then both the context tag ([2]) and the UNIVERSAL
tag ([UNIVERSAL 4]) would have been encoded in
the message. Thus, the use of the IMPLICIT key-
word in the definition allows for smaller encodings.

ASN.1 includes constructs for grouping data types
together. These constructs include CHOICE (pick
one of the things that follows), SEQUENCE (the
things that follow must be provided in the order
specified) and SET (the things that follow can be
provided in any order.)

4.1.1 EXTERNAL’s, OBJECT ID’s and ISO
Registration
ASN.1 allows the developer to specify that a con-
structed datatype being referenced is not defined in
the current body of the ASN.1. The keyword for
specifying this is EXTERNAL. EXTERNALs are
used throughout the Z39.50 standard. They are the
mechanism used to provide extensibility and flexibil-
ity in the standard. Saying that a field is defined ex-
ternally to the standard allows a company to use pri-
vate data in that field that only their clients and serv-
ers will understand. (This is an interoperability
problem for other clients and servers, but there are
often good reasons for wanting to do this.) It also
allows the ZIG to agree on extensions to the standard
simply by agreeing on the contents of fields defined
EXTERNAL to the standard.

EXTERNALs provide flexibility by allowing Object
Identifiers to be used to make selection from a broad
range of possible choices. For example, RecordSyn-
tax is defined as EXTERNAL in Z39.50, which means
that any of a number of possible choices (e.g.,
USMARC, SUTRS, GRS) can be specified.

EXTERNAL objects, when they arrive in a message,
have an OBJECT IDENTIFIER. The OBJECT
IDENTIFIER provides an identification number that
allows the message decoder to understand the con-
tents of the object. OBJECT IDENTIFIERS are rep-

resented symbolically as strings of numbers, sepa-
rated by periods (‘.’). 1.2.840.10003 is the OBJECT
IDENTIFIER for the Z39.50 standard itself.

Object Identifiers are controlled by the International
Standards Organization (ISO). Object Identifiers
would have no value as identifiers if they were not
unique. Normally, ISO issues Object Identifiers, but
once ISO issued an Object Identifier for Z39.50, the
Z39.50 Maintenance Agency was authorized to issue
subordinate Object Identifiers for Z39.50 objects.
Thus, all Z39.50 Object Identifiers begin with the
Object Identifier for the standard itself.

4.2 Encoding the Message: The Basic Encod-
ing Rules
Z39.50 messages are encoded according to the Basic
Encoding Rules (BER), ISO 8825. BER defines rec-
ords as being composed of a triple of values: a tag, a
length and a value (TLV). The tag portion of the
triple includes bits that specify the type of tag
(UNIVERSAL or CONTEXT) and whether the value
portion of the tag is primitive data or is composed of
more TLV triples. This recursive definition of a rec-
ord allows for the construction of arbitrarily complex
hierarchical records.

I know of two ways to construct BER records. The
first way is with an ASN.1 compiler. The compiler
reads the ASN.1 definition and produces source code
in a programming language such as C or C++. The
programmer can then fill in a structure in that lan-
guage with the values that are to be encoded and the
code produced by the ASN.1 compiler reads that
structure and builds the BER record. The strong ad-
vantage of this method is that you’re reasonably con-
fident that the resulting BER record does in fact en-
code the ASN.1 properly.

OCLC chose not to use an ASN.1 compiler, but in-
stead produced utilities to construct the BER records
directly. OCLC has made those utilities publicly
available, as well as the Z39.50 Client API. The rea-
sons for choosing not to use an ASN.1 compiler stem
mostly from the maturity of the compilers when
OCLC first started implementing Z39.50 in 1988.
Those reasons are given in greater detail in the docu-
mentation accompanying the BER utilities. Direc-
tions for getting the BER utilities can be found at the
end of this article.

4.2.1 The BER Utilities
The BER utilities allow the programmer to build a
tree structure that describes the contents of the rec-
ord, instead of filling in a record-specific structure
and having a record-specific routine construct the
BER record. Each node in the tree contains the tag
for the data it describes and either a pointer to data or
a pointer to another node in the tree. A node in the
tree is a C structure of type DATA_DIR . Routines
are provided to construct the tree and to encode the
primitive data types such as BITSTRING and
INTEGER. Once the tree is built, a utility routine
(bld_rec()) is called to construct the BER record.

When a BER record is received and decoded by an
application, one of these tree structures is produced.
To examine the contents of the BER record, simply
traverse the tree. This puts the interpretation of the
record much more in the hands of the programmer.

5. ZDEMO and the Client API
Zdemo is going to be a simple client. It will establish
a connection to the Z39.50 server, send an InitR e-
quest and wait for an InitResponse. It will then sit
in a loop waiting for the user to enter searches, record
display requests or a Quit command. Commands will
consist of a single letter (S for Search, D for record
Display and Q for Quit.) Arguments to the com-
mands can follow the command and the default com-
mand is Search, when the command is omitted (i.e., S
DOG and DOG are equivalent commands).

The Client API is nearly as simple. It consists of the
routines InitRequest() and InitResponse(), Sear-
chRequest() and SearchResponse() and PresentRe-
quest() and PresentResponse(). The request routines
take parameters that correspond to the fields in the
Z39.50 requests. The response routines take a BER
record as their only parameter and return a pointer to
a response-specific structure with fields in it that cor-
respond to the fields in the Z39.50 response. The
encoding and decoding of the requests and responses
will depend on the BER utilities.

6. Establishing the Z39.50 Connection
The vast majority of Z39.50 servers are accessible
via TCP/IP, so our client will need to know how to
connect to a server via TCP/IP. The usual way to
perform TCP/IP functions is with “sockets”. Sockets

provide the tools and structures for establishing
TCP/IP connections and for sending and receiving
messages. Sockets have some of the characteristics
of files, in that they are opened, read from and writ-
ten to. In the UNIX world, the relationship between
files and sockets is very close; it is less so in the MS
Windows world.

For our purposes, only the simplest features of sock-
ets will be used. We will need to know how to con-
vert a host name into an IP address, open a socket,
send a message, wait for a return message, determine
how many bytes of message are waiting, read a mes-
sage and close the socket. The complete code for
opening and closing a connection to a Z39.50 server
is contained in irpconn.c at OCLC’s anonymous FTP
site. (See the section on Source Code Availability at
the end of this article.) The code for writing a
Z39.50 request, waiting for the response and then
reading the response is contained in doirp.c.

Windows Sockets are similar enough to standard
UNIX sockets that I have provided support for them
as well. Sprinkled throughout irpconn.c and doirp.c
you will see fragments surrounded with “#ifdef
WINDOWS” and “#endif”. These sections contain
the support for Windows Sockets.

The routine to make the connection is named con-
nect(). It gets passed the name of the host machine
for the Z39.50 server and the port where the server is
listening. The standard port for Z39.50 is 210, but
few of the servers actually listen at that port, so
zdemo (our client program) will need to accept the
port number as an argument. In turn, zdemo will get
the host name and port as arguments that are passed
to it, though, with modification, zdemo could read
this information from a configuration file.

For MS Windows applications, the first step is to
initialize winsock.dll, the dynamic link library that
contains the sockets routines. This is done by calling
WSAStartup(), passing it the lowest acceptable ver-
sion number of the Windows Sockets standard. In
our code, zdemo will ask for version 1.1. If either
there is no winsock.dll available or it does not sup-
port version 1.1 of the Windows Sockets standard,
then connect() will write a diagnostic message and
return a failure indication.

