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Abstract loss rate of a link indicates the level of congestion on that
link. MINC loss inference is thus useful in monitoring the
Network tomography is a process by which internal level of congestion on specific network links. It can be used
characteristics of a network are inferred from “external” by network operators and service providers to identify con-
end-to-end measurements. To ensure that the inferred intergested links in the underlying network and manage their
nal characteristics are sound and trustworthy, itis essential traffic efficiently or upgrade certain parts of their network.
to verify the integrity of data collected from external mea- The RTCP [5] format also has been extended to perform
surements. In this paper, we present an algorithm which MINC measurements [3]. Multicast sessions which use
can verify the integrity of data collected from end-to-end RTP [12] can use their data packets as probes and RTCP
multicast measurements. This data is used by a multicast-to report feedbacks. When used in this manner with RTCP,
based tomography tool called MINC to infer loss rates MINC loss inference can also be utilized by multicast con-
on internal network links. MINC performs loss inference gestion control protocols to detect bottleneck links in the
by analyzing binary feedbacks reported by receivers in re- multicast tree.
sponse to multicast probes sent from the source. However,

buggy or malicious receivers can report incorrect feed- jyierna| network characteristics is the essence of tomog-

backs, resulting in a faulty loss inference. In this work, ranny  However, in order to utilize an inference which is
we consider the problem of vern‘yl'ng the mtegnty of bi- pased on “external” end-to-end measurements to make im-
nary feedbacks collected from receivers of a multicast tree 4 ant decisions about the network, it is essential to ensure

to ensure a sound and trustworthy MINC loss inference. it the external data is indeed correct. One of the causes of
We start by showing how the MINC loss inference becomesgronequs inference is incorrect feedbacks from buggy re-
erroneous if feedbacks of receivers are altered. Then, we

- o i ; "'~ceivers. Due to configuration errors, software patches, and
present a statistical verification algorithm which checks if ¢o\arg multi-platform implementations, often networking

feedbacks of receivers are consistent with respect to oneghvare is buggy and does not function as intended [4, 15].
another. We present the performance of this algorithm on g, instance, in [8], bugs found during experimentation

Model-based traces, NS traces and MBone loss traces. with NIMI have been reported. RFC 2525 lists 18 com-

mon bugs found in TCP implementations. Designers of
NetLogger [13] have pointed thd§% of problems in dis-
tributed applications arise due to the presence of bugs in
Network tomography refers to the process of inferring netvyorking sof_tware. Thus, to ensure asound and Frustvvpr—
internal characteristics of a network from end-to-end mea- Y inference, it becomes necessary to verify the integrity
surements. Multicast-based Inference of Network inter- Of measured feedback data.
nal Characteristics(MINC) is one of the earliest pro- Further, since decisions made by utilizing network infer-
posed methods of performing network tomography [1,2,9]. ence eventually effect network users, this gives malicious
MINC can infer internal characteristics of a network which users an incentive to report incorrect feedbacks and obtain
lies under a multicast tree using end-to-end multicast mea-a favorable inference. In multicast congestion control, a re-
surements. MINC can infer characteristics such as lossceiver can report wrong feedbacks and mislead the conges-
rates and delay distributions of network links [2,9]. To tion control protocol to increase its sending rate, thereby
infer loss rates, the source sends a stream of probe packetsarming other well behaved flows in the network [6]. In
into the multicast tree. For each probe, each receiver re-sender-based multicast congestion control schemes, the
ports whether it received the probg)(or not 0). Based slowest receiver can report wrong feedbacks and cause the
on the binary feedback traces collected from all receivers, source to inflate its sending rate, to obtain a better band-
per link loss rates in the multicast tree are inferred. The width. Loss rate snapshots inferred by MINC can be used

Relyingsolelyon end-to-end receiver feedbacks to infer

1 Introduction



to find out if there is persistent congestion in the multicast change due to incorrect feedbacks. Section 4 presents
tree when the sending rate increases. However, misbehavthe ICheckalgorithm for feedback verification. Section 5
ing receivers can also report wrong feedbacks to MINC to presents experimental results. Sections 6 and 7 present dis-
hide their congestion related misbehavior. In such a setting,cussions and conclusions respectively.

before using the binary feedbacks from multicast recievers

for MINC inference, they need to be checked for correct- 2 MINC

ness.

