PKIX
Network Working Group                                            Q. Dang (NIST)
Internet Draft
Request for Comments: 5758                                          NIST
Updates: 3279                                               S. Santesson
Intended
Category: Standards Track                                   3xA Security (AAA-sec.com)
                                                             K. Moriarty(RSA) Moriarty
                                                                     EMC
                                                                D. Brown (Certicom Corp.)
                                                          Certicom Corp.
                                                                 T. Polk (NIST)
                                                         October 07,
                                                                    NIST
                                                           December 2009
Expires: April 07, 2010

               Internet X.509 Public Key Infrastructure:
        Additional Algorithms and Identifiers for DSA and ECDSA
            <draft-ietf-pkix-sha2-dsa-ecdsa-10.txt>

  Status of this Memo

Abstract

   This Internet-Draft is submitted document updates RFC 3279 to IETF in full conformance with specify algorithm identifiers and
   ASN.1 encoding rules for the
     provisions of BCP 78 Digital Signature Algorithm (DSA) and BCP 79.

     Internet-Drafts are working documents of
   Elliptic Curve Digital Signature Algorithm (ECDSA) digital signatures
   when using SHA-224, SHA-256, SHA-384, or SHA-512 as the hashing
   algorithm.  This specification applies to the Internet Engineering
     Task Force (IETF), its areas, and its working groups. Note that
     other groups may also distribute working documents as Internet-
     Drafts.

     Internet-Drafts X.509 Public
   Key infrastructure (PKI) when digital signatures are draft documents valid for a maximum of six months
     and may be updated, replaced, or obsoleted by other documents at any
     time. It is inappropriate used to sign
   certificates and certificate revocation lists (CRLs).  This document
   also identifies all four SHA2 hash algorithms for use Internet-Drafts as reference
     material or to cite them other than as "work in progress."

     The list the Internet
   X.509 PKI.

Status of This Memo

   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current Internet-Drafts can be accessed at
     http://www.ietf.org/ietf/1id-abstracts.txt.

     The list edition of Internet-Draft Shadow Directories can be accessed at
     http://www.ietf.org/shadow.html.

     This Internet-Draft will expire on April 07, 2010. the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice

   Copyright (c) 2009 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document (http://trustee.ietf.org/license-info). document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.

  Abstract

     This  Code Components extracted from this document updates RFC 3279 to specify algorithm
     identifiers and ASN.1 encoding rules for the Digital Signature
     Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm
     (ECDSA) digital signatures when using SHA-224, SHA-256, SHA-384
     or SHA-512 must
   include Simplified BSD License text as hashing algorithm. This specification applies to described in Section 4.e of
   the Internet X.509 Public Key infrastructure (PKI) when digital
     signatures are used to sign certificates Trust Legal Provisions and certificate
     revocation lists(CRLs). This document also identifies all four
     SHA2 hash algorithms for use are provided without warranty as
   described in the Internet X.509 PKI. BSD License.

Table of Contents

   1.    Introduction.............................................2 Introduction ....................................................2
   2. Hash Functions...........................................3 Functions ..................................................2
   3. Signature Algorithms.....................................3
        3.1 Algorithms ............................................3
      3.1. DSA Signature Algorithm.................................4
        3.2 Algorithm ....................................3
      3.2. ECDSA Signature Algorithm...............................4 Algorithm ..................................4
   4. ASN.1 Module.............................................5 Module ....................................................5
   5. Security Considerations..................................6 Considerations .........................................5
   6.    References...............................................6
        6.1 References ......................................................6
      6.1. Normative references: ..................................6
        6.2 References .......................................6
      6.2. Informative references: ................................7 References .....................................6
   7.    Authors' Addresses.......................................7
     8.    IANA Considerations......................................8
     9.    Acknowledgement..........................................8 Acknowledgements ................................................7

1.  Introduction

   This specification defines the contents of the signatureAlgorithm, signatureValue
   signatureValue, and signature fields within Internet X.509
   certificates and CRLs when these objects are signed using DSA or
   ECDSA with a SHA2 hash algorithm.  These fields are more fully
   described in RFC 5280 [RFC 5280]. [RFC5280].  This document also identifies all
   four SHA2 hash algorithms for use in the Internet X.509 PKI.

