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Abstract
Analysis of wireless experimentation results is a complex
task to achieve. As multiple probes are needed in order
to get a global view of a wireless experimentation, the
resulting packet traces may be very large. In this paper
we propose an algorithm that performs trace synchroniza-
tion and merging in a scalable way. The algorithm output
is stored in a configured MYSQL database allowing for
smart packets trace storage. This solution reduces pro-
cessing time by 400% and storage space by 200% with
regard to raw trace files solutions.

1 Introduction
The Internet architecture and network protocols are evolv-
ing to accommodate for future user needs. Given the com-
plexity and the size of current protocol stacks, any innova-
tion or change must undergo several validations steps that
may have different realism levels (analytical proofs, sim-
ulations and experiments). Even if modeling and simula-
tion are important in the evaluation process, experimen-
tation represents a major technique that should be under-
taken before production solutions. However, experimen-
tation is still complex and difficult to achieve.

The experimentation process must include several
steps: scenario description, running, monitoring and cap-
ture, archiving and analysis [1]. From these steps one
of the most important and complex is experiment mon-
itoring and capture because it creates a high processing
load and large data size. There are many proposals to get
around these two problems. In wired networks, sampling
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allows reducing processing and memory resources, while
in wireless networks, metrics computed on the fly sim-
plify the monitoring and reduce memory requirements.
Nevertheless, in both cases, understanding the experiment
is limited and may include a ”margin of error” . To pro-
vide more complete experimentation understanding, mon-
itoring should include full packet capture with the cost of
an increased processing complexity [2]. Packet capture is
typically done in several places and this increases the size
of traces to be stored [3].

In fact, an important point that contributes to the dif-
ficulty of the experimental approach is the large amount
of information generated through monitoring and the dif-
ficulty to merge this information in an easily exploitable
engine. Accelerate data access becomes as important as
capturing it, since the goal is to analyze and study the ex-
periment results. Another important point is the impact
of monitoring and capture during the experiment. Pas-
sive monitoring1requires several passive probes but traces
generated with this method need to be synchronized be-
fore merging due to absence of a central synchronization
point.

Merging traces represents a complex problem espe-
cially in wireless experimentations, due to packet redun-
dancy in multiple probes. Merging traces solutions need
to be efficient in order to process the large amount of gen-
erated traces. These solutions should provide an output
data structure that allows easy and fast analysis and must
be scalable in order to be used in large and various experi-
mental settings. In addition, merging solutions need to in-
clude a specific collecting traces method in order to auto-
mate the whole process. We use the term ”pre-processing”
throughout the paper to designate all the required opera-

1Passive monitoring is a technique used to capture traffic from a net-
work by generating a copy of that traffic
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tions for ”merging” packets trace (i.e., synchronization,
traces collection and generation of a unique trace).

In this paper, we propose a scalable and efficient pre-
processing algorithm for wireless traces. Section 2 pro-
vides a survey of existing traces synchronization and
merging efforts. Section 3 describes our pre-processing
solution. Section 4 presents presents the performance re-
sults of our algorithm and finally section 5 concludes the
paper.

2 Related work
Trace synchronization and merging was first investigated
by Agrawala et al. in [3] where they show that several
probes are required to obtain a global view of the experi-
ment in wireless environment. To synchronize traces, they
propose the use of beacon timestamps as a common ref-
erence and perform linear regression to fit all the traces.
This method requires merging from all the traces simulta-
neously, thus generating a high pre-processing overhead.

Another solution that covers this gap is JIGSAW [4]
which provides a single and unified view of all radio traf-
fic on a 802.11 wireless network. JIGSAW is based on
three axes: large-scale synchronization, frame unification
and radio reconstruction. Its output is a data structure
called Jframe, which includes source information of the
packets. Although JIGSAW uses a database engine to
synchronize and merge traces, its output format still keeps
the content of the packets as a payload block and does not
include multi-protocol features.