This work presents an integrity check which verifies bi-  In this section, the principle used by MINC to infer the
nary feedbacks collected from multicast receivers in order loss rates or the passage rates of links is described; passage
to ensure a sound and trustworthy loss inference. Due torate = 1— loss rate (The terms loss rate and loss proba-
inherent correlations in multicast traffic, loss rates of paths bility are equivalent and so are passage rate and passage
in the multicast tree can be inferred in different ways. Our probability. If out ofn packets sent on a linky are lost,
work exploits this idea to design a statistical verification then the loss probability of the link is/n and its passage
procedure which detects loss rate inconsistencies that aris@robability is(n —m)/n). MINC infers the characteristics
in erroneous feedback data. Furthermore, in conformance

with the end-to-end nature of tomography, our procedure S
does not require any knowledge of the multicast tree topol- Ipab
ogy. D
1.1 Contributions wb
A B

We present two related contributions in this paper. Our
first contribution is an analysis which explains how the loss Figure 1. Multicast tree with two receivers
rates inferred by MINC change when receivers report in-

correct feedbacks. Our analysis shows that when receiversf a network underlying a multicast tree by exploiting the
falsely report that they received the probe packet, the lossinherent correlation in multicast traffic. MINC infers loss
rates inferred by MINC in a large portion of the multicast rates in the logical multicast tree. Each link in the logical
tree can get altered. tree is a series of physical links in the underlying network

For MINC loss inference, the binary feedbacks for N between two branch points. Consider the logical multicast
probes from R receivers are available in the form 8fa R tree shown in figure 1 with sourcg, two receiversd, B
binary feedback matrix. Given such a matrix that poten- and the branch node D. Suppose that the source sends a
tially contains incorrect feedbacks, the following questions stream of probe packets and each receiver observes whether
can be posed(a) Is the given data erroneous, or equiva- it received the probel() or not 0). Consider the task of es-
lently, are the feedbacks of one or more receivers incorrect? timating the passage probability of the pddB. For this,
(b) Which are the receivers whose feedbacks are incorrect?consider those packets which were receivedibince A
(c) In spite of errors, can we make the right MINC loss received them, these multicast packets must have crossed
inference using the given feedback data? the branch node D and also sent out on pati. Among

Our main contribution is an algorithm calld€heck them some may have crossed the patlB and some lost
which answers (a)lCheckis a statistical procedure which  on this path. Thus, the ratio of the number of packets which
searches for loss rate inconsistencies that arise in erroneousoth A andB received to the total number of packets which
feedback data. Broadly speakin@heckconducts statisti- A received estimates the passage probability of gaih
cal tests to determine the likelihood of collecting the given The passage probability of pafthA can be calculated sim-
feedback data from receivers of a multicast tré€heck ilarly.
uses the core principle of MINC loss inference itself. Like Formally, suppose that the sender injeStprobe pack-
MINC, it is based on the premise that a probe is lost on ets into the multicast tree. Lét, ), i,5 € {0,1} denote
a link using Bernoulli loss process, i.e., successive probethe probe corresponding to whickd reportedi and B re-
packets are lost independently (which is true in the pres-ported;j. Equivalently,(i, j) also denotes the feedback it-
ence of sufficient background Internet traffic [1]Check self whereA reportedi and B reported;. Letn;; denote
takes as input only th&/ x R binary matrix and does not  the total number of probes of tyfé, j). For examplen
require any knowledge of the multicast tree topology. denotes the total number of probes for whi¢hreported

The rest of the paper is organized as follows. Section 1 and B reported0. We extend this notation slightly by
2 briefly explains how loss rates are inferred in MINC. allowingi,j € {0, 1, *}, where %” means adont care(ei-
Section 3 examines how the loss rates inferred by MINC ther a0 or 1). For examplen;. denotes the total number



of probes for whichA reported 1 and3 reported either a
0 or1; n1, = nig + n11. Now, the passage probability of
the pathD B, denoted byP, and the passage probability of
pathD A, denoted byP, are given by

ni1
P, = ) P, =
N1« TNy1

ni1

1)

Similarly, the loss probabilities of path B andD A are

Py="1 P, =" @)
1% Nx1
Having done this, the passage probability of p&fh de-
noted byP,, can be estimated as follows:
N1L/N MaaNis
Py = = 3
"~ PP, N-ny, ®)
Since SD is the common path betweet and B, P, is
also called thecommon passage probabilityThe above
principle is extended in MINC to calculate the passage
probabilities of all the paths in the multicast tree. To per-
form MINC loss inference, the topology of the multicast

feedbacks. A misbehaving receiver can misbehave either
by altering a feedback from 0 to 1 (denoted by~ 1) or

by altering a feedback from 1 to O (denoted by~ 0).
When a receiver misbehaves fram-~ 1, it reports that it
received the probe when it actually did not. When it misbe-
haves froml ~ 0, it reports that it did not receive the probe
when it actually did. If a receiver reports a wrong feedback,
the passage probabilities inferred by MINC in the multicast
tree change. Figure 2(a) shows the impact of misbehavior
on the passage probabilities inferred by MINC when re-
ceiverA alters some of its feedbacks fram-~ 1. The pas-
sage probability of the path from to the source increases
(1) and the passage probabilities of all links connected to
this path decreasd ). Thus passage probabilities in a large
region of the multicast tree are altered. Figure 2(b) shows
the impact of misbehavior on the passage probabilities in-
ferred by MINC when received alters some of its feed-
backs froml ~~ 0. In this case only the passage probability
of the path fromA to its parent decreaseg(to be congru-
ous with the data reported by. The passage probabilities
in the rest of the multicast tree remain unchanged.