   This document profiles material presented in the "Secure Hash
   Standard" [FIPS 180-3], [FIPS180-3], "Public Key Cryptography for the Financial
   Services Industry: The Elliptic Curve Digital Signature Standard
   (ECDSA)" [X9.62], and the "Digital Signature Standard" [FIPS 186-3]. [FIPS186-3].

   This document updates RFC 3279 [RFC 3279] sections [RFC3279] Sections 2.1, 2.2.2, and
   2.2.3.  Note that RFC 5480 [RFC 5480] [RFC5480] updates sections Sections 2.3.5, 3 (ASN.1 Module)
   Module), and 5 (Security Considerations) of RFC 3279.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in
     [RFC 2119]. [RFC2119].

2.  Hash Functions

   This section identifies four additional hash algorithms for use with
   DSA and ECDSA in the Internet X.509 certificate and CRL profile [RFC 5280].
   [RFC5280].  SHA-224, SHA-256, SHA-384, and SHA-512 produce a 224-bit,
   256-bit, 384-bit 384-bit, and 512-bit "hash" of the
     input respectively input, respectively, and
   are fully described in the Federal
     Information Processing Standard 180-3 [FIPS 180-3]. "Secure Hash Standard" [FIPS180-3].

   The listed one-way hash functions are identified by the following
   object identifiers (OIDs):

   id-sha224  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
        country(16) us(840) organization(1) gov(101) csor(3)
        nistalgorithm(4) hashalgs(2) 4 }

   id-sha256  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
        country(16) us(840) organization(1) gov(101) csor(3)
        nistalgorithm(4) hashalgs(2) 1 }

   id-sha384  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
        country(16) us(840) organization(1) gov(101) csor(3)
        nistalgorithm(4) hashalgs(2) 2 }

   id-sha512  OBJECT IDENTIFIER  ::=  { joint-iso-itu-t(2)
        country(16) us(840) organization(1) gov(101) csor(3)
        nistalgorithm(4) hashalgs(2) 3 }

   When one of these OIDs appears in an AlgorithmIdentifier, all
   implementations MUST accept both NULL and absent parameters as legal
   and equivalent encodings.

   Conforming CA certification authority (CA) implementations SHOULD use
   SHA-224, SHA-256, SHA-384 SHA-384, or SHA-512 when generating certificates or
   CRLs, but MAY use SHA-1 if they have a stated policy that requires
   the use of this weaker algorithm.

3.  Signature Algorithms

   This section identifies OIDs for DSA with SHA-224 and SHA-256 as well
   as ECDSA with SHA-224, SHA-256, SHA-384, and SHA-512.  The contents
   of the parameters component for each signature algorithm vary;
   details are provided for each algorithm.

  3.1

3.1.  DSA Signature Algorithm

   The DSA is defined in the Digital Signature Standard (DSS) [FIPS
     186-3].
   [FIPS186-3].  DSA was developed by the U.S. Government, and can be
   used in conjunction with a SHA2 hash function such as SHA-224 or
   SHA-256.  DSA is fully described in [FIPS 186-3]. [FIPS186-3].

   When SHA-224 is used, the OID is:

   id-dsa-with-sha224 OBJECT IDENTIFIER  ::=  { joint-iso-ccitt(2)
       country(16) us(840) organization(1) gov(101) csor(3)
       algorithms(4) id-dsa-with-sha2(3) 1 }.

   When SHA-256 is used, the OID is:

   id-dsa-with-sha256 OBJECT IDENTIFIER  ::=  { joint-iso-ccitt(2)
       country(16) us(840) organization(1) gov(101) csor(3)
       algorithms(4) id-dsa-with-sha2(3) 2 }.

   When the id-dsa-with-sha224 or id-dsa-with-sha256 algorithm
   identifier appears in the algorithm field as an AlgorithmIdentifier,
   the encoding SHALL omit the parameters field.  That is, the
   AlgorithmIdentifier SHALL be a SEQUENCE of one component, the OID
   id-dsa-with-sha224 or id-dsa-with-sha256.

   Encoding rules for DSA signature values are specified in [RFC
     3279]. [RFC3279].

