
Feedback Verification for Trustworthy Tomography

Vijay Arya, Thierry Turletti, Ceilidh Hoffmann

INRIA, Sophia Antipolis, France
E-mail: {vijay.arya, thierry.turletti, ceilidh.hoffmann }@sophia.inria.fr

Abstract

Network tomography is a process by which internal
characteristics of a network are inferred from “external”
end-to-end measurements. To ensure that the inferred inter-
nal characteristics are sound and trustworthy, it is essential
to verify the integrity of data collected from external mea-
surements. In this paper, we present an algorithm which
can verify the integrity of data collected from end-to-end
multicast measurements. This data is used by a multicast-
based tomography tool called MINC to infer loss rates
on internal network links. MINC performs loss inference
by analyzing binary feedbacks reported by receivers in re-
sponse to multicast probes sent from the source. However,
buggy or malicious receivers can report incorrect feed-
backs, resulting in a faulty loss inference. In this work,
we consider the problem of verifying the integrity of bi-
nary feedbacks collected from receivers of a multicast tree
to ensure a sound and trustworthy MINC loss inference.
We start by showing how the MINC loss inference becomes
erroneous if feedbacks of receivers are altered. Then, we
present a statistical verification algorithm which checks if
feedbacks of receivers are consistent with respect to one
another. We present the performance of this algorithm on
Model-based traces, NS traces and MBone loss traces.

1 Introduction

Network tomography refers to the process of inferring
internal characteristics of a network from end-to-end mea-
surements. Multicast-based Inference of Network inter-
nal Characteristics(MINC) is one of the earliest pro-
posed methods of performing network tomography [1,2,9].
MINC can infer internal characteristics of a network which
lies under a multicast tree using end-to-end multicast mea-
surements. MINC can infer characteristics such as loss
rates and delay distributions of network links [2, 9]. To
infer loss rates, the source sends a stream of probe packets
into the multicast tree. For each probe, each receiver re-
ports whether it received the probe (1) or not (0). Based
on the binary feedback traces collected from all receivers,
per link loss rates in the multicast tree are inferred. The

loss rate of a link indicates the level of congestion on that
link. MINC loss inference is thus useful in monitoring the
level of congestion on specific network links. It can be used
by network operators and service providers to identify con-
gested links in the underlying network and manage their
traffic efficiently or upgrade certain parts of their network.
The RTCP [5] format also has been extended to perform
MINC measurements [3]. Multicast sessions which use
RTP [12] can use their data packets as probes and RTCP
to report feedbacks. When used in this manner with RTCP,
MINC loss inference can also be utilized by multicast con-
gestion control protocols to detect bottleneck links in the
multicast tree.

Relyingsolelyon end-to-end receiver feedbacks to infer
internal network characteristics is the essence of tomog-
raphy. However, in order to utilize an inference which is
based on “external” end-to-end measurements to make im-
portant decisions about the network, it is essential to ensure
that the external data is indeed correct. One of the causes of
erroneous inference is incorrect feedbacks from buggy re-
ceivers. Due to configuration errors, software patches, and
several multi-platform implementations, often networking
software is buggy and does not function as intended [4,15].
For instance, in [8], bugs found during experimentation
with NIMI have been reported. RFC 2525 lists 18 com-
mon bugs found in TCP implementations. Designers of
NetLogger [13] have pointed that45% of problems in dis-
tributed applications arise due to the presence of bugs in
networking software. Thus, to ensure a sound and trustwor-
thy inference, it becomes necessary to verify the integrity
of measured feedback data.

Further, since decisions made by utilizing network infer-
ence eventually effect network users, this gives malicious
users an incentive to report incorrect feedbacks and obtain
a favorable inference. In multicast congestion control, a re-
ceiver can report wrong feedbacks and mislead the conges-
tion control protocol to increase its sending rate, thereby
harming other well behaved flows in the network [6]. In
sender-based multicast congestion control schemes, the
slowest receiver can report wrong feedbacks and cause the
source to inflate its sending rate, to obtain a better band-
width. Loss rate snapshots inferred by MINC can be used

to find out if there is persistent congestion in the multicast
tree when the sending rate increases. However, misbehav-
ing receivers can also report wrong feedbacks to MINC to
hide their congestion related misbehavior. In such a setting,
before using the binary feedbacks from multicast recievers
for MINC inference, they need to be checked for correct-
ness.

This work presents an integrity check which verifies bi-
nary feedbacks collected from multicast receivers in order
to ensure a sound and trustworthy loss inference. Due to
inherent correlations in multicast traffic, loss rates of paths
in the multicast tree can be inferred in different ways. Our
work exploits this idea to design a statistical verification
procedure which detects loss rate inconsistencies that arise
in erroneous feedback data. Furthermore, in conformance
with the end-to-end nature of tomography, our procedure
does not require any knowledge of the multicast tree topol-
ogy.

1.1 Contributions

We present two related contributions in this paper. Our
first contribution is an analysis which explains how the loss
rates inferred by MINC change when receivers report in-
correct feedbacks. Our analysis shows that when receivers
falsely report that they received the probe packet, the loss
rates inferred by MINC in a large portion of the multicast
tree can get altered.

For MINC loss inference, the binary feedbacks for N
probes from R receivers are available in the form of aN×R
binary feedback matrix. Given such a matrix that poten-
tially contains incorrect feedbacks, the following questions
can be posed:(a) Is the given data erroneous, or equiva-
lently, are the feedbacks of one or more receivers incorrect?
(b) Which are the receivers whose feedbacks are incorrect?
(c) In spite of errors, can we make the right MINC loss
inference using the given feedback data?