The next step in establishing the connection will be to
convert the host name into an IP address. This is
done by calling gethostbyname(), passing it the host

name. If successful, it will return a structure which
contains data that will be used in creating the socket.
If gethostbyname() fails, then connect() will write a
diagnostic message and return a failure indication.

Next, the socket is created. This is done by calling
socket(), telling it that the client will be using it to
communicate via TCP/IP. If socket() fails, then con-
nect() will write a diagnostic message and return a
failure indication.

Next, the connection to the server is established by
calling connect(), passing it the socket and a struc-

ture containing the IP address and port number. If
connect() fails, then connect() will write a diagnostic
message and return a failure indication. If it suc-
ceeds, then connect() returns a pointer to the socket
and is done. A TCP/IP connection has been made to
the Z39.50 server.

6.1 ZDEMO
So far, our source code for zdemo looks like this:

void *socket;

int main(int argc, char *argv[])
{

char password[20], server_name[100], userid[20]”,
*usage=“usage: zdemo -h[hostname] [-pport#] “
“[-uuserid/password]”;

int i, port=210;

get_args(argc, argv, server_name, &port, userid, password);
printf(“Talking to Z39.50 server on port %u of host ‘%s’\n”, port,

server_name);
/* initialization code */
if((socket=irp_connect(server_name, port))==0)
{

printf(“unable to connect to server %s\n”,
server_name?server_name:””);
exit(1);

}
}

7. Initialization
The first Z39.50 service is Initialization. The client
and server use this service to negotiate the other
Z39.50 services and options that are to be provided.
They also get to negotiate the preferred message size
and exceptional record size. In addition, the client
can provide a userid and password.

7.1 Negotiation
Z39.50 supports a simple negotiation mechanism.
The client proposes values in the InitRequest and the
server responds with the actual values. If the client is
unhappy with the returned values, its only option is to
close the session.

7.1.1 Version
There are now three versions of Z39.50. Version 1
was defined in 1988. It was implemented at only a
few sites and was completely superseded by Version
2, which introduced ASN.1 and BER encoding to the
standard. Version 2 was defined in 1992. The 1995
version of the standard defines both Version 2 and
Version 3. The reason for this is that the ZIG wanted
Version 3 to be backward compatible with Version 2
and wanted a single document that defined both. The
ZIG did not want developers to have to have two
documents to develop a server capable of interoperat-
ing with either Version 2 or Version 3 clients. So,
both versions are defined in Z39.50-1995 and all the
compatibility rules for the two versions are defined
there as well.

The version of the standard that the client wants to
use is one of the things that is negotiated. The client
sends a bitstring with a bit turned on for each version
of the standard that the client understands. The
server responds with a similar bitstring. The highest
version of the standard that the client and server have
in common is the version in effect for the session. If
the client and server have no supported version in
common, then the server will return an empty bit-
string and fail the InitRequest. The client can de-
duce the reason for the failure from the empty Ver-
sion bitstring in the InitResponse.

7.1.2 Options
The client and server negotiate the services and op-
tions that they want through the Options bitstring.
These are specified by turning on the appropriate bits
in the bitstring. All of the Z39.50 services can be
negotiated; that is, the client can request that they be
made available by the server. The server can deny
these services by turning off the appropriate bit in the
bitstring when it is returned in the InitResponse.
Options that can be negotiated include such things as
support for named result sets or concurrent opera-
tions.

7.1.3 Message Sizes
The client also specifies a Preferred-message-size
and an Exceptional-record-size. The Preferred-
message-size will be exceeded by the server only
when the client requests a single record and its size
exceeds the Preferred-message-size, but not the Ex-
ceptional-record-size. The purpose of this is to al-
low the client to control the maximum size of a nor-
mal message from the server, but to allow it to occa-
sionally accept large records.

The server may respond to the proposed values with
alternative values in the InitResponse.

7.2 Other Initialization Parameters
The client can provide a userid and password in the
InitRequest and can also provide information identi-
fying the client software itself. Lastly, the InitR e-
quest contains a placeholder for information defined
externally to the standard.

All Z39.50 request definitions include an optional
referenceId. This is an arbitrary string of bytes that
the client can send that the server is required to return
with the response. Its intent is to help the client iden-
tify the returning response in an asynchronous mes-
sage environment. While referenceId can hold any
number of bytes, the Z39.50 Client API allows only a
C language long value to be used.

7.3 The InitRequest
The InitRequest is created by a call to the InitRe-
quest() routine. It takes a referenceId, a pre-
ferredMessageSize, an exceptionalRecordSize, an
id and a password as parameters. It does not accept

options as a parameter, since the Client API always
negotiates for the most functionality that it can han-
dle.

InitRequest() returns a pointer to an allocated area in
memory that contains the BER encoded InitRequest.

The prototype for InitRequest() looks like this:

unsigned char *InitRequest(
long referenceId,
long preferredMessageSize,
long exceptionalRecordSize,
char *id,
char *password);

7.3.1 Encoding the Request
The easiest way to understand the InitRequest() rou-
tine is to walk through it line by line, showing the
ASN.1 that is being encoded and providing commen-
tary. The C code is indented and in bold. The
ASN.1 is in italics and the commentary is in normal
text.

Normally when I code using the BER utilities, I use
preprocessor variables to hold the tag values. The
preprocessor variable InitRequest would be defined
as 20. I do this for readability. But in the code be-
low, the commentary explains what is going on in the
code, and I want you to be able to see the correlation
between the code and the ASN.1, so I am omitting the
preprocessor variables. If you get the code from our
FTP server, you will see proper preprocessor vari-
ables instead of constants.

CHAR *Init_Request(long referenceId, long preferredMessageSize,
long exceptionalRecordSize, char *id, char *password, long *len)

/*
referenceId has no particular meaning to the Client API. You can put whatever
value you want into it, and it will be returned in the response. id and password
can be either NULL or “”. len will contain the length of the encoded request
when InitRequest() returns.

*/
{

static char *protocol_version=”yy”; /* versions 1 and 2 */
/*

When you want Version 2, you have to ask for Version 1 too. (This is to allow
interoperability with ISO 10163).

*/
static char *options_supported=”yy”; /* search and present only */
/***/
/* build an IRP Init request */
/***/
dir=dmake(20, ASN1_CONTEXT, 30);

initRequest [20] IMPLICIT InitializeRequest,
/*

Make a DATA_DIR tree for assembling the parts of our message. The first two
arguments specify the tag and tag type for the root of our tree. They correspond
to the first tag in the ASN.1 definition of an InitRequest. The 30 tells dmake()
that we expect to see 30 nodes in our tree. If that number is exceeded, then the
BER utilities will automatically increment the size of the tree by that amount.

 dir , the value returned by dmake(), is a pointer to the root of the tree.
*/

if(referenceId)
daddchar(dir, 2, ASN1_CONTEXT, (CHAR*)&referenceId, sizeof(referenceId));

referenceId ReferenceId OPTIONAL,
/*

ReferenceId is defined later in the standard as:
ReferenceId ::= [2] IMPLICIT OCTETSTRING

If a non-zero referenceId has been provided, then add it to the request. The first
argument to daddchar() is a pointer to the parent of the field being added. The
next 2 arguments are the tag and tag type of the referenceId. The last two
arguments are a pointer to the referenceId and its length. The referenceId is
being passed to the server as a string of bytes (an OCTETSTRING in ASN.1.)