tree is needed. However, the common passage probabili-

ties calculated between different receiver pairs can also be

utilized to infer the topology of the multicast tree [1, 11].
Thus, MINC loss tomography can be performed entirely in
an end-to-end manner.

2.1 Simple Observations |

An observation which aids the subsequent analysis is

now made. Consider th@0) probe. This probe was ei-
ther (i) lost on the pathtt'D (denotedcommon losksor (ii)

it crossedS D and was lost simultaneously on patbsi
and DB (denotedndependent logs We classify thg00)
probes into these two respective categoriesrligtdenote
the total number of probes lost on pati. Letn}, denote
the total number of probes which crossé@ and were
lost simultaneously o A and DB. Now, it is noted that
nio +no1 are the total number of probes which crossed the
pathSD and lost onDA. Among themng; crossedD B
andn{, were lost onD B. Thus, the passage probabiliy
can also be written as

o1
Pp=—— 4
7160 “+ no1 ( )

Thus, from (1) and (4) we have

o1 ni11
’ noo + o1 Nk ®)
3 Misbehavior and its impact on passage
probabilities

We use the term "misbehaving receiver” to denote the
buggy or malicious receivers which can report incorrect

S S
ﬂ
U A subtree
S
4 fr 4
() A (b) A

Figure 2. Effects of misbehavior on passage
probabilities. (a) Receiver A reports more
1's, (b) Receiver A reports more 0's

To explain the above changes in probabilities, the mis-
behavior mechanism of a user is modeled as follows. It is
assumed that a receivgmisbehaves with probability;

(0 < «a; < 1). If receiverj misbehaves frond ~ 1, it
changes it$) feedback tol with probability o;; and vice
versa.

Consider the two receiver system shown in figure 1
with receiversA, B and sender S. Now, we calculate the
expectedpassage or loss probabilities after misbehavior.
Firstly, the misbehavior fromi ~ 1 is considered.

3.1 Receiver4d misbehaves fromo0 ~- 1

After A misbehaves, leP,, P, andP,, denote the re-
spective altered passage probabilities.



Lemma 1. If A misbehaves frori ~» 1 with probability
tar (1) E[Py) < Py (if) E[Pa) > Py (iii) E[Puy) > Pay

Proof. When A misbehaves fron) ~» 1, it causes two
types of probe or feedback transformations:

21 (00) = (10) y: (01) = (11)

The following table shows thexpectedeedback system

after these transformations.

Original After Misbehavior
noo nOO(l - aa)

no1 = noi(l —ag)

n10 N1 + Qa - Moo

niy ni1 + Qg - No1

The altered passage probability of pddB denoted byP,
will be,

n11 + Qq - No1
Nix + Qq - Moo + Qg - N1
ni11 + Qg - No1

= (6)

n1x + o (N + no1) + aa - Ny

E[Py] =

We know thatu/b = ¢/d = (a+c)/(b+d) = a/b= c/d.
Applying this to equation (5), we get
ni1 + Qg - No1

P, = : 7
’ n1x + aa(nho + no1) ")

Subtracting (6) from (7) gives,

_ _ nGo * Ya
EPy) =P, {1 T aa} N ()
Now,
E[P,] = no1 (1 — @a) =P(l-ay) | (9
Nx1
Proof for (iii) is similar to that of(i). O

Intuitively, whenA’s feedbacks are altered frobn 1,
those feedbacks for which both and B had reported),
i.e. of the form(00), change tq10). Some of thes¢00)

Proof. After misbehavior we have,

ni1 + Ny
Pp=— "0
1% + Ny + ny
. ni+n n
Py, < P, iff Ty T
N1x + Ny + Ny N1%
i.e., iff (711* — nll)ny < NNy

. . n n P,
e, iff —= >0 -’29
Ty ni1 Pa

Proof for P, is similar. O

Corollary 2. If both receiversA and B misbehave from

0 ~» 1 with the same probability, the receiver which suffers
more losses before misbehavior causes a greater decrease
in the passage probability of the other receiver.

Proof. After A and B misbehave fron®) ~~ 1 with prob-
abilities o, and oy, the expected probe system is shown
below.

