A Locating-First Approach for Scalable Overlay
Multicast

Mohammed Ali Kaafar, Thierry Turletti, Walid Dabbous
INRIA Sophia Antipolis, France
E-mail:{mkaafar, turletti, dabbous}@sophia.inria.fr

Abstract— Recent proposals in multicast overlay construction
have demonstrated the importance of exploiting underlying
network topology. However, these topology-aware proposals often
rely on incremental and periodic refinements to improve the
system performance. These approaches are therefore neither scal-
able, as they induce high communication cost due to refinement
overhead, nor efficient because long convergence time is necessary
to obtain a stabilized structure. In this paper, we propose a highly
scalable locating algorithm that gradually directs newcomers to
their a set of their closest nodes without inducing high overhead.
On the basis of this locating process, we build a robust and
scalable topology-aware clustered hierarchical overlay scheme,
called LCC. We conducted both simulations and PlanetLab
experiments to evaluate the performance of LCC. Results show
that the locating process entails modest resources in terms of
time and bandwidth. Moreover, LCC demonstrates promising
performance to support large scale multicast applications.

I. INTRODUCTION

A key factor to “overlay networking” success is that an
overlay service can be quickly constructed and easily de-
ployed and upgraded. In particular, several overlays support
multicast-style data dissemination service without requiring
the widespread deployment of IP multicast. However, such
application-level multicast may suffer from poor performance,
scale and cost problems when the delivery tree construction
process ignores the topology and link characteristics of the
underlying network. If an overlay is built in this way, nearby
nodes in the overlay network may actually be distant from each
others in the underlying network. Recent proposals in multicast
overlay construction [1-10] demonstrate the importance of
exploiting underlying network topology. However, we claim
that there are barriers for quality of service aspects, namely
scalability and efficiency in existing topology-aware overlay
multicast protocols:

1) Although decentralized protocols have been designed to
be scalable, by not relying on global knowledge, they
often rely on periodic and incremental refinement pro-
cesses, which induce high overhead. In these protocols
such as [1] [2] [3] [4], nodes maintain their relative
positions to the root of the delivery tree. Periodically,
each node tries to improve its on-tree position by finding
a better parent, i.e. a non-descendant node that provides
a lower delay to the root. Therefore, these protocols are
generally not scalable to support large multicast groups.
Additional overhead is incurred in case of dynamicity of
either the overlay membership or the underlying network

1-4244-0476-2/06/$20.00 ©2006 IEEE. 2

conditions. In fact, during overlay growth or membership
changes, heavy control overhead is incurred due to
periodical structure quality maintenance and partition
repairs operations. On the other hand, higher frequency
control messages is required to map the overlay to
varying network characteristics.

2) Users attending a video conferencing session or an
event broadcast expect an acceptable quality as soon
as they join the multicast session. Since a multicast
overlay delivery tree is typically studied to minimize
the average incurred delay observed by the receivers, we
consider that a delivery tree is “efficient” if the average
incurred delay is less than a threshold value. However,
one would expect that incremental refinements-based
approaches incur a long delay before the overlay delivery
tree converges to an efficient structure.

In this paper, we provide a practical solution for large-scale
and efficient multicast support. First, we propose a simple and
accurate location-aware process for connecting new members
to the overlay network. The basic idea is to use the nodes in
the already constructed overlay to suggest candidate neighbors
that are close to a newcomer. The latter gradually requests
the suggested nodes to refine its localization in the underlying
network. This locating process does not use virtual coordinates
system embedding nor fixed landmarks measurements, and
aims to be accurate and scalable.

Second, we build a robust and scalable topology-aware
clustered hierarchical overlay on the basis of the locating
process. We propose proactive mechanisms to react to cluster
leaders failures, and to smoothly manage overlay topology
changes caused by crash scenarios or underlying network
changes. Scalability is achieved by drastically reducing the
bandwidth requirements for overlay maintenance. Robustness
is obtained by mitigating the effect of dynamic environment
as most changes are quickly recovered and not seen beyond
clustered set of nodes. The proposed overlay multicast con-
struction scheme, called Locate, Cluster and Conquer (LCC),
has been designed to address the aforementioned quality
of service issues. Intuitively, running the locating process
before that the node joins the overlay, and then clustering
nearby nodes should allow to perform fast convergence to an
efficient multicast delivery tree. Furthermore, it would reduce
management overhead and delivery tree changes imposed due
to periodical refinements. However, these enhancements could

be mitigated by the overhead of the locating process.