*/
daddbits(dir, 3, ASN1_CONTEXT, protocol_version);

protocolVersion ProtocolVersion,
/*

protocolVersion is defined later in the standard as:
protocolVersion ::= [3] IMPLICIT BITSTRING

daddbits() encodes ASN.1 BITSTRING s. Here, we’re encoding the ProtocolVersion.
*/

daddbits(dir, 4, ASN1_CONTEXT, options_supported);
options Options,
/*

Options is defined later in the standard as:
Options ::= [4] IMPLICIT BITSTRING

*/
daddnum(dir, 5, ASN1_CONTEXT, (CHAR*)&preferredMessageSize,

sizeof(preferredMessageSize));
preferredMessageSize [5] IMPLICIT INTEGER,
/*

daddnum() encodes ASN.1 INTEGER s. Here, we’re encoding the preferredMessageSize.
*/

daddnum(dir, 6, ASN1_CONTEXT, (CHAR*)&exceptionalRecordSize,
sizeof(exceptionalRecordSize));

exceptionalRecordSize [6] IMPLICIT INTEGER,
if(id && *id)
{

char *t;
DATA_DIR *subdir;

/*
We’ll use subdir to keep track of subtrees in our DATA_DIR tree.

*/
int len=strlen(id)+1;

/*
We need to figure out how long the id and password are and then add 1 for the
‘/’ separator character.

*/
if(password && *password)

len+=strlen(password)+1;
else

password=””;
t=(char*)dmalloc(dir, len+1);

/*
dmalloc() malloc’s space that is freed automatically when the DATA_DIR tree
is freed. In this case, the “+1” is for the NULL that sprintf() will put at the end
of the string.

*/
strcpy(t, id);
if(password && *password)

sprintf(t+strlen(t), “/%s”, password);
subdir=daddtag(dir, 7, ASN1_CONTEXT);

idAuthentication [7] ANY OPTIONAL,
/*

daddtag() adds a tag without any data. It returns a pointer to the node that
was added to the tree to hold the tag.

*/
daddchar(subdir, ASN1_VISIBLESTRING, ASN1_UNIVERSAL, (CHAR*)t, len-1);

/*
The ANY is recommended later in the standard to be encoded as a CHOICE,
one option of which is:

open VisibleString,
Add the id and password with an IMPLICIT ASN.1 data type of
VISIBLESTRING .

*/
}
daddchar(dir, 110, ASN1_CONTEXT, (CHAR*)”1995”, 4);

implementationId [110] IMPLICIT InternationalString OPTIONAL,
daddchar(dir, 111, ASN1_CONTEXT, (CHAR*)”OCLC IRP API”, 12);

implementationName [111] IMPLICIT InternationalString OPTIONAL,
daddchar(dir, 112, ASN1_CONTEXT, (CHAR*)”1.0”, 3);

implementationVersion [112] IMPLICIT InternationalString OPTIONAL,
/*

Tell the server what kind of client is talking to it.
*/

return bld_rec(dir, len);
/*

bld_rec() malloc’s the amount of space needed to hold the BER record, assembles
the BER record in that area and returns a pointer to that area, which is finally
returned by InitRequest().

*/
}

7.3.2 Transmitting the Request
Zdemo transmits the BER requests by calling
doirp(), passing it the pointer to the BER request and
the pointer to the socket returned by connect().
Doirp() sends the request to the Z39.50 server, waits
for the response to the request from the server and
returns a pointer to that response.

Doirp() starts by determining the length of the re-
quest. It does this by calling the BER utility
asn1len(). It uses that length to drive a while loop
where the length represents the number of bytes of
the request waiting to be sent.

Doirp() sends data to the server by calling the socket
routine send() and passing it the socket, a pointer to
the request and the number of bytes to send. Send()
returns the number of bytes actually sent. The

pointer to the request is incremented by that amount
and the length is decremented by that amount. If the
length goes to zero, then the complete request has
been sent and zdemo falls out of the while loop. If
send() indicates an error, then doirp() prints an error
message and quits, returning an error indication.

Next, doirp() needs to wait for the response from the
server. The socket utilities are prepared to handle
much more complicated tasks than zdemo is requiring
of them, so some of the tools that it uses seem overly
complicated for this purpose. The mechanism for
waiting for a message is one of those tools. The
socket utilities allow an application to have many
active sockets open and allow you to wait until any
of them have a message. To do this, the application
has to construct a list of sockets to be waited on.
Two preprocessor macros are used to construct the
list: FD_ZERO() and FD_SET(). FD_ZERO() ini-
tializes an empty list, and FD_SET() adds sockets to
the list. After the list is built, the routine select() is
called, passing it the list of sockets to be waited on.
The select() call sits inside a while loop; sometimes
select() returns with an indication that it has not re-
ceived anything yet.

After doirp() has gotten the indication that a message
is available, it calls ioctl() to determine the amount of
data that has been received. It then calls recv() to
read the data. It passes recv() the socket, a pointer to
a buffer to hold the incoming message, and the num-
ber of bytes it wants to read (which it got from
ioctl().) Recv() returns a count of the number of
bytes that it actually read. If that count is zero, then
there was probably some failure in the connection
and recv() will print an error message and return with
an error indication.

Often, TCP/IP has to break large messages into
smaller messages to transmit them. That means that
when doirp() gets a message, it might be the first of
many messages that comprise a complete Z39.50 re-
sponse. The BER utilities provide a routine, IsCom-
pleteBER(), which gets passed a pointer to a buffer
with a BER encoded message and a count of the
number of bytes in the buffer. IsCompleteBER() re-
turns an indication of whether a complete message is
in the buffer. If the message is complete, then Is-
CompleteBER() also returns the actual size of the
message, which might be less than the amount of data
in the buffer, since it is possible for more than one
message to have been received at one time.

If the message was not complete, then IsComplete-
BER() also returns the number of bytes remaining to
be read to complete the message. Sometimes Is-
CompleteBER() reports that the message is not com-
plete and there are zero bytes waiting to be read.
This means that IsCompleteBER() cannot determine
the remaining length and doirp() should just wait for
more data to arrive. Either way, doirp() sits in a
loop, reading more data, until IsCompleteBER() re-
ports that a complete message has arrived. When
that happens, doirp() returns a pointer to the buffer
containing the message.

At this point, zdemo has sent our InitRequest and
received an InitResponse.

7.4 The InitResponse
The most important field in an InitResponse is the
result field. It tells the client whether its InitRequest
has been accepted by the Z39.50 server. If it has a
non-zero value, then a Z39.50 session has been suc-
cessfully established. If it is zero, then the Z39.50
server has rejected our session. Unfortunately, there
is no explicit mechanism for the server to tell why it
is rejecting our InitRequest. We’ll have to deduce
the reason from the other values returned in the In i-
tResponse.

7.4.1 Decoding the Response
The Z39.50 Client API provides the routine InitRe-
sponse() to decode the InitResponse from the
Z39.50 server. It is passed a pointer to the InitR e-
sponse and returns a pointer to a structure containing
information from the InitResponse.

The first step in decoding any Z39.50 response is to
decode the BER encoded message. The BER utility
bld_dir() does this. Its job is to build a DATA_DIR
tree that reflects the structure of the message. Typi-
cally, to decode the message, we’ll just traverse the
tree. I use a for loop to do this. I set the loop vari-
able to the first child in the tree and loop through all
its siblings. Inside the loop I use a switch statement
to test for the possible tags that might have been in
the message.