Original After Misbehavior

100 noo(1 — aq)(1 — )

no1 = no1(l — aq) + (1 — aq)neo

n1o (n10 + aq - noo) (1 — )

n11 n11 + Qg - no1 + ap(n1o + g - Noo)

Working outE[P,] and E[P,] as before, we have

= no1 + & - Noo
EP,]=(1—a,) —— 10
Po] = (1 -« ){n*1+ab_n*0} (10)
= n10 + Qq - Moo
EPy] = (1 — _ 11
[Po] = ( ab){n1*+%.n0*} (11)

If a, = ay, the increase in each of the above depends on
the ratiosngg /n.o andngg/no« respectively. O

3.2 Receiverd misbehaves froml ~ 0

After A misbehaves, le?,, P,, andP,, denote the re-
spective altered passage probabilities.

feedbacks correspond to probes which were lost on the pati-emma 2. If A misbehaves fronh ~~ 0 with probability

SD. These probes are now counted as having croSged

and lost onDB, causing the passage probability $i to

increase and the passage probability)df to decrease. In

general, suppose that misbehaves by causing, trans-
formations of typer andn,, transformations of typg. The

following corollary gives the conditions for observing the

expected changes in probabilities after misbehavior.

Corollary 1. If receiver A misbehaves fromd ~~ 1 re-
sulting inn, andn, transformations, thei?, < P, and
Pup > Py if ni/ny > 7’),10/77,11.

aq, (i) E[Py] = By (ii) E[Pe] < Py (iii) E[Pab] = Pab

Proof. If a receiver misbehaves froin~~ 0, it causes two
types of probe transformations: : (10) = (00) andy :
(11) = (01). Writing down the expected probe system
after transformations as before, we will have

Original After Misbehavior
noo oo + Qg " N10

no1 Nno1 + Qg " N1

n10 = n10(1 — Oéa)

ni11 n11(1 —Oéa)




ElP) = ni(l-ad) _ 4.1 Simple Observations I
b n1«(1 — ag) b

n11(1 — ag) Figure 3 shows the two possible topologies which con-
E[F,] = T g Pa(l—aa) nect an arbitrary set of three receivers within a multicast
o ) tree. Consider the topology of Fig 3(a) with receivers
Proof for(iii) is same as that fdf) D B, C, and sender S. With usual notation, #ef, denote the

number of probes for whicll reportsi, B reportsj, and

C reportsk. Let P,, P,, P,, and P,;. denote the passage
probabilities of path® C, EA, EB, andS D respectively.
Consider the problem of estimating the passage probabil-
ity of path DC'. Observe that, if eitheA or B received a
Corollary 3. If A misbehaves from ~~ 0 resulting in probe, this probe must have reached the point D and must
nz andng transformations, thet®, = P, , Py, = Py if have been sent out on the pdt’. Now, n1g. iS a sample
nz/ng = nio/N11. of probes received byl. Thus, these probes cross&d

and were sent out oPC. Among themy oo were lost on

DC andng; crossedDC. ThusP, can be estimated as

In general, suppose that misbehaves by causing;
andny transformations. The following corollary gives the
general conditions for observing the expected changes in
probabilities after misbehavior.

Proof. After misbehavior we have,

ni1 — Ny

Pp=—"—"" ni101
b nl*_nj—n»g PC:n (12)
10x%
P, — P, iff nu—ng _ hu Using the same reasoning for the sample of probgs
’ ’ Nix — Nz — Ny Nix which were received by, P, can also be estimated as
n
ie., iff  (ni. —ni1)ng = nung p, =-U (13)
101
o i e _ Mo P, From (12) and (13), we have
€., | —_— == ~
Ny ni1 Pa nigo Mo i (14)
Similarly for P,,,. O nior  nonn  Pe
The rest of the paper concentratesions 1 misbehav- Lemma 3 will show that the two ratios in (14) differ when
ior, sincel ~» 0 misbehavior has almost no impact. feedbacks of either or both and B are altered. An obser-
vation similar to the one in section 2.1 is now made. The
4 Algorithm for feedback verification ngoo Probes are splitinto two groups:fi,, andngg,. Now,

néoo are the number of probes lost on the p&th. nf,
Broadly, given thelV x R binary feedback matrix, the are those which crossesiD and were lost simultaneously

