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Abstract
Evaluating new network protocols, applications, and ar-
chitectures uses many kinds of experimentation environ-
ments: simulators, emulators, testbeds, and sometimes,
combinations of these. As the functionality and com-
plexity of these tools increases, mastering and efficiently
using each of them is becoming increasingly difficult.

In this paper, we consider how to make it easier to
use multiple tools separately and together to improve
the productivity of network researchers. We show how
a single object model which encompasses every aspect
of a typical experimentation workflow can be used to
completely describe experiments to be run within very
different experimentation environments.

Although NEPI is still in early design and prototyp-
ing stage, we expect that its ability to describe and auto-
mate easily complex mixed experiments will enable fur-
ther experimentation with heterogenous networks.

1 Introduction
Sparked by a need for solid investigation efforts before
deployments in the real world, experimentation tools
of every kind have proliferated over the past ten years.
Many stem from the fact that the time and space varying
characteristics of the Internet as a whole cannot be cap-
tured within a single facility such as PlanetLab, Emulab,
ORBIT, or ModelNet. The evaluation of a new protocol
or a new application requires using multiple experimen-
tation environments: simulators, emulators, highly con-
trolled testbeds, and sometimes complex combinations
of these.

Unfortunately, the cost of doing the right thing, that
is, use multiple tools to investigate varying experimental
conditions, is often unrealistically high. This cost mostly
comes from:

• having to learn new programming languages and
interfaces, new tools, and new authentication and
authorization mechanisms to use each testbed,

• being unable to keep track of all the experimenta-
tion details over many months to ensure that exper-
imentation conditions can be accurately reproduced
later. This includes a description of the network and
application level aspects of an experiment, but also

deployment, setup, and, monitoring scripts, and,
more generally, everything needed to reproduce the
same experiment.

These problems are, of course, amplified when using
multiple testbeds at the same time (so-called mixed ex-
periments). For example, it is very hard to maintain a
good grasp of the overall experiment when its network
topology and its application setup descriptions are split
among many separate files written using different lan-
guages and APIs.

In this paper, we present the preliminary prototype of
the Network Experiment Programming Interface (NEPI)
whose goal is to make it possible for mere mortals to
use many different experimentation environments, and
switch among them easily. NEPI intends to make it pos-
sible to write a single script to control every aspect of a
potentially mixed experiment, including a hierarchical
network topology description, application-level setup,
deployment, monitoring, trace setup, and trace collec-
tion. The greatest challenge NEPI attempts to over-
come is the highly variable level of detail required to
describe an experiment using different experimentation
tools. We want NEPI to export all the functionality of
every tool but we want to do this through a uniform pro-
gramming interface to minimize the learning curve for
new testbeds.

Since NEPI is still in very early design and proto-
typing stages, it provides for now a single backend im-
plementation for ns-3 and lacks real usability tests. As
we gain experience with more backend implementations
and gather feedback from early users, we expect to re-
vise considerably the programming interface presented
in this paper. We outline the status of our current pro-
totype in Section 3 and then, describe in Section 4 the
testcase we have been using to evaluate it.

2 Related Work
Many other projects have attempted to solve similar
problems but none of them have tried to present behind
a unified programming interface the description of both
the network and application layers of an experiment run-
ning on multiple separate testbeds.

Splay [7] and Plush [5] focus solely on the



application-level deployment. Splay requires users to
rewrite their applications using the lua programming
language and allows them to control their deployment
through the same lua scripts while Plush uses XML files
to describe which arbitrary applications should be de-
ployed where.

PlanetLab [6] and ModelNet [9] deal only with the
network-level description and delegate deployment to
the user. ModelNet converts the user-provided XML-
based layout of a wired network into an emulated version
of the topology and then, lets Splay, Plush, or others take
over. Similarly, PlanetLab allows users to specify which
nodes are part of a slice through an XML-RPC or a web
interface and, then, allows the user to remotely log into
the slice.

Others, such as ORBIT [8] and its management soft-
ware OMF [1], provide tools to describe network topolo-
gies as well as manage the deployment of applications
using ruby scripts but they do so only within a single
testbed. Emulab [10] stands out from every other project
in that it provides a limited form of multiple-testbed sup-
port together with the ability to describe both the net-
work and the application level aspects of an experiment.
The cost of that feature, however, is that every testbed
must be integrated within Emulab itself which makes
it especially problematic to use new testbeds indepen-
dently from Emulab.

3 The NEPI Framework
NEPI is a python library whose goal is to provide all the
facilities needed to accomplish every task of a typical
experimentation workflow across various testbeds:

• describe the network and application level aspects
of an experiment,

• enable trace collection at various key locations
within an experiment,

• start, monitor, and stop a running experiment, and
• collect the trace results of an experiment once it is

completed.