Our main contribution is an algorithm calledICheck
which answers (a).ICheckis a statistical procedure which
searches for loss rate inconsistencies that arise in erroneous
feedback data. Broadly speaking,ICheckconducts statisti-
cal tests to determine the likelihood of collecting the given
feedback data from receivers of a multicast tree.ICheck
uses the core principle of MINC loss inference itself. Like
MINC, it is based on the premise that a probe is lost on
a link using Bernoulli loss process, i.e., successive probe
packets are lost independently (which is true in the pres-
ence of sufficient background Internet traffic [1]).ICheck
takes as input only theN × R binary matrix and does not
require any knowledge of the multicast tree topology.

The rest of the paper is organized as follows. Section
2 briefly explains how loss rates are inferred in MINC.
Section 3 examines how the loss rates inferred by MINC

change due to incorrect feedbacks. Section 4 presents
the ICheckalgorithm for feedback verification. Section 5
presents experimental results. Sections 6 and 7 present dis-
cussions and conclusions respectively.

2 MINC

In this section, the principle used by MINC to infer the
loss rates or the passage rates of links is described; passage
rate = 1− loss rate (The terms loss rate and loss proba-
bility are equivalent and so are passage rate and passage
probability. If out ofn packets sent on a link,m are lost,
then the loss probability of the link ism/n and its passage
probability is(n−m)/n). MINC infers the characteristics

S

D

Pb

Pab

Pa

A B

Figure 1. Multicast tree with two receivers

of a network underlying a multicast tree by exploiting the
inherent correlation in multicast traffic. MINC infers loss
rates in the logical multicast tree. Each link in the logical
tree is a series of physical links in the underlying network
between two branch points. Consider the logical multicast
tree shown in figure 1 with sourceS, two receiversA, B
and the branch node D. Suppose that the source sends a
stream of probe packets and each receiver observes whether
it received the probe (1) or not (0). Consider the task of es-
timating the passage probability of the pathDB. For this,
consider those packets which were received byA. SinceA
received them, these multicast packets must have crossed
the branch node D and also sent out on pathDB. Among
them, some may have crossed the pathDB and some lost
on this path. Thus, the ratio of the number of packets which
bothA andB received to the total number of packets which
A received estimates the passage probability of pathDB.
The passage probability of pathDA can be calculated sim-
ilarly.

Formally, suppose that the sender injectsN probe pack-
ets into the multicast tree. Let(i, j), i, j ∈ {0, 1} denote
the probecorresponding to whichA reportedi andB re-
portedj. Equivalently,(i, j) also denotes the feedback it-
self whereA reportedi andB reportedj. Let nij denote
the total number of probes of type(i, j). For example,n10

denotes the total number of probes for whichA reported
1 andB reported0. We extend this notation slightly by
allowing i, j ∈ {0, 1, ∗}, where “∗” means adont care(ei-
ther a0 or 1). For example,n1∗ denotes the total number

of probes for whichA reported 1 andB reported either a
0 or 1; n1∗ = n10 + n11. Now, the passage probability of
the pathDB, denoted byPb and the passage probability of
pathDA, denoted byPa are given by

Pb =
n11

n1∗
, Pa =

n11

n∗1
(1)

Similarly, the loss probabilities of pathDB andDA are

P̄b =
n10

n1∗
, P̄a =

n01

n∗1
(2)

Having done this, the passage probability of pathSD de-
noted byPab can be estimated as follows:

Pab =
n11/n

Pa · Pb
=

n∗1n1∗
N · n11

(3)

SinceSD is the common path betweenA andB, Pab is
also called thecommon passage probability. The above
principle is extended in MINC to calculate the passage
probabilities of all the paths in the multicast tree. To per-
form MINC loss inference, the topology of the multicast
tree is needed. However, the common passage probabili-
ties calculated between different receiver pairs can also be
utilized to infer the topology of the multicast tree [1, 11].
Thus, MINC loss tomography can be performed entirely in
an end-to-end manner.

2.1 Simple Observations I

An observation which aids the subsequent analysis is
now made. Consider the(00) probe. This probe was ei-
ther (i) lost on the pathSD (denotedcommon loss) or (ii)
it crossedSD and was lost simultaneously on pathsDA
andDB (denotedindependent loss). We classify the(00)
probes into these two respective categories. Letnc

00 denote
the total number of probes lost on pathSD. Letni

00 denote
the total number of probes which crossedSD and were
lost simultaneously onDA andDB. Now, it is noted that
ni

00 +n01 are the total number of probes which crossed the
pathSD and lost onDA. Among them, n01 crossedDB
andni

00 were lost onDB. Thus, the passage probabilityPb

can also be written as

Pb =
n01

ni
00 + n01

(4)

Thus, from (1) and (4) we have

Pb =
n01

ni
00 + n01

=
n11

n1∗
(5)