ICheckalgorithm considers three receivers at a time and in theleft subtreerooted atD and on the patiC. Now it
verifies the feedbacks of two particular receivers using theis observed thafn),, + noo1) crosseds D and were lost in
feedbacks of the third receiver. This verification is done by the left subtree. Among themy,, were lost onDC and
performing a test on the feedbacks of the three receivers.ngy; crossedDC. Thus we have,
In this section, we describe this test in Lemma 3. Subse- i =
quently, we describe th€heckalgorithm. Moo _ P (15)

noor P
Lemma 3. After A and B misbehave fron) ~~ 1 with
probabilitiesa,, and«y, in the expected new system

n100 no10
101 mnop11

except when either of these conditions hold
() Pupe=1

(i) Oéa/ab = n101/n011

Figure 3. Multicast trees with three receivers Proof. After A and B misbehave, the relevant part of the
expected new system is shown belawy;;, denotes;;, in
the expected system.



no10 = (Po10 + s - nooo) (1 — )
no11 = (no11 + ap - o1 ) (1 — o)
n100 = (N100 + @a - M000) (1 — )
nio1 = (n101 + @ - noo1)(1 — ap)
Thus,
Nig0 Moo + Qg - Nooo
nio1 Nn101 + Qg - Noo01
_ M0 + Qa - Moo Qa * Noo (16)
Nn101 + Qq - Mool M101 + Qa - No01
Noio __ N010 + &% " Mooo
no11 no11 + Qp - Noo1
no10 + Qp * NG Qg * NG
_ 000 000 17)
no11 + @ - Moo1  Mo11 + Qb - Moot
From equations (14) and (15) we have,
N100 + Qa * Moo 010 + X - Mo
7101 + Qq * NoO1 7011 + Qb * Noo1
Thus,ny00/m101 = no1o/mo11 if
Qa " Moo _ Qp * Moo (18)
7101 + Qq * No0O1 7011 + Qb * Noo1
i.e., iff
() nfpo=0= Pyc=10r
(ii) Oéa/ab = n101/n011
O
Condition (ii) above essentially implies that
%_Pa(l_Pb) (19)

Ap o Pb(l — Pa)

If A and B misbehave with the same probability then con-
dition (19) does nothold unlessP, is also equal taP.
Thus, even ifA and B misbehave with the same probabil-
ity, the two ratiosnigo/n101 @ndngio/no11 would differ in
most scenarios. Alsd?,;. determines the amount af;,,
probes available to distort the two ratios, making them dif-
ferent after misbehavior. P, is low, there is a higher
chance that the two ratios would differ more after misbe-
havior.

Lemma 4. If C misbehaves fromfi ~~ 1, in the expected
new system, both estimates Bf (12) and (13) remain
equal.

Proof. Assuming thatC' misbehaves with probability..,
after misbehavior we have,

n1oo(l — ac)

n10%

no1o(1 —ae)

E[P]

no1x

As a result of lemma 4, we have that lemma 3 holds
irrespective of whethe€' misbehaves or not. (It is now
noted that the above results of lemma 3 and 4 hold for the
other3-receiver topology of Fig 3(b) as well).

4.2 ICheck

Procedure ICheck(F, k,d)
F[N x R] : Binary feedback matrix
k < (%) : Times to repeat
0 : confidence level
1: inconsistent < 0
2: while £ > 0 do
3 (x,y,2) = Random(N) /[/same set not repeated

4. (A,B,C) = LabelTree(F,x,y,z)

5. failed — HTest(F[A], F[B], F[C],9)
6: if failedthen

7 inconsistent < inconsistent + 1
8 endif

9 k<—k-1

10: end while

11: print inconsistent

Procedure LabelTree(F, z,y, z)
1: ComputeP,,, P,., P.,
. temp «— min(Pyy, Py,
o if temp = Py, then
return (x, y, 2)
. else iftemp = P,, then
return (y, z, x)
else
return (z, z, y)
- end if

PZ.’,E)

Figure 4. ICheckAlgorithm

Figure 4 presents the algorithm for feedback verifica-
tion. ICheckexamines the entire feedback data by consid-
ering feedbacks of three random receivers each time and
applying the test of lemma 3 to detect inconsistencies. The
test of Lemma 3 is applied iRlTest Lemma 3 tests the
feedbacks of receiverd and B using the feedbacks @f.

To apply this test on an arbitrary setdfeceiversJCheck
needs to identify which of these receivers can function as
C. For this, it uses th&abelTreeprocedure (Fig 4). This
procedure uses a principle from [1,11] and labels the pair
of receivers with minimum common passage probability as
(A, B) and the other a¢’ (Fig 5). Thus probes received
by A or B would have also been sent out on the liBK.
However, due to excessive feedback alteratibabelTree
may swapC with A or B. If A is swapped withC' then

the pair(no10/m110, n001/m101) IS compared and i3 is



S S S
T Y ‘Z x z y Y z m
A B C A B C A B C
min = Ppy min = Py. min = Py,
Figure 5. LabelTree Procedure : Minimum

pair-wise common passage probabilities are
shown in bold

swapped withC' then the pair(nigo/n110, 7001/7011) IS
compared. These unrelated ratios continue to remain dif-
ferent afterdA and B misbehave.