Interaction with NEPI takes place through python
scripts or a graphical user interface: those who dislike
GUIs or who need to run batches of experiments will
most likely focus on writing a script to control NEPI.

3.1 The Architecture
As depicted in Figure 1, the entire API is accessed
through a single Controller entity. The controller
provides access to a potentially remote daemon that is
responsible for managing experiments, and allows users
to attach and detach from each of them. Because the fail-
ure of this daemon (crash or host reboot) would mean
losing access to every running experiment monitored by
this daemon, it is especially important to be able to start

this daemon on a separate stable server-class host rather
than on a workstation or laptop for long running experi-
ments. So far, we have assumed that the lifetime of the
controller is longer than that of any experiment (which
means, potentially, many months of uptime for some
scenarios). This is obviously an unrealistic assumption
but we expect that dealing gracefully with controller fail-
ures will merely require changes to our implementation
and will not impact the user-visible architecture.
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Figure 1: The NEPI architecture

Experiment objects hold the complete description
of an experiment. They keep track of the list of results,
and allow selectively downloading the associated data
to a filesystem store. These objects can also save and
load the experiment description to and from an XML
file. They are responsible for orchestrating the deploy-
ment, and the status monitoring of every remote host. By
default, remote host failures are handled in a very prim-
itive way: they shutdown the experiment and generate
an error message. This simple behavior will allow us to
gain insight to the kind of errors which occur most often
in typical experimentation scenarios. We then expect to
draw on existing tools such as Plush [5] to implement
more advanced error management policies and to make
them configurable at a later time.

The Backend and Server objects encapsulate the
logic needed to interface with a specific experimentation
environment. The server represents a resource such as
an ns-3 process or an Emulab boss server, running in a
possibly remote computer. The backend focuses on pro-
viding an implementation of the NEPI object model for
a specific experimentation environment. We expect that
each backend will export objects which map as closely
as possible to the underlying experimentation environ-



ment. The user toolbox will be used to smooth these
impedence mismatches across backends: it will collect
higher-level aggregate objects for each backend to hide
lower-level semantic differences and allow easy switch-
ing across them.

3.2 The Object Model
A common way to describe a network topology, but
also a complex system made of multiple modules is
through a set of boxes interconnected by arrows. Such
diagrams are commonly used to design Integrated Cir-
cuit board layouts, but also are often the basic blocks of
graphical programming languages. This box metaphor is
very simple but powerful enough to describe arbitrarily-
complex systems, especially when composite objects are
used to describe hierarchical systems with varying levels
of detail.

NEPI uses six kinds of entities to describe an exper-
iment: Object, Connector, Attribute, Trace,
Result, and, Operation.

• An Object is a box which represents a functional
unit of a specific type. An object can represent
a functional unit of arbitrary complexity; for ex-
ample, a simple ns-3 queue or a complete Emulab
node. Every functional unit modeled by NEPI is a
subtype of this type.

• A Connector is a labelled port within an
Object which can be connected to another con-
nector within another object; for example, the ns-
3 Node object is connected to the Ipv4 object
through a connector named protocols in Node and
another connector named node in Ipv4.

• An Attribute is the configuration parameter of
an Object which can be changed both before and
while an experiment is running. An example at-
tribute is the throughput of a communication link.

• A Trace object represents an event within an
Object which can be written to a trace file. A
trace controls whether or not the event will be en-
abled, and if yes, it describes in which file this event
will be stored.

• A Result describes something which has been
generated by an Object during an experiment; for
example, it is typically a pair of strings which indi-
cate on which host and within which file some data
can be found.

• An Operation can be scheduled to be executed
on an Object at any point while an experiment
is running; for example, an open-xterm operation
could be used to create a new xterm window con-
nected to a bash shell on a remote virtual machine
in ModelNet or CORE [4].

It is possible to define many variations upon this ob-
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Figure 2: Detail of two ModelNet nodes connected thru
unidirectional links

ject model. For example, some of our early designs did
not include Connectors: instead, each connection ref-
erenced a pair of Objects directly and we inferred the
semantics of a connection from the type of the objects
connected. Unfortunately, this simple model did not al-
low us to represent parent/child relationships between
objects of the same type. Although we could have used
directed connections or connection ordering to infer se-
mantics, we felt that introducing explicitly named con-
nectors would be more user-friendly.

3.3 Applying The Object Model
Because the NEPI object model is very flexible, it is pos-
sible to construct many very different representations of
the same experiment but choosing the right one is hard.
In this section, we outline the representation we expect
to use for a few select experimentation environments.
We hope to show through these examples the kind of
considerations which need to be taken into account to
design a backend for an experimentation environment.