Again, as with the InitRequest(), the easiest way to
understand the InitResponse() routine is to walk
through it line by line, showing the ASN.1 that is
being encoded and providing commentary. The C

code is indented and in bold. The ASN.1 is in italics
and the commentary is in normal text. I have also
repeated the practice of replacing preprocessor vari-

ables with constants to emphasize the correspondence
between the C code and the ASN.1.

INIT_RESPONSE *InitResponse(CHAR *response)
{

DATA_DIR far *subdir;
INIT_RESPONSE *init_ response;
if(!response || !bld_dir(response, dir))

return NULL;
/*

If a response was not provided or we were unable to decode the response, then
return a failure indication. The dir that is being passed to bld_dir() is the same
one that was created in InitRequest() to hold the message being built there. Dir is
a global variable and will be used by all the request and response routines.

*/
if(dir->fldid!=21)

return NULL;
initResponse [21] IMPLICIT InitializeResponse,
/*

If the response wasn’t an InitResponse, then return a failure indication. The tag
in the root node of the tree is the message tag.

*/
if((init_response=(INIT_RESPONSE*) calloc(1, sizeof(INIT_RESPONSE)))==NULL)

return NULL;
/*

If we can’t allocate space to hold the structure describing the InitResponse, then
return a failure indication.

*/
for(subdir=dir->ptr.child; subdir; su bdir=subdir->next)

/*
This is our driving loop. The loop variable is initialized to point at the first child
off the root. As long as there is such a child, process it and then point at its
sibling.

*/
switch(subdir->fldid)

/*
Test for the value of the tag in this node.

*/
{

case 2:
referenceId ReferenceId OPTIONAL,
/*

ReferenceId is defined later in the standard as:
ReferenceId ::= [2] IMPLICIT OCTETSTRING

*/
memcpy((char*)&init_response->referenceId, (char*)subdir->ptr.data,

(int)subdir->count);
/*

Just save the referenceId in the INIT_RESPONSE structure. Only the calling application will be inter-
ested in it.
*/

break;
case 4:

options Options,
/*

Options is defined later in the standard as:
Options ::= [4] IMPLICIT BITSTRING

*/
init_response->options=dgetbits(subdir);

/*
dgetbits() decodes encoded BITSTRINGs. It returns a character string
with a ‘y’ for every bit that was turned on, and a ‘n’ for every bit that
was turned off.

*/
break;

case 5:
preferredMessageSize [5] IMPLICIT INTEGER,

init_response->preferredMessageSize=dgetnum(subdir);
/*

dgetnum() decodes encoded INTEGERs. It returns a long, which we will
save in the INIT_RESPONSE structure.

*/
break;

case 6:
exceptionalRecordSize [6] IMPLICIT INTEGER,

init_response->maximumRecordSize=dgetnum(subdir);
break;

case 12:
result [12] IMPLICIT BOOLEAN,

init_response->result = (int)dgetnum (subdir);
/*

BOOLEANs are encoded as INTEGERs, so dgetnum() is used to decode
them. A non-zero value means TRUE and a zero value means FALSE.

*/
break;

}
}
return init_response;

}

7.5 ZDEMO
The following code gets added to zdemo:

INIT_RESPONSE *init_response;
long len;
unsigned char *request, *response;

/*
Build the InitRequest.

*/
request=InitRequest(0, 16384, 500000L, userid, password, &len);

/*
Send the request and get the response.

*/
response = do_irp(request, socket);
if(!response) /* If we did not get a response, then quit. */
{

printf(“unable to send init request\n”);
exit(2);

}
/*

Decode the response.
*/

init_response=InitResponse(response);
if(!init_response || !init_response->result)
{ /* If the response was not decodable, or if the InitRequest failed, then quit. */

printf(“init failed\n”);
exit(3);

}

8. Searching
Z39.50 allows highly specific searching of databases.
The specificity of Z39.50 queries is one of the stan-
dard’s great strengths. Other protocols, such as
WAIS or Gopher, support “magical” searching. The
user enters some kind of free text query and “magic”
happens. The same query on another server might
produce completely different results, because differ-
ent “magic” happened. The user is at a loss to de-
termine why the records were retrieved. The user is
also unable to control the search. The user is unable
to specify that she wants to find records where the
word SMITH appeared in the title, but not as an
author. These weaknesses have all been overcome
with Z39.50.

Another strength of Z39.50 queries is the persistence
of their results for the duration of the Z39.50 session.
With other protocols, the results of the query must be
sent immediately to the client. That’s fine, if the da-
tabase is small and the result sets are always small.
When the databases are large, that is not practical.
The user needs the ability to fetch and examine some
of the records and still be able to ask for other rec-
ords later. Better yet, if the result set is large, the
user would like to be able to apply restrictors to the
result set and produce a smaller, hopefully more per-
tinent, result set.

8.1 Result Sets
In order to reference a result set after it has been pro-
duced, the result set must have a name. In Z39.50,

the client provides the name of the result set with the
query: the client names the result set. Every query
can have a different result set name, allowing the cli-
ent to reference any number of previous result sets.
But few, if any, servers allow an unlimited number of
result sets. When a client has exceeded the number
of supported result sets, the server might delete old
result sets arbitrarily.

In fact, some servers allow a client to have only one
result set. In that case, they do not really support
named result sets. To get around the apparent con-
tradiction of the client being able to name result sets
and the server being unable to support named result
sets, the ZIG agreed on the result set name “default”.
This is the result set name that must accepted by
servers that do not otherwise support named results
sets. If all queries sent to such a server are named
“default”, then the client has only one result set that
it can refer to.

Unfortunately, in Version 2 of the standard, the client
can not tell whether the server will allow result set
names other than “default”. The only way to tell is
to use a different result set name. If the server cannot
support named result sets, it will fail the search and
return an error code indicating the problem. The cli-
ent will then know that “default” will be the only ac-
ceptable result set name. In Version 3, support for
named result sets is one of the options that can be
negotiated at initialization time.

If the client uses the same result set name twice, the
server should replace the previous result set of the
same name with the new result set. To keep that
from happening accidentally, the client is required to
set a flag in the SearchRequest indicating that the
result set is to be replaced.

8.2 Attributes
In “magic” searching systems, query terms are un-
qualified. That is, the user types in a term, but pro-
vides no extra information about the term to indicate
its semantic meaning. Systems that provide more
specific searching usually provide the concept of an
“index”. So the user can say that the term provided
should be considered to be an author or a word from
a title. But this is only a single piece of qualifying
information that can be provided with the term.

The Z39.50 developers wanted a richer mechanism
than simply indexes. They wanted to provide many
dimensions of qualification to the term. The word
they chose to describe these additional qualifications
on a term is “attribute”. A term can have many at-
tributes. One of those attributes could be Use, which
roughly corresponds with indexes. The Use attribute
allows the client to specify how the term would have
been used in the records to be retrieved. For exam-
ple, the term was Used as an AUTHOR or TITLE.
Another attribute is Structure; the term is supplied
according to a particular structure. The structure
might be that the term is a WORD or a PHRASE.

8.2.1 Attribute Sets
Since the developers understood that they could not
predict all the attributes that implementors would
want, they created the idea of an attribute set. An
attribute set defines a collection of attributes. Im-
plementors are free to invent their own attribute sets,
but the developers provided a starter set of attributes
and packaged them in an attribute set named bib-1.

Attribute sets are identified by an Attribute Set ID,
which is just an Object Identifier. All Attribute Set
ID’s begin with 1.2.840.10003.3; the Attribute Set
ID for the bib-1 attribute set is 1.2.840.10003.3.1.