To perform the check of lemma BiTestis used.HTest
is a standard statistical hypothesis test which is used to tes
the difference between two proportions. Given the feed-
backs of three receiver$, B, andC, the following contin-
gency table is constructed.

Lost Crossed Total
Sample A | nioo n101 N10x
Sample B | no1o n011 101+
Total N100 + No10 | M101 + No11 | M10+ + No1x

A two-tailed test is performed withull hypothesigi, and
alternative hypothesi#/; defined as,

no10

no11

1100

101

1100

no10

HO: Hli

n101 o011

HTesttests whether the difference between the two ra-
tios n1go/n101 @nd ng1p/no11 IS Statistically acceptable
with respect to the given sample sizes of samfeo.)
and samplé3(ng1.). In this work, we usd-isher’s Exact

%he integrity ch

ICheck

Figure 6. Functioning of

of three receivers, the least common parent (nBjlenay
be close to the sourcg resulting inP,;,. ~ 1. But when
it appears in another set of three receivers, nbdeay be
far from the source, resulting iR, < 1 (Figure 6).

The complexity oflICheckvaries with the number of
three receiver sets checked. Hfthree receiver sets are
tested, the complexity d€heckis O(NNk). As k increases,
eck becomes stronger. For the strongest
check, when all(¥) three receiver sets are testdd,s
O(R3).

5 Experiments

ICheckis a C program which we have implemented us-
ing the ideas discussed in the previous section. For Fisher’s
exact test, we use Algorithm 643 [7, 10] written in Fortran.
To test the performance #€heck we have conducted ex-
periments using model-based traces, NS traces and MBone
traces. For Model-based traces, losses on each link are
created using a time-invariant Bernoulli loss process. For
NS simulations, losses on links occur due to buffer over-
flows at network nodes as the multicast probe competes
with background TCP and exponential on-off UDP traffic.
For MBONE traces, we use the traces of a multicast audio
session which was run on the MBONE.

Testas the representative statistical test. Fisher's exact tesP-1 Model Simulation

is a permutation test and outputpaaluebetweer) and
1. If the p-value is less thaf.05, null hypothesist, can
be rejected witl5% confidence, i.e., with5% confidence
one can say that feedbacks of either or bdtland B are
incorrect.

Model based simulations are used to study the perfor-
mance ofICheckon a wide variety of inputs. The effec-
tiveness olCheckrests on the statistical test performed on
three receiver sets. The factors from input data which in-

ICheckexploits the diversity of the multicast tree and fluence these tests afi¢ Number of probesii) Actual link
the feedback data to overcome the weaknesses of lemma 3oss rates in the multicast tree. These two factors work to-
Firstly, in each three receiver test, lemma 3 cannot checkgether to determine the sizes of two sampigg. andng .
0 ~~ 1 errors inC’s feedbacks. However, since the al- which are compared. If these two samples are of small sizes
gorithm tests several different three receivers sets, when aand their size difference is significant, only large alterations
receiverz appears ag€’ in one set, its feedbacks are not of feedbacks can be detected by the statistical test. As the
checked; but when it appears dsor B in another set, sizes of these samples grow, their size difference matters
its feedbacks get checked (Figure 6). Secondly, the test ofless and even small alterations of feedbacks are detected.
lemma 3 is weaker when passage probability of paih Whenever the samples are of comparable sizes, the detec-
i.e. P,y is very high. When a receiverappears in one set  tion is stronger. As the number of probes grow, sample
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sizes become large and eventually all alterations of feed-5.2 NS Simulation
backs are detected.

For NS loss traces, the simulation parameters were setup

Figure 7(a) shows the effectiveness of the statistical testas in the original work of MINC [2]. Th&-receiver com-

performed byCheckon different types of three receiver in- plete binary tree shown in Fig 7(c) was considered. The
puts. In this experiment, the three receiver topology of fig- bandwidth and propagation delay of each link were set
ure 3(a) was considered and the passage probabilities of all.5Mbps andl0ms respectively. Each link was modeled as
links were varied fron.80 to 0.99 to yield an almost com- @ FIFO queue with four-packet capacity. Nd@leent200
plete range of possible three receiver inputs which could byte multicast probe packets with interpacket times chosen
be tested byCheck For each input the number of probes uniformly at random fron2.5 to 7.5 ms. We conducteti0
were varied fromL000 to 10,000. They-axisin Fig 7(a) simulations and during each simulation, a variable amount
plots the percentage of inputs where the statistical test suc-of background traffic was introduced on each link in the
cessfully detects the inconsistency wii?s confidence for  tree using a random number of TCP and exponential on-