   Conforming CA implementations that generate DSA signatures for
   certificates or CRLs MUST generate such DSA signatures in accordance
   with all the requirements in Sections 4.1, 4.5 4.5, and 4.6 of [FIPS 186-3].
   [FIPS186-3].

   Conforming CA implementations that generate DSA signatures for
   certificates or CRLs MAY generate such DSA signatures in accordance
   with all the requirements and recommendations in [FIPS
     186-3], [FIPS186-3], if they
   have a stated policy that requires conformance to
     [FIPS 186-3].

  3.2 [FIPS186-3].

3.2.  ECDSA Signature Algorithm

   The Elliptic Curve Digital Signature Algorithm (ECDSA) is defined in
   "Public Key Cryptography for the Financial Services Industry: The
   Elliptic Curve Digital Signature Standard (ECDSA)" [X9.62].  The
   ASN.1 OIDs used to specify that an ECDSA signature was generated
   using SHA-224, SHA-256, SHA-384 SHA-384, or SHA-512 are are, respectively:

   ecdsa-with-SHA224 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
        us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 1 }

   ecdsa-with-SHA256 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
        us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 2 }

   ecdsa-with-SHA384 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
        us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 3 }

   ecdsa-with-SHA512 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
        us(840) ansi-X9-62(10045) signatures(4) ecdsa-with-SHA2(3) 4 }

   When the ecdsa-with-SHA224, ecdsa-with-SHA256, ecdsa-with-SHA384 ecdsa-with-SHA384, or
   ecdsa-with-SHA512 algorithm identifier appears in the algorithm field
   as an AlgorithmIdentifier, the encoding MUST omit the parameters
   field.  That is, the AlgorithmIdentifier SHALL be a SEQUENCE of one
   component, the OID ecdsa-with-SHA224, ecdsa-with-SHA256, ecdsa-with-
     SHA256, ecdsa-with-SHA384
   SHA384, or ecdsa-with-SHA512.

   Conforming CA implementations MUST specify the hash algorithm
   explicitly using the OIDs specified above when encoding ECDSA/SHA2
   signatures in certificates and CRLs.

   Conforming client implementations that process ECDSA signatures with
   any of the SHA2 hash algorithms when processing certificates and CRLs
   MUST recognize the corresponding OIDs specified above.

   Encoding rules for ECDSA signature values are specified in RFC 3279
     [RFC 3279]
   [RFC3279], Section 2.2.3 2.2.3, and RFC 5480 [RFC 5480]. [RFC5480].

   Conforming CA implementations that generate ECDSA signatures in
   certificates or CRLs MUST generate such ECDSA signatures in
   accordance with all the requirements specified in Sections 7.2 and
   7.3 of [X9.62] or with all the requirements specified in Section
   4.1.3 of [SEC1].

   Conforming CA implementations that ECDSA signatures in certificates
   or CRLs MAY generate such ECDSA signatures in accordance with all the
   requirements and recommendations in [X9.62] or [SEC1] if they have a
   stated policy that requires conformance to [X9.62] or [SEC1].

4.  ASN.1 Module

   The OIDs of the SHA2 hash algorithms are in the RFC 4055 [RFC 4055] [RFC4055]
   ASN.1 module and the OIDs for DSA with SHA-224 and SHA-256 as well as
   ECDSA with SHA-224, SHA-256, SHA-384 SHA-384, and SHA-512 are defined in the
   RFC 5480 [RFC 5480] [RFC5480] ASN.1 module.

5.  Security Considerations

   NIST has defined appropriate use of the hash functions in terms of
   the algorithm strengths and expected time frames for secure use in
   Special Publications (SPs) 800-78-1 [SP 800-78-1], [SP800-78-1], 800-57 [SP 800-
     57] [SP800-57],
   and 800-107 [SP 800-107]. [SP800-107].  These documents can be used as guides to
   choose appropriate key sizes for various security scenarios.

   ANSI also provides security considerations for ECDSA in [X9.62].
   These security considerations may be used as a guide.

6.  References

 6.1

6.1.  Normative references:

     [RFC 2119] References

   [RFC2119]    Bradner, S., "Key Words words for Use use in RFCs to Indicate
                Requirement Levels", BCP 14, RFC 2119, March 1997.