The bib-1 attribute set contains 6 types of attributes:
Use, Relation, Position, Structure, Truncation and
Completeness. These attributes are explained in
great detail in the bib-1 attributes documents, avail-
able at the Library of Congress’ FTP site. The only
attributes discussed in this article will be Use and
Structure.

Attribute types in an attribute set are identified by a
number. In the bib-1 attribute set, Use is attribute
type 1 and Structure is attribute type 4. The values
that an attribute can have are also identified by a
number. This means that it takes two numbers to
specify an attribute for a term: the attribute type and
the attribute value. For example, every Use attribute,
such as AUTHOR or TITLE, has a number.
(AUTHOR is 1003 and TITLE is 4.) These numbers
are specified in the Attribute Sets appendix of the
standard. At last count, there were 98 different Use
attributes specified, and that list can be extended at
any time.

8.3 Query Terms and Attributes
Terms can have one or more attributes associated
with them. In the ASN.1 for the standard, this asso-
ciation is called AttributesPlusTerm and consists of
an AttributeList and a Term. An AttributeList is
defined as a SEQUENCE of AttributeElement
which are in turn defined as a pair of INTEGERs
consisting of attributeType and attributeValue .
These pairs of numbers are exactly the numbers de-
scribed above.

In Version 2, all the attributes in the query have to
come from the same attribute set. During the devel-
opment of Version 3, it soon became clear that this
was a problem. How could the user formulate a
query asking about AUTHORs (a bib-1 Use attrib-
ute) and BOILINGPOINTs (a Use attribute from an
chemical attribute set)? In Version 3, the attribute
set ID can be specified for every AttributeElement .
That means that you can mix attributes from a num-
ber of attribute sets.

8.4 Query Grammars
Z39.50 defines several query grammars, each one
identified by a number. Type-0 queries are for pri-
vate query grammars. Sometimes clients and servers
from the same organization prefer to use that organi-
zation’s own query grammar. At OCLC, a number
of our clients know how to use the query grammar of
our database engine and pass those queries to the
Z39.50 server as type-0 queries.

Type-1 queries are the only widely accepted queries.
Support for them is mandatory in Z39.50. Type-1
queries are described in more detail later.

Type-2 queries use the query grammar from the ISO
Common Command Language (ISO 8777). This
grammar has severe extensibility limitations and
probably should not be used. ISO CCL queries can
always be sent as type-0 queries.

Type-100 queries use the query grammar from the
ANSI/NISO Common Command Language
(Z39.58). This grammar is closely related to, and
has the same problems as, the ISO Common Com-
mand Language.

Type-101 queries are an extension of type-1 queries
to support proximity searching. With Version 3 of
the standard, type-1 queries are identical with type-
101; but they remain distinct in Version 2.

Type-102 queries are still being defined. They are
intended to support some of the features of query
grammars that support ranking.

8.5 Reverse Polish Notation Queries (type-1)
Type-1 queries are called Reverse Polish Notation
(RPN) queries. Reverse Polish Notation is a way of
representing Boolean queries by specifying first the
operands and then the operator. Normal query
grammars let you specify an operand, then an opera-
tor and another operand. This is called an infix nota-
tion. The problem with infix notations is that you
end up having to use parentheses to specify the order
of evaluation of the operators and operands. Reverse
Polish Notation does not have that problem.

The search (DOG OR CAT) AND HOUSE would
be expressed as DOG CAT OR HOUSE AND in
Reverse Polish Notation and the search DOG OR
(CAT AND HOUSE) would be expressed as DOG
CAT HOUSE AND OR in RPN. The query is
evaluated left to right. Every time you encounter an
operator you process the two operands to the left and
replace the operator and operands with the result of
evaluating them. In the first example, the OR is as-
sociated with DOG and CAT . After DOG OR
CAT is evaluated, the result is put back into the
query. The AND then has that result and HOUSE
as its operands.

Reverse Polish Notation queries can be easily repre-
sented as trees, with the operators as roots and
branches and the operands as leaves. That is the
sense in which type-1 queries are Reverse Polish
Notation. They are not text strings as in the exam-
ples above. They are trees defined recursively in
ASN.1. A type-1 query can either be an operand or
an operator with two operands. An operand can ei-
ther be a term or a type-1 query. This recursive
definition allows for arbitrarily complex queries.

We need some way to pass a query into our Z39.50
Client API. To do this, we’ll use real Reverse Polish
Notation. Terms will be optionally followed by a
slash ‘/’ and then a Use attribute value. They can
also be followed by an optional slash and a Structure
attribute value. Terms can be surrounded by double-
quotes. The following are all examples of legal query
terms: DOG (no Use or Structure attribute speci-
fied), DOG/21 (dog as a subject heading),
DOG/21/2 (dog as a subject heading and a structure

of WORD) and “DOG HOUSE”/21/1 (dog house as
a subject heading and a structure of PHRASE).

8.6 Database Names
The client must specify what database or databases
the server is to search. The Z39.50 standard allows
multiple databases to be specified in a search request.
Unfortunately, this is another feature that cannot be
determined at initialization time. One way the client
can find out if the server supports multiple database
names is to try it and see if a diagnostic is returned,
but the lack of a diagnostic does not necessarily mean
that all the databases were searched. Some of the
servers just ignore the extra database names. This
feature is not available in the Client API.

8.7 Piggy-backed Presents
It is possible to request that records be returned
automatically with the SearchResponse. This is
called a piggy-backed Present. Piggy-backed Pres-
ents are supported in the Client API but are not sup-
ported by zdemo and are beyond the scope of this
article. Zdemo will provide hard-coded values for
those parameters in its call to SearchRequest().

8.8 The SearchRequest
The SearchRequest is created by a call to the Sear-
chRequest() routine. It takes a referenceId, a repla-
ceIndicator, a resultSetName, a databaseName, a
query, and a query_type.

The referenceId is a C language long value and has
the same meaning as in InitRequest(). The replace-
Indicator is an integer and has either a zero or non-
zero value for FALSE and TRUE respectively. The
resultSetName can be any character string. The da-
tabaseName is a character string whose value is de-
termined by the server.

The conversion of the query parameter into a Z39.50
query is probably the trickiest code in the Client
API. The query is passed as a character string, but
its evaluation is dependent on the query-type. If the
query-type is 0, then the query is assumed to be in a
private query grammar and is passed through to the
Z39.50 server exactly as received by SearchRe-
quest().

If the query-type is 1, then SearchRequest() is ex-
pecting a string with a Reverse Polish Notation query
in it. The terms can be surrounded with double-
quotes. This is important if the term consists of mul-
tiple words, as in a phrase search. The term can also
be followed by an optional slash (‘/’) and a Use at-
tribute value. The Use attribute value can also be
followed by another optional slash and a Structure
attribute value. There is no default Use attribute
value and the default Structure attribute value is
WORD.

For example: to search for books about slavery by
Mark Twain, you could enter the search:

slavery/21 “twain, mark”/1003/1 and

which asks for records with “slavery” as a subject
heading and “twain, mark” as an author phrase.

As in InitRequest(), SearchRequest() returns a
pointer to an allocated area in memory that contains
the BER encoded SearchRequest.

The prototype for SearchRequest() is:

unsigned char *SearchRequest(
long referenceId,
int replaceIndicator,
char *resultSetName,
char *databaseName,
char *query);

I will not walk through the code this time. You have
already seen BER encoded messages produced; the
searches are not any more exciting. The code is pro-
vided if you want to examine it.