different misbehavior mechanisms :(i)% of receiverA’s off UDP flows. The probe losses observed by each re-
feedbacks are altered frotnto 1 (ii) 30% of receiverA’s ceiver were used to generate the loss traces. Link passage
feedbacks are altered frobnto 1 (i) 10% of receiverA’s rates in these simulations varied fr&%% to 95%. Figure

feedbacks an80% of receiverB’s feedbacks are altered 7(e) shows the combined cummulative distribution func-
from 0 to 1 (iv) 10% of both A and B’s feedbacks are al-  tion (CDF) of link passage rates for all links in the0 sim-
tered from0 to 1. As the number of probes increase, the ulations. For each trace four types of misbehavior mecha-
detection is stronger. When receivers misbehave with thenisms were considered as before. For each triggieeck
same probability, the detection is slightly weaker since the tested all the(5) three-receiver sets. Figure 7(f) plots the
ratiosnygo/n101 andnoig/noe11 are less far-apart as com- average number of inconsistencies detectedieckfor
pared to when receivers misbehave with different proba- €ach type of misbehavior mechanism. As observed before,
bilities. Fig 7(b) plots the same results as a function of when the number of probes increase, the detection becomes
the passage probabilit§,,. for the case wher&0% of re- stronger.
ceiverA’s feedbacks are altered frobrto 1. P, is crucial
compared to other link probabilities since it determines the 5.3 MBONE traces
amount by which the two ratios can get distorted, when
feedbacks are altered. A3,;,. grows larger, the two rgtios For MBone traces, we analyzed the WRN traces col-
change less and more probes are needed for detection.  |octed by [16] and publicly available at the web site [14].
These traces correspond to multicast audio sessions of
Next, the performance dCheckwas tested on general World Radio Network(WRN). Each dataset is about an
trees. Figure 7(d) shows the performancéClieckon the hour of trace in which receivers in the multicast group
8-receiver complete binary tree shown in Fig 7(c). In this recorded the sequence number of audio packets they re-
experiment,1000 trees of the type in Fig 7(c) were gener- ceived at 80ms intervals. The following traces were an-
ated with link passage probabilities varying uniformly from alyzed: WRNSep19, WRNNovl, WRNNov13, WRN-
0.80 t0 0.99. For each tree, probes were simulated and lossNov14, WRNNov28, WRNDec1 and WRNDec11 (topolo-
traces obtained. In each trace, the following misbehavior gies for all these traces are shown at [14]). From each
mechanisms were introduced (i) Each receiver misbehaveslataset,3 receivers which experienced sufficient losses
from 0 to 1 with either0%, 5%, 10% or 15% probability were chosen. Their traces were made binary based on
uniformly (0-1 rand). (ii) All receivers misbehave frdimo whether an audio packet was received or not and divided
1 with with 10% probability (0-1 const) (iii) Each receiver into batches of siz&0, 000 each. This resulted in a total
complement®%, 5%, 10%, or 15% of its feedbacks (comp  of 27 3-receiver loss traces of sizd), 000 each. Figure
rand) (iv) A random set of half of the receivers complement 8(a),(b) and (c) show the properties of these samples. Fig-
all their feedbacks (half-comp rand). In each trdGheck ure 8(a) shows the difference between the ratigs /n101
tested all the(g) = 56 three receiver sets. Figure 7(d) plots and ng19/n011, figure 8(b) shows the common passage
the average number of inconsistencies detectelChgck probability ;. for each sample, and figure 8(c) shows the
for each misbehavior mechanism. When receivers comple-p-value obtained when the two ratios were giveiitdest.
ment their probes, the feedback matrix becomes quite in-Since there is no misbehavior, the p-values for samples lie
consistent and several inconsistencies get detected. As thabove0.05. Figures 8(d),(e) and (f) show the p-values cal-
number of probes increase, the detection becomes strongeculated after three types of misbehavior mechanisms : 8(d)
The detection is weakest when all receivers misbehave with10% of receiver A’s feedbacks were altered frotto 1
the same probability. 8(e) 10% of receiverA’s feedbacks an@0% of receiver
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Figure 8. MBone Experiments

B’s feedbacks were altered frothto 1 and 8(f) 15% of the probes where at least one of the receivers received the
both receiverd and B’s feedbacks were altered frointo probe, both of them reportdd Fig 9(a) plots the number of

1. The p-values for most samples now lie belows5 in- inconsistencies detected Bgheckafter collusion. It plots

dicating that one can conclude wifs% confidence that = the mean, median, arith and95th percentiles of the me-

there is something wrong with the receiver feedbacks. dian. In spite of collusionCheckdetects inconsistencies
because when receivetsand2 appear in different three-