3 Misbehavior and its impact on passage
probabilities

We use the term ”misbehaving receiver” to denote the
buggy or malicious receivers which can report incorrect

feedbacks. A misbehaving receiver can misbehave either
by altering a feedback from 0 to 1 (denoted by0 Ã 1) or
by altering a feedback from 1 to 0 (denoted by1 Ã 0).
When a receiver misbehaves from0 Ã 1, it reports that it
received the probe when it actually did not. When it misbe-
haves from1 Ã 0, it reports that it did not receive the probe
when it actually did. If a receiver reports a wrong feedback,
the passage probabilities inferred by MINC in the multicast
tree change. Figure 2(a) shows the impact of misbehavior
on the passage probabilities inferred by MINC when re-
ceiverA alters some of its feedbacks from0 Ã 1. The pas-
sage probability of the path fromA to the source increases
(⇑) and the passage probabilities of all links connected to
this path decrease (⇓). Thus passage probabilities in a large
region of the multicast tree are altered. Figure 2(b) shows
the impact of misbehavior on the passage probabilities in-
ferred by MINC when receiverA alters some of its feed-
backs from1 Ã 0. In this case only the passage probability
of the path fromA to its parent decreases(⇓) to be congru-
ous with the data reported byA. The passage probabilities
in the rest of the multicast tree remain unchanged.

subtree

⇓

A

S

(b)

⇑

⇓

⇑

⇑⇓

A

S

(a)

⇑

⇓

Figure 2. Effects of misbehavior on passage
probabilities. (a) Receiver A reports more
1’s, (b) Receiver A reports more 0’s

To explain the above changes in probabilities, the mis-
behavior mechanism of a user is modeled as follows. It is
assumed that a receiverj misbehaves with probabilityαj

(0 ≤ αj ≤ 1). If receiverj misbehaves from0 Ã 1, it
changes its0 feedback to1 with probability αj and vice
versa.

Consider the two receiver system shown in figure 1
with receiversA, B and sender S. Now, we calculate the
expectedpassage or loss probabilities after misbehavior.
Firstly, the misbehavior from0 Ã 1 is considered.

3.1 ReceiverA misbehaves from0 Ã 1

After A misbehaves, letPa, Pb andPab denote the re-
spective altered passage probabilities.

Lemma 1. If A misbehaves from0 Ã 1 with probability
αa, (i) E[Pb] ≤ Pb (ii) E[Pa] ≥ Pa (iii) E[Pab] ≥ Pab

Proof. When A misbehaves from0 Ã 1, it causes two
types of probe or feedback transformations:

x : (00)⇒ (10) y : (01)⇒ (11)

The following table shows theexpectedfeedback system
after these transformations.

Original After Misbehavior
n00 n00(1− αa)
n01 ⇒ n01(1− αa)
n10 n10 + αa · n00

n11 n11 + αa · n01

The altered passage probability of pathDB denoted byPb

will be,

E[Pb] =
n11 + αa · n01

n1∗ + αa · n00 + αa · n01

=
n11 + αa · n01

n1∗ + αa(ni
00 + n01) + αa · nc

00

(6)

We know thata/b = c/d⇒ (a+ c)/(b+d) = a/b = c/d.
Applying this to equation (5), we get

Pb =
n11 + αa · n01

n1∗ + αa(ni
00 + n01)

(7)

Subtracting (6) from (7) gives,

E[Pb] = Pb

{
1− nc

00 · αa

n1∗ + n0∗ · αa

}
⇓ (8)

Now,

E[P̄a] =
n01(1− αa)

n∗1
= P̄a(1− αa) ⇓ (9)

Proof for(iii) is similar to that of(i).

Intuitively, whenA’s feedbacks are altered from0 Ã 1,
those feedbacks for which bothA andB had reported0,
i.e. of the form(00), change to(10). Some of these(00)
feedbacks correspond to probes which were lost on the path
SD . These probes are now counted as having crossedSD
and lost onDB , causing the passage probability ofSD to
increase and the passage probability ofDB to decrease. In
general, suppose thatA misbehaves by causingnx trans-
formations of typex andny transformations of typey. The
following corollary gives the conditions for observing the
expected changes in probabilities after misbehavior.

Corollary 1. If receiver A misbehaves from0 Ã 1 re-
sulting in nx and ny transformations, thenPb < Pb and
Pab > Pab if nx/ny > n10/n11.

Proof. After misbehavior we have,

Pb =
n11 + ny

n1∗ + nx + ny

Pb < Pb iff
n11 + ny

n1∗ + nx + ny
<

n11

n1∗

i.e., iff (n1∗ − n11)ny < n11nx

i.e., iff
nx

ny
>

n10

n11
=

P̄a

Pa

Proof forPab is similar.

Corollary 2. If both receiversA and B misbehave from
0 Ã 1 with the same probability, the receiver which suffers
more losses before misbehavior causes a greater decrease
in the passage probability of the other receiver.

Proof. After A andB misbehave from0 Ã 1 with prob-
abilities αa andαb, the expected probe system is shown
below.

Original After Misbehavior
n00 n00(1− αa)(1− αb)
n01 ⇒ n01(1− αa) + αb(1− αa)n00

n10 (n10 + αa · n00)(1− αb)
n11 n11 + αa · n01 + αb(n10 + αa · n00)

Working outE[P̄a] andE[P̄b] as before, we have

E[P̄a] = (1− αa)
{

n01 + αb · n00

n∗1 + αb · n∗0

}
(10)

E[P̄b] = (1− αb)
{

n10 + αa · n00

n1∗ + αa · n0∗

}
(11)

If αa = αb, the increase in each of the above depends on
the ratiosn00/n∗0 andn00/n0∗ respectively.

3.2 ReceiverA misbehaves from1 Ã 0

After A misbehaves, letPa, Pb, andPab denote the re-
spective altered passage probabilities.