On the other side, current experimental platforms as
PLANETLAB and ORBIT do not include trace merg-
ing as part of the experimental process. One of the most
evolved wireless experimental platforms is ORBIT, a grid
of wireless nodes with experimental control infrastruc-
ture. ORBIT provides real-time insertion of data into
a database through the OML [2] framework. OML is
a measurement data collection and organization frame-
work, which enables the experimenter to define the mea-
surement points and parameters, collect and pre-process
measurements, and organize the collected data into a sin-
gle database. It is a real-time framework where measure-
ments are executed on experimental nodes during experi-
mentation; In these conditions it is very difficult to include
trace capturing as a feature without disrupting the experi-

mentation.
Another network testbed, called Emulab [5], introduces

an efficient approach to optimize the hardware use. It
provides several virtualization levels in order to share re-
sources between users. Moreover, it ensures the connec-
tivity between virtual components and the real ones. Al-
though such a hybrid configuration can result in a power-
ful tool, there are no means for trace merging or synchro-
nization provided by the platform itself, and data must be
processed with external tools.

In synthesis, capturing and merging traces allows to
get a global understanding of network experimentation.
Merging traces is done in physical layer of wireless net-
works but it is difficult in upper layers due to the high
computing and memory resources needed to achieve this
type of measurements. Captured traces generated from a
single probe can represent a large amount of data, which
increases the overall data size when we use several probes.
In this case it is more efficient to store the traces within
databases [6] (data files can be an archiving solution but
does not allows efficient post-processing).

3 Efficient pre-processing data solu-
tion

In this section, we describe first the synchronization and
merging algorithm, which reads the trace files, unifies the
timestamps and then stores the packets into a database
(section 3.1). Then, we propose an original approach to
store and filter packet traces (subsection 3.2). After that
we introduce the basic traces collection model(section
3.3), we discuss its weaknesses in order to introduce op-
timizations that we implemented (subsection 3.4), which
further allows us to analyze the scalability of the system.

3.1 Synchronization and merging algo-
rithm

The main difficulty in the merging process, is to iden-
tify each packet individually. This operation requires spa-
tial and temporal characterization. Spatial information is
provided by different localizations of the wireless probes,
while temporal information is provided using timestamps
generated by each probe. When probes are in monitor
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mode2, each of the probes will use a different time refer-
ence to generate its trace (unlike the station mode where
beacons generated by the AP can synchronize the clocks
of all stations).

In order to synchronize the traces generated by the dif-
ferent probes, we propose to use the beacons generated by
the AP as the time reference. We propose to use the bea-
cons generated by the AP as the time reference. Beacon
frames are transmitted periodically by the AP. The beacon
frame carries the AP internal clock reference as part of
the payload. When a probe captures a beacon frame, the
wireless driver adds a PHY level header called radiotap,
which includes the local time-of-arrival timestamps of the
probe. The saved output is a packet with both the refer-
ence timestamps from the AP and the local timestamps,
generated by the wireless card. We use this frame to de-
termine the difference between the reference time and the
local one. This difference is called the drift clock. The
next step is to shift the local timestamps in the traces us-
ing the drift clock. The drift clock is not constant during
the experiment, so we need to reevaluate it for each new
beacon frame. We use the latest value each time we need
to correct packet timestamps in order to synchronize the
rest of the packets on the trace3.

The goal of the synchronization algorithm is to prepare
traces to merge. The merging process must identify each
packet in each trace in a non ambiguous way. Due to the
spatial distribution of probes, several packets may be re-
ceived at the same time by different probes. We need to
get around this ambiguity without overhead.

The identification algorithm is based on the following
two-step criteria: First, we narrow the comparison to the
nearby packets by defining a time window centered on the
timestamp of the new packet4. Second, once we have ob-
tained the list of pre-existing packets from the database

2In most of the cases, probes use the monitor mode, which allows
packets to be captured without having to associate with an access point
or ad-hoc network first.

3The maximum difference between two successive values thumbnail
in experiments is included in the margin of error in the time windows
(see section 3.3).