The topology of a ModelNet [9] experiment is typi-
cally described by an XML file which contains a list of
core and leaf network nodes as well as a list of unidirec-
tional point to point links between pairs of nodes which
are characterized by a delay, throughput, and transmis-
sion queue length. Figure 2 shows the simplest way such
a network topology can be modeled: two kinds of func-
tional units (Nodes and Links) and a few attributes
for Link objects such as delay, throughput and queue
length are sufficient to describe the network topology.

A ModelNet backend for NEPI could easily turn
the above description into a running instance but
application-level traffic would be missing. A ping ap-
plication is easy to model with an extra functional unit
Ping interconnected with a Node to express which
machine it will run on but the destination of the ping
needs to be specified: the challenge of modeling appli-
cations is in the identification of communication end-
points. Adding a Destination attribute to the Ping
object would require the user to statically assign IP ad-
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Figure 3: Two connected ModelNet nodes, highlighting
the use of connections as references to remote hosts

dresses, hostnames or VNs (ModelNet unique ids) to
each leaf node. Figure 3 shows a more graphical op-
tion which abstracts the user away from either of these
unique ids: the Ping application is directly connected
to the remote Node.

PlanetLab [6] offers very little control over the net-
work topology of an experiment: it merely allows selec-
tion of hosts interconnected through the Internet based
on their hostname and IP address and provides metadata
about each host (geographical location, bandwidth limit,
etc.). This, however, is sufficient to allow the NEPI back-
end of PlanetLab to define a Location attribute on a
per-Node basis to automatically select a host during de-
ployment based on a geographical position. Other at-
tributes to allow selection based on other criteria such
as availability or uptime, are also possible if the relevant
information is available.

To allow high extensibility, and very high control over
its exact behavior, ns-3 [2] exports natively its func-
tionality through very low-level ns-3 objects: some of
these represent layer-3 IP stacks, others represent wire-
less propagation delay models, etc. From the perspec-
tive of an ns-3 user, it thus makes sense to model an
ns-3 simulation in NEPI by a set of objects, attributes,
and traces which map as much as possible one to one
with ns-3 native objects. The greatest challenge to im-
plement this approach is that ns-3 does not use natively
such a descriptive approach: a lot of its configuration is
functional and is very hard to express in terms of static
inter-connection descriptions among objects.

An ns-3 experiment description is shown in Figure
4. It is inherently more low-level than the descrip-
tion used in Figure 3 but experimenters could use NEPI
to define a toolbox of higher-level composite objects
for conveniance. For example, they could define a
Ns3WirelessNode, or a Ns3DumbellNetwork to
make it easier to describe large complex experiments
from low-level objects.
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Figure 4: Description of a multihomed host in ns-3

NEPI provides a considerable amount of flexibility to
define these new composite objects: users can define
simple hierarchical aggregates by describing a new ob-
ject as a box around a set of inner objects. The connec-
tors, attributes, traces, and results of such an aggregate
object are defined as a subset of those found in the inner
objects.

Another approach is to directly write a plugin which
defines a new object type with a set of adhoc connec-
tors, attributes, traces, and results, and then, to program
the behavior of that object by creating and manipulat-
ing other NEPI objects. This allows the definition of a
Ns3DumbellNetwork object with attributes such as
LeftLeafNumber which are used to parameterize the
creation of other objects rather than directly control an
attribute within an inner object.

Omnet++ [3], uses an adhoc programming language,
NED, to construct simulation topologies. The object
model implemented by NED is very close to the NEPI
object model which makes it trivial to define a one to
one mapping from NED objects to NEPI objects. Small
differences such as the lack of directed connections in
NEPI are easily overcome by adding in and out prefixes
or postfixes to connector names in NEPI. However, the
converse is not true: NED was designed as a declarative
language to allow two-way GUI editing (editing both au-
tomatically generated and hand-writen NED files from
the GUI), which makes it impossible to map the arbi-
trary programming constructs used to define objects in
NEPI to NED objects.

These simple examples outline an important feature
of NEPI: each backend is able to define whichever func-
tional units make the most sense to model an experi-
ment. Some backends such as PlanetLab will naturally
be modeled with fairly high-level functional units but
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Figure 5: Conceptual diagram of a sample experiment

other backends will more easily map to very low-level
functional units. In both cases, NEPI allows the back-
end to choose whatever is the most convenient but also
ensures that the resulting API is coherent with the API
exported by every other backend.

4 A Sample Use Case
To illustrate the potential of the NEPI framework, we
consider a complex but realistic research experiment.
Figure 5 shows a high-level description of this experi-
ment: three access networks (wimax, wifi mesh, and wifi
infrastructure) comprising 50 hosts each are intercon-
nected by the Internet. On each leaf host, socket-based
applications such as VLC over RTP, BitTorrent peers, or
VoIP over SIP generate traffic.