Lemma 2. If A misbehaves from1 Ã 0 with probability
αa, (i) E[Pb] = Pb (ii) E[Pa] ≤ Pa (iii) E[Pab] = Pab

Proof. If a receiver misbehaves from1 Ã 0, it causes two
types of probe transformations:̄x : (10) ⇒ (00) and ȳ :
(11) ⇒ (01). Writing down the expected probe system
after transformations as before, we will have

Original After Misbehavior
n00 n00 + αa · n10

n01 n01 + αa · n11

n10 ⇒ n10(1− αa)
n11 n11(1− αa)

E[Pb] =
n11(1− αa)
n1∗(1− αa)

= Pb

E[Pa] =
n11(1− αa)

n∗1
= Pa(1− αa) ⇓

Proof for(iii) is same as that for(i)

In general, suppose thatA misbehaves by causingnx̄

andnȳ transformations. The following corollary gives the
general conditions for observing the expected changes in
probabilities after misbehavior.

Corollary 3. If A misbehaves from1 Ã 0 resulting in
nx̄ andnȳ transformations, thenPb = Pb , Pab = Pab if
nx̄/nȳ = n10/n11.

Proof. After misbehavior we have,

Pb =
n11 − nȳ

n1∗ − nx̄ − nȳ

Pb = Pb iff
n11 − nȳ

n1∗ − nx̄ − nȳ
=

n11

n1∗

ie., iff (n1∗ − n11)nȳ = n11nx̄

ie., iff
nx̄

nȳ
=

n10

n11
=

P̄a

Pa

Similarly for Pab.

The rest of the paper concentrates on0 Ã 1 misbehav-
ior, since1 Ã 0 misbehavior has almost no impact.

4 Algorithm for feedback verification

Broadly, given theN × R binary feedback matrix, the
ICheckalgorithm considers three receivers at a time and
verifies the feedbacks of two particular receivers using the
feedbacks of the third receiver. This verification is done by
performing a test on the feedbacks of the three receivers.
In this section, we describe this test in Lemma 3. Subse-
quently, we describe theICheckalgorithm.

S

D

CA B

Pa
Pc

Pabc

Pb

D

CA

S

B

E

Pa Pb

Pc

Pabc

(a) (b)

Figure 3. Multicast trees with three receivers

4.1 Simple Observations II

Figure 3 shows the two possible topologies which con-
nect an arbitrary set of three receivers within a multicast
tree. Consider the topology of Fig 3(a) with receiversA,
B, C, and sender S. With usual notation, letnijk denote the
number of probes for whichA reportsi, B reportsj, and
C reportsk. Let Pc, Pa, Pb, andPabc denote the passage
probabilities of pathsDC, EA, EB, andSD respectively.
Consider the problem of estimating the passage probabil-
ity of pathDC. Observe that, if eitherA or B received a
probe, this probe must have reached the point D and must
have been sent out on the pathDC. Now,n10∗ is a sample
of probes received byA. Thus, these probes crossedSD
and were sent out onDC. Among them,n100 were lost on
DC andn101 crossedDC. ThusPc can be estimated as

Pc =
n101

n10∗
(12)

Using the same reasoning for the sample of probesn01∗
which were received byB, Pc can also be estimated as

Pc =
n011

n01∗
(13)

From (12) and (13), we have

n100

n101
=

n010

n011
=

P̄c

Pc
(14)

Lemma 3 will show that the two ratios in (14) differ when
feedbacks of either or bothA andB are altered. An obser-
vation similar to the one in section 2.1 is now made. The
n000 probes are split into two groups -nc

000 andni
000. Now,

nc
000 are the number of probes lost on the pathSD. ni

000

are those which crossedSD and were lost simultaneously
in the left subtreerooted atD and on the pathDC. Now it
is observed that(ni

000 +n001) crossedSD and were lost in
the left subtree. Among them,ni

000 were lost onDC and
n001 crossedDC. Thus we have,

ni
000

n001
=

P̄c

Pc
(15)

Lemma 3. After A and B misbehave from0 Ã 1 with
probabilitiesαa andαb, in the expected new system

n100

n101
6= n010

n011

except when either of these conditions hold

(i) Pabc = 1

(ii) αa/αb = n101/n011

Proof. After A andB misbehave, the relevant part of the
expected new system is shown below.nijk denotesnijk in
the expected system.

n010 = (n010 + αb · n000)(1− αa)
n011 = (n011 + αb · n001)(1− αa)
n100 = (n100 + αa · n000)(1− αb)
n101 = (n101 + αa · n001)(1− αb)

Thus,

n100

n101
=

n100 + αa · n000

n101 + αa · n001

=
n100 + αa · ni

000

n101 + αa · n001
+

αa · nc
000

n101 + αa · n001
(16)

n010

n011
=

n010 + αb · n000

n011 + αb · n001

=
n010 + αb · ni

000

n011 + αb · n001
+

αb · nc
000

n011 + αb · n001
(17)

From equations (14) and (15) we have,

n100 + αa · ni
000

n101 + αa · n001
=

n010 + αb · ni
000

n011 + αb · n001

Thus,n100/n101 = n010/n011 if

αa · nc
000

n101 + αa · n001
=

αb · nc
000

n011 + αb · n001
(18)

i.e., iff

(i) nc
000 = 0⇒ Pabc = 1 or

(ii) αa/αb = n101/n011

Condition (ii) above essentially implies that

αa

αb
=

Pa(1− Pb)
Pb(1− Pa)

(19)

If A andB misbehave with the same probability then con-
dition (19) does nothold unlessPa is also equal toPb.
Thus, even ifA andB misbehave with the same probabil-
ity, the two ratiosn100/n101 andn010/n011 would differ in
most scenarios. Also,Pabc determines the amount ofnc

000

probes available to distort the two ratios, making them dif-
ferent after misbehavior. IfPabc is low, there is a higher
chance that the two ratios would differ more after misbe-
havior.