     [RFC 3279]

   [RFC3279]    Bassham, L., Polk, W., and R. Housley, "Algorithms and
                Identifiers for the Internet X.509 Public Key
                Infrastructure Certificate and Certificate Revocation
                List (CRL) Profile", RFC 3279, April 2002.

     [RFC 4055]

   [RFC4055]    Schaad, J., Kaliski, B., and R. Housley, R.,"Additional "Additional
                Algorithms and Identifiers for RSA Cryptography for use
                in the Internet X.509 Public Key Infrastructure
                Certificate and Certificate Revocation List (CRL)
                Profile", RFC 4055, June 2005.

     [RFC 5480]

   [RFC5480]    Turner, S., Brown Brown, D., Yiu Yiu, K., Housley R.,and Polk,T., Housley, R., and T.
                Polk, "Elliptic Curve Cryptography Subject Public Key
                Information", RFC 5480, March 2009.

     [RFC 5280]

   [RFC5280]    Cooper, D., Santesson, S., Farrell, S., Boeyen, S. S.,
                Housley, R., and W. Polk, "Internet X.509 Public Key
                Infrastructure Certificate and Certificate Revocation
                List (CRL) Profile", RFC 5280, May 2008.

     [FIPS 180-3]

   [FIPS180-3]  Federal Information Processing Standards Publication
                (FIPS PUB) 180-3, Secure Hash Standard (SHS), October
                2008.

     [FIPS 186-3]

   [FIPS186-3]  Federal Information Processing Standards Publication
                (FIPS PUB) 186-3, Digital Signature Standard (DSS), June
                2009.

   [SEC1]       Standards for Efficient Cryptography Group (SECG), SEC
                1: Elliptic Curve Cryptography, Version 2.0, 2009.

   [X9.62]      X9.62-2005, "Public Key Cryptography for the Financial
                Services Industry: The Elliptic Curve Digital Signature
                Standard (ECDSA)", November, 2005.

 6.2

6.2.  Informative references:

     [SP 800-107] References

   [SP800-107]  Quynh Dang, NIST, "Recommendation for Applications Using
                Approved Hash Algorithms", February 2009.

     [SP 800-78-1]

   [SP800-78-1] W. Timothy Polk, Donna, F. Dodson, William E. Burr,
                NIST, "Cryptographic Standards and Key Sizes for
                Personal Identity Verification", August 2007.

     [SP 800-57]

   [SP800-57]   Elaine Barker, William Barker, William E. Burr, NIST,
                "Recommendation for Key Management", August 2005.

7.  Acknowledgements

   The authors of this document would like to acknowledge great inputs
   for this document from Alfred Hoenes, Sean Turner, Katrin Hoeper, and
   many others from IETF community.  The authors also appreciate many
   great revision suggestions from Russ Housley and Paul Hoffman.

Authors' addresses Addresses

   Quynh Dang
   NIST
   100 Bureau Drive, Stop 8930
   Gaithersburg, MD 20899-8930
   USA

        Email:

   EMail: quynh.dang@nist.gov

   Stefan Santesson
   3xA Security (AAA-sec.com)
   Bjornstorp 744
   247 98 Genarp
   Sweden

   EMail: sts@aaa-sec.com

   Kathleen M. Moriarty
   RSA, The Security Division of EMC
   174 Middlesex Turnpike
   Bedford, MA 01730
        Email:
   USA

   EMail: Moriarty_Kathleen@emc.com

   Daniel R. L. Brown
   Certicom Corp.
   5520 Explorer Drive
   Mississaug, ON L4W 5L1

        Email:
   USA

   EMail: dbrown@certicom.com

   Tim Polk
   NIST
   100 Bureau Drive, Stop 8930
   Gaithersburg, MD 20899-8930
   USA

        Email:

   EMail: tim.polk@nist.gov

8. IANA Considerations

     This document has no actions for IANA.

9.  Acknowledgement

     Authors of this document would like to acknowledge great inputs
     for this document from Alfred Hoenes, Sean Turner, Katrin Hoeper
     and many others from IETF community. The authors also appreciate
     many great revision suggestions from Russ Housley and Paul
     Hoffman.