Taking into account these considerations, we evaluated the
LCC scheme using two complementary evaluation methods:
simulations and experimentations over the PlanetLab testbed.
Results show that LCC has low overhead upon the locating
process and during the session. Compared to other initially-
randomly and topology-aware approaches, LCC achieves
lower convergence time and performs less link adjustments
rate. At the same time, it performs well in terms of data
distribution efficiency even in large overlays.

The remainder of this paper is structured as follows. Section
2 presents the related work. Section 3 provides an overview of
the LCC scheme. The locating process is detailed in Section 4.
Then the clustering mechanism and its different components
are presented in Section 5. Experiments and simulations are
discussed in Section 6 and a comparison with various previous
approaches is provided. Finally, Section 7 concludes the paper.

II. RELATED WORK

There has been tremendous interest in the construction of
overlays to provide application-level multicast. Basically, the
contributions can be categorized in two classes: overlay-router
approach and P2P approach.

In the overlay-router approach such as OMNI [5] and
TOMA [6], reliable servers are installed across the network
to act as application-level multicast routers. The content is
transmitted from the source to a set of receivers on a multi-
cast tree consisting of the overlay servers. This approach is
designed to be scalable since the receivers get the content
from the application-level routers, thus alleviating bandwidth
demand at the source. However, it needs dedicated infrastruc-
ture deployment and costly servers.

The P2P approach requires no extra resources. Several pro-
posals have been designed to handle small groups. Narada [1],
MeshTree [4], and Hostcast [3] are examples of distributed
“mesh-first” algorithms where nodes arrange themselves into
well-connected mesh on top of which a routing protocol is run
to derive a delivery tree. These protocols rely on incremental
improvements over time by adding and removing mesh links
based on an utility function. Although these protocols offer
robustness properties (thanks to the mesh structure), they
do not scale to large population, due to excessive overhead
resulting from the improvement process. The objective of LCC
is to locate the newcomer prior to joining the overlay and
hence process only a few number of refinements during the
multicast session.

Other “tree-first” protocols like ZigZag [7] and NICE [8],
are topology-aware clustering-based protocols which are de-
signed to support wide-area size multicast for low bandwidth
application. However, they do not consider individual node
fan-out capability. Rather, they bound the overlay fan-out
using a (global) cluster-size parameter. In particular, since both
protocols only consider latency for cluster leader selection,
they may experience problems if the cluster leader has insuf-
ficient fan-out. Other proposals exploit the AS-level [9] or the
router-level [10] underlying network topology information to

1-4244-0476-2/06/$20.00 ©2006 IEEE. 3

build efficient overlay networks. However, these approaches
assume some assistance from the IP layer (routers sending
ICMP messages, or BGP information access), which may be
problematic. LCC does not require any extra assistance from
entities that do not belong to the overlay.

Landmark clustering is a general concept to construct
topology-aware overlays. Ratnasamy et al. [11] use such an
approach to build a multicast topology-aware CAN overlay
network. Prior to joining the overlay network, a newcomer has
to measure its distance to each landmark. The node then orders
the landmarks according to its distance measurements. The
main intuition is that nodes with the same landmark ordering,
are also quite likely to be close to each other topologically. An
immediate issue with such a landmark-based approach is that
it can be rather coarse-grained depending on the number of
landmarks used and their distribution. Furthermore, requiring a
fixed set of landmarks known by all participating nodes renders
this approach unsuitable for dynamic networks.

III. OVERVIEW OF LCC

We have designed a two-level clustered overlay multicast
architecture (LCC) to provide scalable, efficient and robust
multicast distribution service to end users. Basically, the LCC
overlay construction is divided into two processes: Locating
and Clustering.

The locating process aims to direct newcomers to the
“nearest” cluster before they receive data on the delivery
tree. A newcomer initiates the locating process by sending a
“Localization_Request” to a randomly selected cluster leader
(denoted by boot node). According to its location-information
knowledge, the boot node selects a few cluster leaders (that
we will denote the queried nodes) that it considers to be
close to the newcomer. It asks them to probe the newcomer,
and gets each queried node’s answer. Then, it suggests to the
newcomer the possible closest nodes. By iteratively sending
“Localization_Request” messages to the closest nodes (called
the requested nodes in the rest of the paper), the newcomer
is able to gradually locate nodes that are close by. Each
requested node uses a selection criterion to limit the number of
nodes probing the newcomer, hence minimizing the locating
overhead. The locating process ends by proposing one or more
nearby cluster leaders.