Lemma 4. If C misbehaves from0 Ã 1, in the expected
new system, both estimates ofPc (12) and (13) remain
equal.

Proof. Assuming thatC misbehaves with probabilityαc,
after misbehavior we have,

E[P̄c] =
n010(1− αc)

n01∗
=

n100(1− αc)
n10∗

As a result of lemma 4, we have that lemma 3 holds
irrespective of whetherC misbehaves or not. (It is now
noted that the above results of lemma 3 and 4 hold for the
other3-receiver topology of Fig 3(b) as well).

4.2 ICheck

ProcedureICheck(F, k, δ)
F [N ×R] : Binary feedback matrix
k ≤ (

R
3

)
: Times to repeat

δ : confidence level

1: inconsistent← 0
2: while k > 0 do
3: (x, y, z) = Random(N) //same set not repeated
4: (A,B, C) = LabelTree(F, x, y, z)
5: failed← HTest(F [A], F [B], F [C], δ)
6: if failed then
7: inconsistent← inconsistent + 1
8: end if
9: k ← k − 1

10: end while
11: print inconsistent

ProcedureLabelTree(F, x, y, z)
1: ComputePxy, Pyz, Pzx

2: temp← min(Pxy, Pyz, Pzx)
3: if temp = Pxy then
4: return (x, y, z)
5: else iftemp = Pyz then
6: return (y, z, x)
7: else
8: return (z, x, y)
9: end if

Figure 4. ICheckAlgorithm

Figure 4 presents the algorithm for feedback verifica-
tion. ICheckexamines the entire feedback data by consid-
ering feedbacks of three random receivers each time and
applying the test of lemma 3 to detect inconsistencies. The
test of Lemma 3 is applied inHTest. Lemma 3 tests the
feedbacks of receiversA andB using the feedbacks ofC.
To apply this test on an arbitrary set of3 receivers,ICheck
needs to identify which of these receivers can function as
C. For this, it uses theLabelTreeprocedure (Fig 4). This
procedure uses a principle from [1, 11] and labels the pair
of receivers with minimum common passage probability as
(A,B) and the other asC (Fig 5). Thus probes received
by A or B would have also been sent out on the linkDC.
However, due to excessive feedback alterations,LabelTree
may swapC with A or B. If A is swapped withC then
the pair(n010/n110, n001/n101) is compared and ifB is

A CB A CB A CB

x y z x y

E E E

S S S

PyzPxzPxy

yz xz

min = Pxy min = Pxz min = Pyz

D D D

Figure 5. LabelTree Procedure : Minimum
pair-wise common passage probabilities are
shown in bold

swapped withC then the pair(n100/n110, n001/n011) is
compared. These unrelated ratios continue to remain dif-
ferent afterA andB misbehave.

To perform the check of lemma 3,HTestis used.HTest
is a standard statistical hypothesis test which is used to test
the difference between two proportions. Given the feed-
backs of three receiversA, B, andC, the following contin-
gency table is constructed.

Lost Crossed Total
Sample A n100 n101 n10∗
Sample B n010 n011 n01∗
Total n100 + n010 n101 + n011 n10∗ + n01∗

A two-tailed test is performed withnull hypothesisH0 and
alternative hypothesisH1 defined as,

H0 :
n100

n101
=

n010

n011
H1 :

n100

n101
6= n010

n011

HTesttests whether the difference between the two ra-
tios n100/n101 and n010/n011 is statistically acceptable
with respect to the given sample sizes of sampleA(n10∗)
and sampleB(n01∗). In this work, we useFisher’s Exact
Testas the representative statistical test. Fisher’s exact test
is a permutation test and outputs ap-valuebetween0 and
1. If the p-value is less than0.05, null hypothesisH0 can
be rejected with95% confidence, i.e., with95% confidence
one can say that feedbacks of either or bothA andB are
incorrect.

ICheckexploits the diversity of the multicast tree and
the feedback data to overcome the weaknesses of lemma 3.
Firstly, in each three receiver test, lemma 3 cannot check
0 Ã 1 errors inC ’s feedbacks. However, since the al-
gorithm tests several different three receivers sets, when a
receiverx appears asC in one set, its feedbacks are not
checked; but when it appears asA or B in another set,
its feedbacks get checked (Figure 6). Secondly, the test of
lemma 3 is weaker when passage probability of pathSD,
i.e. Pabc is very high. When a receiverx appears in one set

S

D

BAC
x

S

D

A BC
x

Figure 6. Functioning of ICheck

of three receivers, the least common parent (nodeD) may
be close to the sourceS resulting inPabc ≈ 1. But when
it appears in another set of three receivers, nodeD may be
far from the source, resulting inPabc < 1 (Figure 6).

The complexity ofICheckvaries with the number of
three receiver sets checked. Ifk three receiver sets are
tested, the complexity ofICheckis O(Nk). Ask increases,
the integrity check becomes stronger. For the strongest
check, when all

(
R
3

)
three receiver sets are tested,k is

O(R3).

5 Experiments

ICheckis a C program which we have implemented us-
ing the ideas discussed in the previous section. For Fisher’s
exact test, we use Algorithm 643 [7,10] written in Fortran.
To test the performance ofICheck, we have conducted ex-
periments using model-based traces, NS traces and MBone
traces. For Model-based traces, losses on each link are
created using a time-invariant Bernoulli loss process. For
NS simulations, losses on links occur due to buffer over-
flows at network nodes as the multicast probe competes
with background TCP and exponential on-off UDP traffic.
For MBONE traces, we use the traces of a multicast audio
session which was run on the MBONE.