4The time window is bounded by 100µs, which covers possible er-
rors int the synchronization. The 100µs period is shorter than the length
of the shortest packet on the 802.11 MAC protocol. This corresponds to
a CTS or an ACK frame, with a 14-byte length, without including the
PLCP nor the preamble. These packets are transmitted at 1Mbps rate,
which results in 112µs of packet duration.

within the time window, we use the hash of the payload
of the new packet to check if it is already present in the
database. There are two possible outputs of this process:
If the new packet already exists in the database (i.e., it
was inserted before from another trace) and in this case,
we only keep the reference of the probe and the corre-
sponding radiotap information. Else, the packet does not
exist in the database and in this case, we proceed with the
insertion of needed protocols information.

The whole process is executed as a continuous data
flow algorithm. Raw traces are saved in very large files.
As an example, a simple scenario including 6 probes for
the monitoring of ping traffic between 5 stations for 300
seconds may generate 2.7GB raw data. Trace data is for-
mated in XML (e.g. using tshark) in order to identify
packet headers . Note that using XML simplifies the anal-
ysis of packets and allows processing a large number of
protocols (about 750 protocols recognized by tshark). The
merging software cannot load such a large file in mem-
ory to process it in batch mode. We have designed an
algorithm called CrunchXML [7] that synchronizes and
inserts packets into the database while reading data from
the capture file. This algorithm reads the database struc-
ture and uses a state-machine in order to interpret the data
from the capture file. With this algorithm, t only a small
amount of temporary memory is required since only one
packet is processed at a time.

This synchronization method is valid for any environ-
ment that uses the beacons synchronization solution as it
is defined in the IEEE 802.11 specification (even for mul-
tiple AP testbeds). Another important advantage of this
method is that user does not need specific equipments.

3.2 Smart packets traces storage
To insert packet traces into a database, we need an ad-
equate data structure in order for the analysis phase to
be easy and efficient. Note that relational database en-
gines are based on tables, rows and columns. On the other
hand, packets carry a number of protocol headers which
is not known a priori. The simplest database schema is
to associate one table to each protocol. Because the order
of headers may change from one packet to the other, we
stored each packet in a chained row structure.

The chained row structure stores a packet into the
database by relating rows from tables (see Figure 1). Ev-
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Figure 1: Shortcut is used to access all the packet headers from the first one. This structure allows the user to access every information in two

steps whatever the number of tables.

ery packet is composed by several headers and each of
them is related to a different protocol. In our database, we
have created several tables, called protocol tables, which
correspond to each of the protocols of interest for the ex-
periment. Each of these protocol tables include the rele-
vant protocol fields as columns and two special columns
to recreate the header sequence from the packet. These
two special columns point to the following protocol ta-
ble and to the row where the next header of the packet is
stored. Using this flexible structure, the database can hold
any combination of protocol headers within a packet.

Furthermore, the storage space is reduced: First, com-
mon packets from the traces are stored only once, thus
reducing considerably the used space. Second, only the
protocols and fields under study are stored, so the pay-
load and other protocols (unless strictly needed) are not
part of the database. Indeed, when packets are separated
in protocol tables, we can concentrate only on the protocol
under study e.g. for counting, averaging or sampling field
values. For example, if a general traffic analysis is de-
sired, the throughput and airtime values can be calculated
for the whole experiment using the radiotap table, which
stores the timestamps, packet source and packet size.

Moreover, the chained row structure simplifies
anonymization of traces. Each of the fields from the
stored packets can be replaced with another data pattern
through a database query, thus providing increased pri-
vacy for trace publication.

3.3 Traces collection

One of the key challenges in the design of an experimen-
tal large-scale testbed is how to collect experiment results
from different probes in an efficient way. In fact, if we
collect raw data in order to process them in the server,
the network will be overloaded due to the large data size.
We designed a distributed packet pre-processing model in
which probes are used to insert packets into the database.
Each of the probes acts as a client to the database server,
which receives queries to search through the protocol ta-
bles and to insert rows according to the algorithm de-
scribed in section 3.1.

Our insertion process is based on a data flow model
which allows to process large trace files. The first pro-
totype implements the routine described in Figure 2, for
each packet individually. This basic model proves that
the merging algorithms is a correct solution to provide a
unique database trace but it did not provide satisfactory
performance so we proceeded to design several optimiza-
tions that we describe hereafter.