6 Discussion receiver sets, their feedbacks get checked with the feed-
backs reported by other receivers. For instance,ahd?2

6.1 Collusion appear in the same three-receiver set ad jr2(5), their

misbehavior cannot be detected since the ratios tested by

ICheckis a consistency check. It checks if the feedbacks Lémma 3 would remain equal. But when the receiver set

of all receivers are consistent with respect to one another.(1: 3, 5) or (2, 3, 6) is checked, inconsistency could be de-
Due to this reason it exhibits some resistance to collusion, €cted- Fig 9(b) plots the average number of inconsistencies
Malicious receivers in a multicast tree can collude in small détécted byCheckwhen a random set of receivers collude

in each tree, i.e., fo50% of the probes where at least one
receiver in the set received the probe, all of them reported
. Even when all receivers in the tree colludi&heckde-

groups by reporting & only when at least one member
in the group received the probe packet. If two receivers
have colluded together, their feedbacks may be consisten ) - i k
with respect to each other but inconsistent with respect totects mcons.lstenmes. In order. to collude in @ manner such
feedbacks reported by other receivers. Sit@eecktests tha_t the ent_lre feedback matrix rests c9n3|stent after col-
different three receiver groups, when two receivers which !USion, receivers need to know the multicast tree topology
have colluded together appear in different three receiver@nd perform synchronized collusion in large groups.

sets, their misbehavior could be detected. To illustrate this,

we considered the following experiment. Theeceiver 6.2 Spatial Dependence

tree of Fig 7(c) was considered and the link passage prob-

abilities of all links were varied frond.80 to 0.99 to gen- In multicast, losses occurring on different links can be
erate1000 random trees as before. In each tree, receiversdependent to each other. Spatial dependence of losses can
1 and 2 colluded with probability50%, i.e., for 50% of particularly occur between sibling links (i.e., links which



lusion becomes very easy and a receiver can collude with
10 any arbitrary receiver to report motés.
' On the other handiCheckchecks the integrity of re-
ceiver feedback data. Whenever receivers misbehave in a

g 6| _mean —— manner which destroys the consistency of feedback Qat_a,
2 5th —a— IChecksucceeds. However, due to the nature of statisti-
:r . _':___ cal tests conductedCheckis necessary but not sufficient,

R A M i.e, if ICheckdetects inconsistency, it means that there is
z

something wrong with receiver feedbacks; but if it does not
detect inconsistencies, it means that most likely receiver

0 | N N N W S S
i1 2 3 4 5 6 7 8 9 10

Probes (1000s) feedbacks are correct. Depending on the loss rates in the
multicast tree and the amount of misbehavior, it is feasible,
(a) Receiverd and2 collude (in tree Fig 7(c)) although less likely, that the resultant feedback matrix after

misbehavior remains entirely consistent.

30 7 Conclusions

25 p—
In order to use end-to-end network inference in a trust-

or worthy manner, it is essential to verify the integrity of re-

Number of inconsistencies

15 2 receivers collude —+— ceiver feedbacks. In this paper, we showed how the MINC
10 receivers —&— loss inference is affected by incorrect receiver feedbacks.
L No collusion - -o- - | We showed how the loss rates inferred by MINC change

when incorrect feedbacks are received. Subsequently, we
o) —EE SEEX SN EEE SEEX SRR SEE 2 B presented théCheck algorithm which searches for loss

1 2 3 4 5 6 7 8 9 10

o rate inconsistencies that arise in erroneous feedback data.
robes (1000s)

We presented the performancel@heckon Model Based
(b) Random group of receivers collude (in tree Fig 7(c)) traces, NS traces and MBONE traces. Our experiments
showed thatChecksuccessfully detects inconsistencies in
) ] the presence of different types of misbehavior mechanisms
Figure 9. Collusion and even in the presence of collusiofCheckdoes not
require any knowledge of the multicast tree topology and
have a common parent) when multicast is implemented Ontmhgsriois tf]reh:féicetctli:; egg{gzecrfnnba;ulﬁecg i,\:lt':iec Ic;}s;steo—
overlay networks such as the MBONE. In such cases, sib- grapny. 9 . p
before the MINC loss Inference to determine whether the

ling links may cross the same underlying physical link re- inference based on the given feedbacks would most likely

Iting in ndent | . The test of Lemma 3 remain ) .
suting d_epe dent losses clestolLe a 3rema Sbe trustworthy or not. In future, we shall investigate the
valid even in the presence of spatial dependence betweer

sibling links, i.e., the ratios tested by Lemma 3 remain i‘::]rg:rlreeg?;'e%%rgg;(csa“on of receivers which have reported
equal if there is no misbehavior. However, these ratios may '
become unequal if losses on non-sibling links are depen-
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