5.1 Model Simulation

Model based simulations are used to study the perfor-
mance ofICheckon a wide variety of inputs. The effec-
tiveness ofICheckrests on the statistical test performed on
three receiver sets. The factors from input data which in-
fluence these tests are(i) Number of probes(ii) Actual link
loss rates in the multicast tree. These two factors work to-
gether to determine the sizes of two samplesn10∗ andn01∗
which are compared. If these two samples are of small sizes
and their size difference is significant, only large alterations
of feedbacks can be detected by the statistical test. As the
sizes of these samples grow, their size difference matters
less and even small alterations of feedbacks are detected.
Whenever the samples are of comparable sizes, the detec-
tion is stronger. As the number of probes grow, sample

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

%
 in

pu
ts

 d
et

ec
te

d
in

co
ns

is
te

nt

Probes (1000s)

A 10%
A 30%

A 10%, B 30%
A,B 10%

(a) Performance of the statistical test on different types of
3-receiver inputs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

%
 in

pu
ts

 d
et

ec
te

d
in

co
ns

is
te

nt

Probability Pabc

A: 10%

1000
2000
5000

10000

(b) Influence ofPabc in different types of3-receiver in-
puts

1 2 3 4 5 6 7 8

S

(c) 8-receiver tree

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 In

co
ns

is
te

nc
ie

s

Number of Probes (in 1000s)

0-1 rand
0-1 const

comp rand
half-comp rand
No Misbehavior

(d) Performance ofICheckon Model Based Traces

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

fr
eq

ue
nc

y

Link Passage rates

(e) CDF of link passage rates (NS simulation)

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 In

co
ns

is
te

nc
ie

s

Number of Probes (in 1000s)

half-comp rand

comp rand

0-1 rand

0-1 const

No Misbehavior

(f) Performance ofICheckon NS loss traces

Figure 7. Performance of ICheckAlgorithm

sizes become large and eventually all alterations of feed-
backs are detected.

Figure 7(a) shows the effectiveness of the statistical test
performed byICheckon different types of three receiver in-
puts. In this experiment, the three receiver topology of fig-
ure 3(a) was considered and the passage probabilities of all
links were varied from0.80 to 0.99 to yield an almost com-
plete range of possible three receiver inputs which could
be tested byICheck. For each input the number of probes
were varied from1000 to 10, 000. They-axis in Fig 7(a)
plots the percentage of inputs where the statistical test suc-
cessfully detects the inconsistency with95% confidence for
different misbehavior mechanisms :(i)10% of receiverA’s
feedbacks are altered from0 to 1 (ii) 30% of receiverA’s
feedbacks are altered from0 to 1 (iii) 10% of receiverA’s
feedbacks and30% of receiverB’s feedbacks are altered
from 0 to 1 (iv) 10% of bothA andB’s feedbacks are al-
tered from0 to 1. As the number of probes increase, the
detection is stronger. When receivers misbehave with the
same probability, the detection is slightly weaker since the
ratiosn100/n101 andn010/n011 are less far-apart as com-
pared to when receivers misbehave with different proba-
bilities. Fig 7(b) plots the same results as a function of
the passage probabilityPabc for the case where10% of re-
ceiverA’s feedbacks are altered from0 to 1. Pabc is crucial
compared to other link probabilities since it determines the
amount by which the two ratios can get distorted, when
feedbacks are altered. AsPabc grows larger, the two ratios
change less and more probes are needed for detection.

Next, the performance ofICheckwas tested on general
trees. Figure 7(d) shows the performance ofICheckon the
8-receiver complete binary tree shown in Fig 7(c). In this
experiment,1000 trees of the type in Fig 7(c) were gener-
ated with link passage probabilities varying uniformly from
0.80 to 0.99. For each tree, probes were simulated and loss
traces obtained. In each trace, the following misbehavior
mechanisms were introduced (i) Each receiver misbehaves
from 0 to 1 with either0%, 5%, 10% or 15% probability
uniformly (0-1 rand). (ii) All receivers misbehave from0 to
1 with with 10% probability (0-1 const) (iii) Each receiver
complements0%, 5%, 10%, or15% of its feedbacks (comp
rand) (iv) A random set of half of the receivers complement
all their feedbacks (half-comp rand). In each trace,ICheck
tested all the

(
8
3

)
= 56 three receiver sets. Figure 7(d) plots

the average number of inconsistencies detected byICheck
for each misbehavior mechanism. When receivers comple-
ment their probes, the feedback matrix becomes quite in-
consistent and several inconsistencies get detected. As the
number of probes increase, the detection becomes stronger.
The detection is weakest when all receivers misbehave with
the same probability.

5.2 NS Simulation

For NS loss traces, the simulation parameters were setup
as in the original work of MINC [2]. The8-receiver com-
plete binary tree shown in Fig 7(c) was considered. The
bandwidth and propagation delay of each link were set
1.5Mbps and10ms respectively. Each link was modeled as
a FIFO queue with four-packet capacity. Node0 sent200
byte multicast probe packets with interpacket times chosen
uniformly at random from2.5 to7.5 ms. We conducted100
simulations and during each simulation, a variable amount
of background traffic was introduced on each link in the
tree using a random number of TCP and exponential on-
off UDP flows. The probe losses observed by each re-
ceiver were used to generate the loss traces. Link passage
rates in these simulations varied from85% to 95%. Figure
7(e) shows the combined cummulative distribution func-
tion (CDF) of link passage rates for all links in the100 sim-
ulations. For each trace four types of misbehavior mecha-
nisms were considered as before. For each trace,ICheck
tested all the

(
8
3

)
three-receiver sets. Figure 7(f) plots the

average number of inconsistencies detected byICheckfor
each type of misbehavior mechanism. As observed before,
when the number of probes increase, the detection becomes
stronger.