We have implemented and tested this basic model and
its performs correctly (no synchronization error). How-
ever, the scalability of the algorithm was poor in term
of CPU requirements. So, we have proposed and imple-
mented a set of optimizations presented in the following
subsection.
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Figure 2: Merging and synchronization algorithm

3.4 Optimizations

The set of optimizations include five items: the Packet in-
sertion transaction, Multiple Transactions Grouping, Con-
current Clients Access, Multiple Selection Grouping and
an Adaptive Time Window.

Packet Insertion Transaction This optimization
avoids sending multiple queries to the database in order
to insert one packet and regroups them in one transac-
tion. We minimize the global traffic and time needed to
achieve packet insertion . To analyze the performance of
this optimization, we use the following parameters: N
the average number of affected protocols tables, S the
average size of all fields for one header, T the average
latency between the client and the server. With the ba-
sic data flow model described in 3.3, the time required
to perform the operation is T × N and the traffic size is
(S + request overhead) × N . Using this optimization
reduces the transaction time to T and the traffic size to
S ×N + request overhead5.

Multiple Transactions Grouping The new generation
of relational databases offers the possibility to achieve
multiple transactions in one request [6]. We use this fea-
ture to send more than one transaction per request. Let us
define M , the number of transactions in one request. The

5Note that transaction ensures that either the whole operation is per-
formed or all the changes are reversed to the former state.

traffic size will be M×N×S+request overhead instead
of (S + request overhead)×N ×M if the transactions
were done without any grouping.

Concurrent Clients Access To take advantage of mul-
tiple transaction grouping, the packet insertion transac-
tions have to be buffered and are delayed. Since multiple
clients are accessing the database, concurrency problems
may arise when more then one probe try to insert the same
packet into the database. We have used the reference time
(presented in section 3.1) to define an order between dif-
ferent packets and we take advantage from this order to
provide a ”locked by zone” feature. When a probe groups
packets in order to insert them together, it must specify the
minimum and the maximum timestamps in the grouped
packets and must locked the access to the zone limited by
these values in order to forbid packets duplication. This
operation is named locked by time window. If another
probe needs to use the locked zone, it must wait until
the first probe concludes its packets insertion operation.
This avoids inconsistencies due to packet diplucation in
the database.

Multiple Select Requests As shown in Figure 2, the in-
sertion decision is preceded by a specific request (called
select) to the database to check if the actual packet ex-
ists. In the basic model, we must send individually this
request for each packet because the global state of the
database can change between two requests. But the pre-
vious optimizations introduce a new information: The
state of all packets whose timestamps are include in the
time windows can not change until the client releases the
locked zone. In Figure 2, we can see that to make a de-
cision, the client needs to send two arguments: the times-
tamps and the hash of the packet. If the packet exists,
the database returns the next index. Then, the client uses
this index to chain the reception header to the packet in
the database. This optimization consists on requesting
three fields (timestamps, hash and next index) from the
database for all packets whose timestamps are in the time
window. When the client processes captured packets,the
insertion decision can be delayed until the packet times-
tamps is out of the time window.

Adaptive Time Window To increase the efficiency of
the database insertion process, the main control variable is
the time window interval. To adapt this value to the net-
work and server conditions, we use the server response
time T server. The goal is to minimize the probability
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of a bottleneck during the insertion operation. We calcu-
late a T server threshold in order to get the best perfor-
mance of the database, so if the T server increases, time
window is decreased in order to reduce to database load.
Inversely, if the T server decreases, the time window is in-
creased. There are many algorithms that allows to imple-
ment this idea. we have implemented a simple one based
on a smooth reevaluation of the T server and the time win-
dow is updated using proportionately inverse ratio to the
T server variation.

4 Software performance
In the previous sections, we have presented proposals to
perform pre-processing of wireless captured traces. We
also presented optimizations of the basic model in order
to increase scalability. In this section, we study the per-
formance of the pre-processing mechanisms; we first start
with an initial analysis of the impact of each optimization.
Second, we study the impact of the number of simultane-
ous and concurrent active clients on the effectiveness of
the system. Finally, to cover a wide range of experimen-
tal platform conditions, we study the performance of the
algorithm under different CPU power capacities.