There are many ways to make this experimentation
scenario come true. The most obvious solution is to buy
some fancy wimax hardware for the wimax base station,
invest money in a set of mesh wifi routers, spend more
money to setup a reproducible radio environment, etc.

Another much cheaper and much easier to deploy so-
lution is to simulate these wireless networks: ns-3, for
example, can be used with wifi and wimax modules to
provide highly-reproducible wireless links and work is
under way to allow normal socket-based applications to
be run within the simulator.

The Internet connections between each access net-
work could also be simulated but it would be hard to
ensure realistic background traffic and error conditions
on these links. A tempting solution here is to run a sepa-
rate realtime simulation for each access network on three
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Figure 6: Partial representation of the experiment in
NEPI

hosts interconnected by the Internet to ensure that the ex-
periment is exposed to the variable traffic conditions of
the real Internet.

Since PlanetLab was specifically designed to allow
users to allocate a set of hosts interconnected by the In-
ternet: setting up the above experiment is thus merely a
matter of requesting the creation of a PlanetLab slice, as-
sign 3 nodes to this slice, and then, start a realtime ns-3
simulation on each remote host for each access network.

The main challenge to get this scenario running is that,
to ensure that each simulated host within each simulator
is able to send packets to other simulated hosts within
other simulators, we need to allocate at least one testbed-
routable IP address per simulated network interface and,
then, correctly setup the routing table of each simulated
host.

We could manually request the allocation of routable
IP addresses within each of the hosting entities of the
PlanetLab nodes we assigned to our slice, but that re-
quest would be unlikely to be answered positively. We
thus have to create our own private IP network, ensure
that all addresses are allocated coherently, and tunnel our
simulated IP packets over the Internet from one Planet-
Lab host to another. At this point, it should be pretty
clear that, while all of this is perfectly feasible techni-
cally, it is far from trivial to do it manually.

The initial approach to automation would naively use
a unix shell script and ssh to remotely install ns-3, up-



load ns-3 scenario descriptions, configure a set of IP tun-
nels, and, finally, start each simulation. This simple so-
lution would still require manually allocating ranges of
IP addresses for each access network, hardcoding them
in each separate ns-3 simulation script, and providing the
right configuration parameters for each IP tunnel. The
big missing piece here is that the automation script does
not have a global view of the network-level aspects of the
experiment. i.e., it cannot assign IP addresses or setup IP
tunnels on its own because it has no information about
the simulated topology of each access network.

Unsurprisingly, because NEPI was designed to pull to-
gether in a single script the description of a complete,
potentially mixed experiment, it is able to fully automate
all the configuration tasks mentionned above.

To describe this experiment with NEPI, we begin by
creating four Server objects: one for PlanetLab to rep-
resent our slice, and the other three for ns-3. In the
PlanetLab server, we create three Nodes to represent
each host allocated to the slice and connect them all to
the Internet object. The Ns3Tunnel objects at-
tached to each node represents the tunneling binary run-
ning within each PlanetLab host: it is connected to a
PlabDevice running within the associated ns-3 simu-
lation. Figure 6 summarizes this description.

When the user starts this experiment, NEPI first adds
three hosts to the pre-existing PlanetLab slice, and waits
until the relevant sliver is started on each host. Once this
is done, it remotely starts the tunneling application and
ns-3 on each sliver, and then, remotely configures the IP
addresses and routing table of each simulated node as
well as the tunnels in each tunneling application.

5 Conclusion
The goal of NEPI is to give researchers more freedom in
choosing which testbed to use and to make it possible to
automate and run complex mixed experiments. It strives
to provide a uniform yet flexible interface to describe
and control all aspects of a network experiment.

The open question we are trying to answer is whether
or not it is possible to define a uniform object model
that can be used with arbitrary network experimental en-
vironments such that differences in the underlying at-
tributes or capabilities of the tool can be successfully
reconciled.

Because of the richness of the models exported by a
network simulator, we have, so far, focused our work
on the implementation of a NEPI backend for ns-3 to
evaluate how flexible the NEPI object model really is.

We expect to release a working prototype of NEPI dur-
ing the summer of 2009 with a functional ns-3 backend.
Once this is done, we intend to focus on adding backends
for other testbeds such as PlanetLab, Emulab, ORBIT,
and ModelNet.

Although a lot of work remains to be done to imple-
ment multiple backends for NEPI, and to evaluate the
usefulness of NEPI in practice, we believe that tools such
as these are critical to enabling further experimentation
with heterogenous networks.
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