8.9 The SearchResponse
The SearchResponse is processed by SearchRe-
sponse() and it, like InitResponse(), takes the BER
record returned by the Z39.50 server as its only pa-
rameter and returns a pointer to an allocated structure
which contains the fields of the SearchResponse.
The prototype for SearchResponse() is:

SEARCH_RESPONSE *SearchResponse(
CHAR *response);

and the SEARCH_RESPONSE structure looks like
this:

typedef struct
{

long referenceId;

int searchStatus;
long resultCount;
long resultSetStatus;
long error_code;
char *error_msg;

} SEARCH_RESPONSE;
The referenceId is the same one provided to Sear-
chRequest().

searchStatus contains either a zero to indicate that
the search failed or a non-zero value to indicate suc-
cess.

If searchStatus indicates that the search succeeded
then resultCount will contain the count of the num-
ber of records that satisfy the search and the value of
resultSetStatus will be undefined. A value of zero in
resultCount is not an indication that the search
failed, only that there are no records in the database
that meet the search criteria.

If searchStatus indicates that the search failed, then
the value of resultCount is undefined and resultSet-
Status will indicate if there are any records available

for retrieval. Typically resultSetStatus will contain
the value 3 which indicates that there is no result set
available, but other values are potentially available
and defined in the standard. error_code and er-
ror_msg should contain values; otherwise they will
contain 0 and NULL respectively. The values for
error_code and error_msg are described in the Er-
ror Diagnostics appendix of the standard.

8.10 ZDEMO
Before zdemo can generate a search, it needs a simple
command processor. Remember that commands to
zdemo are going to be single letters, so parsing the
commands will be easy. Zdemo will need a loop for
getting commands from the user. A command of ‘q’
or an end-of-file indication from the input stream will
end the loop. Inside that loop, zdemo will test for a
single letter command and if there is none, then it will
assume that a search is being requested. It will then
switch on the value of the command and call a rou-
tine to handle the command.

Our driving loop looks like this:

char cmd, input[1000];
while(gets(input))
{

strlwr(input);
if(input[0]) /* did we get any input? */

if(input[1]==‘ ‘) /* was the second character a blank? */
cmd=input[0];

else
cmd=‘S’; /* assume that they want to search */

else
cmd=‘ ‘; /* no command */

if(cmd==‘q’)
break; /* exit the loop */

switch(cmd)
{

case ‘s’: /* explicit search command */
zsearch(input+2); /* +2 to skip command and blank */
break;

case ‘S’: /* implicit search command */
zsearch(input);

}
}

In addition, the routines that zdemo calls will need
some clues about the behavior of the Z39.50 server.
For instance, some servers will not accept any re-
sultSetNames except “default”. Zdemo will be told

this through arguments that are passed to it at startup
time. In the case of the “default” resultSetName,
zdemo will look for an argument of “-d” to indicate
that it must use the “default” resultSetName.

char resultSetName[20];

void zsearch(char *query)
{

long len;
SEARCH_RESPONSE*search_response;
unsigned char *request, *response;
static int search_num=1;

if (MustUseDefault) /* global variable */
strcpy(resultSetName, “default”);

else
sprintf(resultSetName, “Search%d”, search_num++)

request=SearchRequest(0, TRUE, resultSetName, database_name, query, &len);

response = do_irp(request, socket);
search_response=SearchResponse(response);
printf(“%ld records found.\n”, search_response->resultCount);
if(search_response->searchStatus)

printf(“Search Successful! :-)\n”);
else
{

puts(“Search Failed! :-(“);
printf(“Error_c ode=%ld, message=’%s’\n”, search_response->error_code,

search_response->error_msg ? search_response->error_msg :
”None provided”);

if(search_response->error_code==22)
{

puts(“Must use ResultSetName of \”default\””);
puts(“Resetting internal flags; please try again”);
MustUseDefault=TRUE;

}
if(search_response->error_msg)

free(search_response->error_msg);
 }
free(search_response);
free(response);

}

9. Retrieval
The Z39.50 implementors clearly saw retrieval as a
weakness in Version 2 of the standard. Many of the
enhancements in Version 3 center around retrieval.
Included in these enhancements are the ability to ask
for specific parts of a record, to ask about the con-
tents of a record and to specify a prioritized list of
desired record syntaxes. But, even without these en-
hancements, Z39.50 supplies perfectly acceptable
mechanisms for retrieving records. Since this article
is concentrating on core functionality, the Client API
will only use those retrieval features available in
Version 2.

Version 2 allows clients to ask for a specific range of
records from a result set in full or brief forms and to
specify a single record syntax. The most common
record syntaxes are USMARC and SUTRS.
USMARC is the record syntax used in the U.S. li-
brary community to exchange cataloging information
and SUTRS is a Simple Unstructured Text Record
Syntax, invented by the ZIG. Both of these record
syntaxes will be discussed in greater detail later.

9.1 Result Sets Revisited
In Z39.50, result sets are modeled as containing or-
dered lists of pointers to records. This does not mean
that a server is actually supposed to create lists like
that; it means that the client can act as if that were
true. The ordering of the result set is important, al-
though the type of ordering is not. Whether the rec-
ords are in rank order or chronological order or
sorted by title is unimportant. What is important is
that the client can ask for the n’th record in a result
set and always get the same record from the same
result set.

To retrieve records from a result set, the client speci-
fies the name of the result set and the relative record
number of the record in the result set. The first rec-
ord in a result set is record number 1. In the C pro-
gramming languages the first record would naturally
be record number 0, so it is important to remember
that that is not true here.

To ask for several records, the client can specify a
single relative record number for the first desired rec-
ord and a count of the number of records to be re-
turned. This only allows for a single list of adjacent
records to be returned. With Version 3 comes the

ability to specify multiple ranges of records in a sin-
gle request. This will allow the user to request the
first, third and ten thousandth records from a result
set and the client will be able to satisfy the request in
a single transaction with the server.

9.2 Element Sets and Element Set Names
The fields in a record are called elements in Z39.50.
A collection of elements would be an element set and
if that collection of elements had a name, it would be
an element set name. In Version 2, element set
names are the only mechanism available to specify
the elements desired from a record. Version 3 in-
cludes rich mechanisms for identifying and specifying
the elements in a record, but element set names are
sufficient for many purposes.

The standard only specifies two element set names:
“F” for Full records (all elements included) and “B”
for Brief records. Brief records are a problem. The
standard is rightly silent on the elements that consti-
tute a brief record. But, that leaves the client devel-
oper at the whims of the server developers as to the
fields that can be displayed in a brief record. Unless
I am sure that a particular server returns all the fields
that I want to display in a brief record, I usually ask
for full USMARC records and throw away the fields
that I do not need. That technique will not work if
SUTRS records have been requested, since they con-
sist of a single field.

9.3 Record Syntaxes
A record syntax is simply the way that records are
encoded. There are a number of record syntaxes rec-
ognized in Z39.50. Object identifiers are used to
specify record syntaxes, so record syntaxes must be
either registered with the maintenance agency or be
registered as nodes of an implementor’s private ob-
ject identifier tree. As mentioned above, there are
two widely recognized record syntaxes; USMARC
and SUTRS. I’ll describe them in detail below, but it
is worth mentioning the other record syntaxes listed
in the standard. Understanding what these other
syntaxes are and where they are intended to be used
is useful in understanding where the implementors of
the standard are taking it.