5.3 MBONE traces

For MBone traces, we analyzed the WRN traces col-
lected by [16] and publicly available at the web site [14].
These traces correspond to multicast audio sessions of
World Radio Network(WRN). Each dataset is about an
hour of trace in which receivers in the multicast group
recorded the sequence number of audio packets they re-
ceived at 80ms intervals. The following traces were an-
alyzed: WRNSep19, WRNNov1, WRNNov13, WRN-
Nov14, WRNNov28, WRNDec1 and WRNDec11 (topolo-
gies for all these traces are shown at [14]). From each
dataset,3 receivers which experienced sufficient losses
were chosen. Their traces were made binary based on
whether an audio packet was received or not and divided
into batches of size10, 000 each. This resulted in a total
of 27 3-receiver loss traces of size10, 000 each. Figure
8(a),(b) and (c) show the properties of these samples. Fig-
ure 8(a) shows the difference between the ratiosn100/n101

and n010/n011, figure 8(b) shows the common passage
probabilityPabc for each sample, and figure 8(c) shows the
p-value obtained when the two ratios were given toHTest.
Since there is no misbehavior, the p-values for samples lie
above0.05. Figures 8(d),(e) and (f) show the p-values cal-
culated after three types of misbehavior mechanisms : 8(d)
10% of receiverA’s feedbacks were altered from0 to 1
8(e) 10% of receiverA’s feedbacks and30% of receiver

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0 5 10 15 20 25

di
ffe

re
nc

e

samples

(a) difference between ratios

 0.5
 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 0 5 10 15 20 25

P
ab

c

samples

(b) Pabc

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

p-
va

lu
e

samples

(c) p-values before misbehavior

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

p-
va

lu
e

samples

(d) p-values: A10%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

p-
va

lu
e

samples

(e) p-values: A10%, B 30%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

p-
va

lu
e

samples

(f) p-values: A, B15%

Figure 8. MBone Experiments

B’s feedbacks were altered from0 to 1 and 8(f)15% of
both receiverA andB’s feedbacks were altered from0 to
1. The p-values for most samples now lie below0.05 in-
dicating that one can conclude with95% confidence that
there is something wrong with the receiver feedbacks.

6 Discussion

6.1 Collusion

ICheckis a consistency check. It checks if the feedbacks
of all receivers are consistent with respect to one another.
Due to this reason it exhibits some resistance to collusion.
Malicious receivers in a multicast tree can collude in small
groups by reporting a1 only when at least one member
in the group received the probe packet. If two receivers
have colluded together, their feedbacks may be consistent
with respect to each other but inconsistent with respect to
feedbacks reported by other receivers. SinceIChecktests
different three receiver groups, when two receivers which
have colluded together appear in different three receiver
sets, their misbehavior could be detected. To illustrate this,
we considered the following experiment. The8-receiver
tree of Fig 7(c) was considered and the link passage prob-
abilities of all links were varied from0.80 to 0.99 to gen-
erate1000 random trees as before. In each tree, receivers
1 and 2 colluded with probability50%, i.e., for 50% of

the probes where at least one of the receivers received the
probe, both of them reported1. Fig 9(a) plots the number of
inconsistencies detected byICheckafter collusion. It plots
the mean, median, and5th and95th percentiles of the me-
dian. In spite of collusionICheckdetects inconsistencies
because when receivers1 and2 appear in different three-
receiver sets, their feedbacks get checked with the feed-
backs reported by other receivers. For instance, if1 and2
appear in the same three-receiver set as in (1, 2, 5), their
misbehavior cannot be detected since the ratios tested by
Lemma 3 would remain equal. But when the receiver set
(1, 3, 5) or (2, 3, 6) is checked, inconsistency could be de-
tected. Fig 9(b) plots the average number of inconsistencies
detected byICheckwhen a random set of receivers collude
in each tree, i.e., for50% of the probes where at least one
receiver in the set received the probe, all of them reported
1. Even when all receivers in the tree collude,ICheckde-
tects inconsistencies. In order to collude in a manner such
that the entire feedback matrix rests consistent after col-
lusion, receivers need to know the multicast tree topology
and perform synchronized collusion in large groups.

6.2 Spatial Dependence

In multicast, losses occurring on different links can be
dependent to each other. Spatial dependence of losses can
particularly occur between sibling links (i.e., links which

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 in

co
ns

is
te

nc
ie

s

Probes (1000s)

mean
median

5th
95th

(a) Receivers1 and2 collude (in tree Fig 7(c))

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 in

co
ns

is
te

nc
ie

s

Probes (1000s)

2 receivers collude
3 receivers
4 receivers

All receivers
No collusion

(b) Random group of receivers collude (in tree Fig 7(c))

Figure 9. Collusion

have a common parent) when multicast is implemented on
overlay networks such as the MBONE. In such cases, sib-
ling links may cross the same underlying physical link re-
sulting in dependent losses. The test of Lemma 3 remains
valid even in the presence of spatial dependence between
sibling links, i.e., the ratios tested by Lemma 3 remain
equal if there is no misbehavior. However, these ratios may
become unequal if losses on non-sibling links are depen-
dent to each other.