4.1 Impact of different optimizations

Figure 3: Performance for each proposed optimization

Our experimental scenario consists of 6 stations with
generates packet trace sizes from 50 MB to 450 MB on

each client. In the first approach, we distribute the in-
sertion process from the probe stations towards a single
database server. The stations are connected to the server
through a 100Mbps switched Ethernet switch.

We can observe on Figure 3 that the non optimized so-
lution, represented as the line with squares, has an non-
linear performance and the whole process lasts more than
4 days to process 2.7 GB (450MB × 6) of packet traces.
When transactional insertion process is used, shown with
the line with diamonds, the performance is improved by
50% but the non-linear behavior is still present. The
other optimizations such as multiple transaction group-
ing, shown with downwards triangles, and concurrent
client access, shown with upwards triangles, decrease the
processing time, although it is still non-linear in both
cases. The optimization that changes the insertion time
from exponential to linear is the multiple select requests,
shown with the righthand triangles. In fact, the SELECT
operation is the most expensive in processing resources
on the database server, and when the client increases the
frequency of insert-selection operations, the database in-
creases the time used to rebuild the table indexes. Never-
theless, when we use the multiple select requests, we min-
imize the CPU use at the server, which allows to execute
indexing efficiently. Finally, the adaptive time window
further improves this behavior by adapting the requests to
the server capabilities.

4.2 Multiple Platform Scalability
To study the scalability of the optimized implementation
in various platforms, we tuned the two following parame-
ters: the number of simultaneous clients and the available
server CPU power. We change the number of the clients
from 1 to 20 in order to cover a wide range of cases, while
using a virtual machine as a server so that we can adjust
its available processing power. The real machine is com-
posed of two Xeon E5450 (Quad Cores) and 16 Gb of
RAM. We increase the available processing power of the
virtual machine as a percentage of the processing power
of the server. For example, 25% means that the virtual
server is equivalent to a dual-core processor with 4GB of
RAM. Figure 4 presents the evolution of the average num-
ber of operations by second executed by the server during
the insertion of 450 MB file. The higher the number of
operations per time unit, the better.
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Figure 4: Maximum number of request per unit time in function of

the number of probes

The first value for each curve represents the best value
that can be reached by one client. In most of the cases,
two stations perform as efficiently as half the processing
time of a single station. For more than two stations, the
performance depends on the available server processing
power. For all cases we can distinguish two thresholds:
Below the first threshold, the performance of the server
increases proportionately to the number of stations. Be-
tween the two thresholds, the system is characterized by a
stable performance, which is shared between different sta-
tions. From the second threshold, we observe that the per-
formance decreases in function of the number of stations.
We conclude that managing a high number of connections
monopolizes much of the server CPU. These thresholds
can be observed on each curve on Figure 4. For example,
a quad-CPU (50%) provides the best performance until
the limit of 4 simultaneuos stations, so the first threshold
is 4 and share the max performance until 12 stations so
the second threshold is 12.

5 Conclusion

In this paper, we considered the problem of merging cap-
tured traces and we have proposed an efficient solution
for the merging and synchronization problem. Our so-
lution called CrunchXML [7] is a distributed algorithm

providing synchronization and merging of wireless traces
and results insertion in a database. This solution aims to
be scalable and efficient in order to be used in different
experimental platforms. Performance of our solution is
directly related to that of the database server. For this rea-
son, we have analyzed the impact of server performance
on the system stability. This analysis shows that our solu-
tion is adapted for most of the current infrastructure.

The efficiency of our solution allows us to study new
domains such as packet tracing in multiple testbeds. The
method we proposed is based on a database and this al-
lows to identify packets individually in multiple traces.
This approach can help researchers to study small flows
in the Internet. Furthermore, our solution can be used to
compare different validation approaches outputs (simula-
tion, emulation and experimentation). Indeed, the unique
hard constraint that each approach should respect is the
use of real packet traces(e.g. NS-3 packets).
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