9.3.1 Non-core Record Syntaxes

9.3.1.1 Other MARC Syntaxes

There are a number of variants on the MARC record
syntax. In the United States, the Z39.50 developers
tend to forget that fact and refer to USMARC as
simply MARC. But, there are 14 other MARC rec-
ord syntaxes recognized by the standard and they will
be supported by many of the commercial servers as
Z39.50 services are implemented in Europe. For the
most part, these are national MARC syntaxes (e.g.,
UKMARC, CANMARC and FINMARC) which en-
code support for local cataloging standards, but there
are also some internationally recognized MARC
syntaxes (e.g., UNIMARC and INTERMARC.)

9.3.1.2 Explain

Successful interoperation of Z39.50 clients and serv-
ers in Version 2 is based on a priori agreements be-
tween the two parties. The client had no mechanism
for determining what Use attributes were going to be
supported by the server for searching nor what record
syntaxes were going to be supported for retrieval.
The client had to be told this information through
some process outside of the standard. Currently,
most of the server hosts provide human readable
documentation that can be used to statically configure
a client. The Explain service provides the mechanism
that allows those things to be determined dynami-
cally.

The Explain service is implemented as a database
that can be queried by the client. Access to the rec-
ords in this database is primarily gained through
search keys defined by the standard. The contents of
these records, which contain things like Use attributes
and record syntaxes supported are defined by the
Explain record syntax.

9.3.1.3 OPAC

OPAC (Online Public Access Catalog) records were
an attempt to allow holdings information to be
transmitted along with bibliographic records (usually
sent in USMARC format.) They were not widely
implemented and a number of non-standard mecha-
nisms for transmitting holdings information were de-
veloped instead.

9.3.1.4 Summary

Summary records were developed as part of an effort
to bring the WAIS retrieval software into compliance
with Z39.50. WAIS was based on the 1988 version
of Z39.50, with a number of private extensions.
Among these extensions was the ability to provide
brief record information in a more standardized way
than the simple Brief Element Set Name provided by
the standard.

9.3.1.5 GRS

The Generic Record Syntax is at the heart of most of
the growth areas of Z39.50 implementation. The
other record syntaxes described so far have limited
structural flexibility (you cannot have really complex
fields) and rigid semantics (everyone knows what to
expect in every field.) What was needed was a rec-
ord syntax with great flexibility and the ability to
transmit both elements with semantic understanding
and elements with no semantic understanding.

GRS was invented for this purpose. It supports arbi-
trarily complex hierarchical records and elements that
can carry numeric tags from any number of well-
known name spaces as well as string tags intended to
carry field “names” that might be of use to a human
viewing them, if not of use to the software receiving
them.

GRS is being heavily used by the Chemical Abstract
Service to provide their complex chemical records
which include things like chemical structure informa-
tion. In addition, the GILS (Government Information
Locator Service) profile uses GRS records as the
most flexible way to transmit Information Locator
records and the CIMI (Coalition for the Interchange
of Museum Information) group is looking to use GRS
records to transmit their information.

9.3.2 USMARC
USMARC can be quite daunting, at first. Fields are
tagged numerically and there is little pattern to the
tagging. If you do not know what the tags mean, you
are out of luck. To complicate things more, some of
the fields can repeat and others cannot: but some of
the non-repeatable fields have other, repeatable, fields
that the extra data can go into. (e.g., The first author
of a book might be placed in a 100 field, a non-

repeating field, but subsequent authors would be put
into 700 fields.)

There are actually three different sets of rules com-
bined to form USMARC records. The first is the
encoding standard; ANSI Z39.2. It describes the
physical encoding of all MARC records (at least that
is the theory.) The second is the tagging rules: what
data goes in what fields. Finally come the formatting
rules for the data (e.g. names should be entered last
name first with a comma separator.) Fortunately, as
client developers, it is not necessary to worry about
the formatting rules.

The encoding rules are straightforward. The records
are theoretically encoded as 7-bit ASCII, but I’ve
seen many private characterset extensions that use 8-
bit ASCII. The record begins with a fixed format
leader that describes the length and type of the
MARC record and well as describing some of the
encoding options that will be used in the record. The
leader is followed by a directory that describes what
fields are contained in the records, the offset from the
beginning of the data that the field can be found at
and the length of the field. Fields can have tags in the
range 1 through 999.

Finally comes the data itself. Fields with tags 1
through 10 have a fixed format. Fields with tags 11
through 999 have subfields. The subfields do not
have additional subfields. Subfields have single
character tags and the tags are primarily alphabetic,
but digits and even punctuation characters are some-
times used. The fields and subfields are separated by
separator characters.

I have provided a routine to help with the decoding of
the USMARC records; marc2dir(). It takes a
USMARC record and decodes it as if it were a BER
record. Even if you decide that you do not want to
use the BER Utilities, this routine will give you a leg
up on the decoding of USMARC records. In addi-
tion, I have provided a table at the end of this article
that lists a large number of USMARC fields and their
subfields and the labels that are commonly put on
them when displaying them to non-librarians.

9.3.3 SUTRS
The Simple Unstructured Text Record Syntax exists
to provide a minimal level of data communication.
SUTRS records are essentially preformatted records.

The intent is to allow the client to ask the server to
format its data in a manner suitable for display to a
human. The assumption is that the server probably
has a better idea of how its data should be formatted
than the client does, especially if they have no other
record syntaxes in common.

SUTRS records are simply a single field of ASCII
characters with a newline character at least every 72
characters. As the name states, there is no structure
within that single field. The client should not try to
parse the field looking for subfields.

9.4 The PresentRequest
The PresentRequest is created by a call to the Pre-
sentRequest() routine. It takes a referenceId, a re-
sultSetName, a resultSetStartPoint and number-
OfRecordsRequested, an ElementSetName and a
preferredRecordSyntax.

The referenceId is a long and has the same meaning
as in InitRequest(). The resultSetName will be one
of the resultSetNames used in a previous successful
call to SearchRequest(). The resultSetStartPoint is
the relative record number from the resultSet of the
first desired record. numberOfRecordsRequested
is the count of the number of sequential records re-
quested. The sum of resultSetStartPoint and num-
berOfRecordsRequested minus 1 should be less
than or equal to the resultCount for the resultSet.
ElementSetNames will be set to “F” or “B”, depend-
ing on whether Full or Brief records are desired.
preferredRecordSyntax is set to the Object ID of
either USMARC or SUTRS. Preprocessor variables
of MARC_SYNTAX and
SIMPLETEXT_SYNTAX are provided for this
purpose.

As in SearchRequest(), PresentRequest() returns a
pointer to an allocated area in memory that contains
the BER encoded PresentRequest.

The prototype for PresentRequest() is:

unsigned char *PresentRequest(
long referenceId,
char *resultSetName,
long resultSetStartPoint,
long numberOfRecordsRequested,
char *ElementSetNames,
char *preferredRecordSyntax);

9.5 The PresentResponse
The PresentResponse is processed by PresentRe-
sponse() and it, like SearchResponse(), takes the
BER record returned by the Z39.50 server as its only
parameter and returns a pointer to an allocated
structure which contains the fields of the PresentRe-
sponse. The prototype for PresentResponse() is:

PRESENT_RESPONSE *PresentResponse(
CHAR *response);

and the PRESENT_RESPONSE structure looks like
this:

typedef struct
{

long referenceId;
long presentStatus;
long numberOfRecordsReturned;
long nextResultSetPosition;
char recordSyntax[50];
struct record
{

long len;
char *record;

} *records
long error_code;
char *error_msg;

} SEARCH_RESPONSE;
The referenceId is the same one provided to Sear-
chRequest().

presentStatus contains either a zero to indicate that
there was no error during the PresentRequest or it
contains a status code describing the type of problem
encountered during the PresentRequest.