6.3 Comparison to Nonce based scheme

To avoid receiver misbehavior, anoncebit can be sent
in every probe packet which receivers need to return in
case they report that they received the probe packet. The
nonce based scheme has some disadvantages. Firstly, it
requires the change of existing protocols used for measure-
ment. Secondly, it results in receivers reporting more bits.
This can pose a constraint when MINC is used with RTCP
and receiver feedbacks must occupy only5% of data band-
width [3]. Thirdly, since the probe packet is a multicast
packet, all receivers receive the same nonce bit. Thus col-

lusion becomes very easy and a receiver can collude with
any arbitrary receiver to report more1’s.

On the other hand,ICheckchecks the integrity of re-
ceiver feedback data. Whenever receivers misbehave in a
manner which destroys the consistency of feedback data,
IChecksucceeds. However, due to the nature of statisti-
cal tests conducted,ICheckis necessary but not sufficient,
i.e, if ICheckdetects inconsistency, it means that there is
something wrong with receiver feedbacks; but if it does not
detect inconsistencies, it means that most likely receiver
feedbacks are correct. Depending on the loss rates in the
multicast tree and the amount of misbehavior, it is feasible,
although less likely, that the resultant feedback matrix after
misbehavior remains entirely consistent.

7 Conclusions

In order to use end-to-end network inference in a trust-
worthy manner, it is essential to verify the integrity of re-
ceiver feedbacks. In this paper, we showed how the MINC
loss inference is affected by incorrect receiver feedbacks.
We showed how the loss rates inferred by MINC change
when incorrect feedbacks are received. Subsequently, we
presented theICheck algorithm which searches for loss
rate inconsistencies that arise in erroneous feedback data.
We presented the performance ofICheckon Model Based
traces, NS traces and MBONE traces. Our experiments
showed thatIChecksuccessfully detects inconsistencies in
the presence of different types of misbehavior mechanisms
and even in the presence of collusion.ICheckdoes not
require any knowledge of the multicast tree topology and
thus does the affect the end-to-end nature of MINC loss to-
mography. TheICheckalgorithm can be used in the phase
before the MINC loss Inference to determine whether the
inference based on the given feedbacks would most likely
be trustworthy or not. In future, we shall investigate the
problem of identification of receivers which have reported
incorrect feedbacks.

References

[1] A. Adams, T. Bu, T. Caceres, N.G.Duffield, T. Fried-
man, J.Horowitz, F.Lo Presti, S.B. Moon, V. Paxson,
and D. Towsley. The use of end-to-end multicast mea-
surements for characterising internal network behav-
ior. IEEE Communications Magazine, May 2000.

[2] R. Caceres, N. G. Duffield, J. Horowitz, and
D. Towsley. Multicast-based inference of network-
internal loss characteristics.IEEE Transactions on
Information Theory, 7:2462–2480, Nov 1999.

[3] R. Caceres, N.G. Duffield, and T. Friedman. Im-
promptu measurement infrastructures using RTP. In
IEEE INFOCOM, June 2002.

[4] Dawson Engler and Madanlal Musuvathi. Model-
checking large network protocol implementations.
Network System Design and Implementation (NSDI),
2004.

[5] T. Friedman (ed.), R. Caceres (ed.), A. Clark (ed.),
K. Almeroth, R. G. Cole, N. Duffield, K. Hedayat,
K. Sarac, and M. Westerlund. RTP control protocol
extended reports (RTCP XR). RFC 3611, Internet En-
gineering Task Force, November 2003.

[6] Sergey Gorinsky, Sugat Jain, and Harrick Vin. Mul-
ticast congestion control with distrusted receivers.
NGC, 2002.

[7] Cyrus R. Mehta and Nitin R. Patel. ALGORITHM
643 FEXACT: A FORTRAN subroutine for Fisher’s
exact test on unordered r x c contingency tables.ACM
Trans. Math. Softw., 12(2):154–161, 1986.

[8] V. Paxson, A. K. Adams, and Matt Mathis. Experi-
ences with NIMI. Passive and Active Measurement
workshop, April 2000.

[9] Francesco Lo Presti, N. G. Duffield, J. Horowitz, and
Don Towsley. Multicast-based inference of network-
internal delay distributions.IEEE/ACM Trans. Netw.,
10(6):761–775, 2002.

[10] Mehta C. R. and Patel N.R. A network algorithm for
performing fisher’s exact test in rxc contingency ta-
bles.Journal of the American Statistical Association,
78:427–434, 1983.

[11] Sylvia Ratnasamy and Steven McCanne. Inference
of multicast routing trees and bottleneck bandwidths
using end-to-end measurements.IEEE INFOCOM,
1999.

[12] H. Schulzrine, S. Casner, R. Frederick, and V. Jacob-
son. RFC 1889: RTP : A Transport Protocol for Real-
Time Applications, January 1996.

[13] B. Tierney and D. Gunter. Netlogger: A toolkit
for distributed system performance tuning and debug-
ging. LBNL Tech Report, 2002.

[14] MBone Traces. ftp://gaia.cs.umass.edu/pub/yajnik/.

[15] Andrew Whitaker, Richard S. Cox, and Steven D.
Gribble. Configuration debugging as search: Finding
the needle in the haystack.6th Symposium on Op-
erating System Design and Implementation (OSDI),
2004.

[16] M. Yajnik, J. Kurose, and D. Towsley. Packet loss
correlation in the mbone multicast network.Global
Internet Conference, Nov 1996.