A value of 5 in presentStatus means that no records
were returned and the PresentRequest completely
failed. If this happens, there should be an er-
ror_code and possibly an error_msg explaining why
the PresentRequest failed. The other possible values

indicate why fewer records than requested where re-
turned. Those values are described in detail in the
standard. The values for error_code and error_msg
are described in the Error Diagnostics appendix of
the standard.

The numberOfRecordsReturned contains the count
of records returned by the server. It should be equal
to the numberOfRecordsRequested from the Pre-
sentRequest(). If it is not, then presentStatus should
have had a value other than 0.

The nextResultSetPosition is set to the value that
should be used as the resultSetStartPoint in the next
PresentRequest() to retrieve the next sequential rec-
ord.

recordSyntax will be set to the Object ID of the rec-
ord syntax used by the server for the records re-
turned. It should be the same as the preferredRe-
cordSyntax used in the PresentRequest().

records will contain an array of pointers to and the
lengths of the records returned. The number of
pointers in the array will be equal to numberOfRe-
cordsReturned, even if the server accidentally re-
turns fewer records than it claims. If this happens
then the pointer will be set to NULL.

9.6 ZDEMO
Zdemo needs four things to allow it to do Presen-
tRequests. It needs a way for the user to specify the
resultSetStartPoint and numberOfRecordsRe-
quested, a way to specify the preferredRecordSyn-
tax, a way to specify the ElementSetName and a
way to display the records returned.

The preferredRecordSyntax is specified with a new
command (r) that takes as its single argument either
the word USMARC or the word SUTRS. A global
variable is set based on the argument. The default
value for preferredRecordSyntax is USMARC.

The ElementSetName is specified with a new com-
mand (e) that takes as its single argument either the
word FULL or the word BRIEF . A global variable
is set based on the argument. The default value for
ElementSetName is FULL .

The PresentRequest is initiated and the numberOf-
RecordsRequested and resultSetStartPoint are
specified with a new command (d) that takes two op-
tional numbers representing the resultSetStartPoint

and numberOfRecordsRequested respectively. The
default value for both numbers is 1.

The code in zdemo for parsing the two new com-
mands is trivial and looks much like the code added

to handle the search (s) command, so it will not be
shown here.

Zdemo will call a new routine, zread() to handle the
PresentRequest. The code for zread() looks like
this:

void zread(char *parms)
{

long i, numrecs=1, whichrec=1;
PRESENT_RESPONSE *present_response;
unsigned char *request, *response;

if(*parms) /* were any arguments provided */
{

char *t;
whichrec=atoi(parms);
if((t=strchr(parms, ‘ ‘)) != NULL)

numrecs=atoi(t);
}

request=PresentRequest(0, resultSetName, whichrec, numrecs,
ElementSetName, preferredRecordSyntax);

response = do_irp(request, socket);

present_response=PresentResponse(response);
if(!present_response)
{

printf("Did not get a PresentResponse!\n");
return;

}

numrecs= present_response->numberOfRecordsReturned;
printf("%ld records returned\n", nRecs);
switch(present_response->presentStatus)
{

case IRP_success:
printf("Present successful\n");
break;

case IRP_partial_1:
case IRP_partial_2:
case IRP_partial_3:
case IRP_partial_4:

printf("Partial results returned\n");
break;

case IRP_failure:
printf("Present failed\n");
break;

}

for(i=0; i<numrecs; i++)
if(present_response->records[i].record) /* did a record really get returned? */
{

char *end, *ptr;
if(strcmp(present_response->recordSyntax, SIMPLETEXT_SYNTAX)==0)
{ /* SUTRS records have a BER wrapper around them */

DATA_DIR *temp=dalloc(3);
bld_dir(present_response->records[i].record, temp);
ptr=(char*)temp->ptr.data;
end=ptr+(int)temp->count;
dfree(temp);

}

if(strcmp(present_response->recordSyntax, MARC_SYNTAX)==0)
 { /* convert the MARC record to a SUTRS-like record */

ptr=formatmarc(present_response->records[i].record);
end=ptr+strlen(ptr);

}

while(ptr<end)
{ /* print each line in the record */

char *t=strchr(ptr, ‘\n’);
if(t)

*t='\0';
puts(ptr);
if(t)

ptr=t+1;
else

ptr=end;
}

free(present_response->records[i].record);
 }

if(present_response->error_code)
{

printf("Error_code=%ld, message='%s'\n", present_response->error_code,
present_response->error_msg ?
present_response->error_msg:"None provided");

if(present_response->error_msg)
free(present_response->error_msg);

}

free(response);
free(present_response);

}

9.6.1 Displaying USMARC Records
Decoding USMARC records is beyond the scope of
this article, but the code to accomplish it is provided
as part of zdemo at OCLC anonymous FTP site.
(See the section of Source Code Availability at the
end of this article.)

10. Terminating the Z39.50 session
In Version 2 of Z39.50, both the client and the server
are allowed to terminate the session at any time,
simply by dropping the TCP/IP connection between
them. The routine disconnect() has been provided to
do this. It accomplishes this by closing the socket
with a call to the fclose() routine (one of the standard
C i/o routines.)

11. Summary
This article has described the elements of Z39.50
necessary to create a simple client. Many of the more
complex elements have been mentioned in enough
detail that you should have some idea if you need
them. Hopefully the code provided and its discussion
have shown you that while it is not trivial to build
Z39.50 applications, neither is it terribly complex.

12. Source Code Availability
The source code for the Z39.50 Client API and
zdemo is available via anonymous FTP at
ftp.rsch.oclc.org in the
pub/SiteSearch/z39.50_client_api directory. A copy
of this article, all the source code and user documen-
tation for the Client API can also be found in that
directory.

The BER utilities used by the Client API can be
found on the same host in the pub/BER_utilities di-
rectory.

OCLC maintains their copyright to all these materi-
als, but they have been made freely available to all
developers.

12.1 License
©1995 OCLC Online Computer Library Center, Inc.,
6565 Frantz Road, Dublin, Ohio 43017-0702.
OCLC is a registered trademark of OCLC Online
Computer Library Center, Inc.

NOTICE TO USERS: The Z39.50 Client API
(“Software”) has been developed by OCLC Online
Computer Library Center, Inc. Subject to the terms
and conditions set forth below, OCLC grants to user
a perpetual, non-exclusive, royalty-free license to
use, reproduce, alter, modify, and create derivative
works from Software, and to sublicense Software
subject to the following terms and conditions:

SOFTWARE IS PROVIDED AS IS. OCLC
MAKES NO WARRANTIES,
REPRESENTATIONS, OR GUARANTEES
WHETHER EXPRESS OR IMPLIED
REGARDING SOFTWARE, ITS FITNESS FOR
ANY PARTICULAR PURPOSE, OR THE
ACCURACY OF THE INFORMATION
CONTAINED THEREIN.

User agrees that :1) OCLC shall have no liability to
user arising therefrom, regardless of the basis of the
action, including liability for special, consequential,
exemplary, or incidental damages, including lost
profits, even if it has been advised of the possibility
thereof; and :2) user will indemnify and hold OCLC
harmless from any claims arising from the use of the
Software by user’s sublicensees.

User shall cause the copyright notice of OCLC to
appear on all copies of Software, including derivative
works made therefrom.