By grouping together nodes that are close to a cluster
leader, members are expected to be close to each other, which
leads to low overhead of intra-cluster control messages. The
clustering process is initiated by every node once the locating
process terminates. On the basis of their locating result, nodes
are partitioned into clusters of nodes. A maximum distance,
R,qz, defines the interval in which other nodes are considered
“nearby”. This interval is called the cluster leader’s scope, and
defines the clustering criterion. During the clustering process,
a node decides at which level it will join the overlay. If it
creates its own cluster, it joins the “top-level” topology and
starts an inter-cluster mesh construction. Otherwise, it becomes
a cluster member and joins an intra-cluster mesh in order to
derive its delivery tree.

Since a node could be in more than one cluster leader’s
scope, it could be member of more than one cluster. Such
nodes are called edge nodes. We exploit edge nodes to improve
the overlay efficiency. In fact, the cluster leader is the primary
responsible of connecting its cluster to the top-level overlay.
Nevertheless, edge nodes are also allowed to join the inter-
cluster mesh at the top level. The main role of edge nodes is
to allow (if fan-out constraints are not violated) the clusters
members to derive their delivery tree considering the edge
node as an alternative nearby source connected to the top-
level topology. Moreover, these nodes may contribute in the
overlay robustness in case of cluster leaders failures. Although
edge nodes are attached to several meshes of different clusters,
they do not receive the data several times. In fact, as each edge
node derives a unique delivery tree from one of the existing
intra-cluster mesh, it is then a child in this particular delivery
tree. On the other hand, it could be a parent in several derived
delivery trees in other clusters. A high level picture of LCC
is illustrated in Fig. 1.

Top-Level Delivery Tree

® Cluster Leader

@ Edge Node EN;

O Cluster member
—— Top-level Link

=== Cluster-level Link

Fig. 1.

The two-level hierarchy of LCC.

Note that LCC does not specify a new tree construction
protocol; any existing protocol may be used on top of LCC.
In this paper, we choose to construct the LCC overlay by
running the MeshTree protocol [4] at both the top-level and
the intra-cluster level. MeshTree embeds the delivery tree
in a degree-bounded mesh containing many low-cost links.
The constructed mesh consists then of two main components:
(i) a backbone structure, composed of a low-cost tree and
connecting nodes that are topologically close together, and (ii)
additional links to improve the delay properties. The delivery
tree is then derived from the mesh using a path-vector routing
protocol. The “Flat” MeshTree first constructs a randomly
connected overlay and relies on periodical adding/deleting
links using a set of local rules. Unlike this approach, the LCC
scheme, initially constructs location-aware overlay based on
the locating and clustering processes. Top-level nodes then act
as particular MeshTree nodes, where other clusters represent
neighbors in the derived delivery tree (see Fig. 1).

In order to construct an overlay spanning tree rooted at the
source node s, we need to consider the degree constraints.
Assuming that the media playback rate is R and the outgoing
access link capacity of any particular node 4, is c;, the total
number of streams that the node can handle is /""" = [¢;/R].
The fan-out value of node ¢ represents the maximum number
of connections that this node can establish with other nodes.

1-4244-0476-2/06/$20.00 ©2006 IEEE. 4

We assume that each node can estimate its connection type (eg
ADSL, 802.11, etc.), relying on system and user specifications.
Moreover, LCC can use a history of maximum throughput of
the most recent downloads, as an indication of its effective
connection speed. These fan-out estimation techniques are
used in order to avoid each node to measure its available
bandwidth, which may involve high overhead. We also define
the cluster overall capacity as Z;’io f7%* —m, where m is
the number of members in the clusters. Next, we detail both
the locating and the clustering LCC processes.

IV. THE LOCATING PROCESS

LCC adopts a nodes’ positioning strategy similar to merid-
ian [12] to organize nodes into levels according to a distance
metric. Typically, the distance between two nodes is the round
trip network delay. Each LCC node keeps track of a fixed
number of other nodes in its locating system. A locating
system is a set of non overlapping and exponentially increasing
levels, represented by intervals [r;,r;41[, where r; = el
for ¢ > 1 and 9 = 0 (see Fig. 2). Nodes measure the distances

d(B, C)=d®. D) _ |

d(B, A) : i :
B ittt 2 1 i ' :
[] Ho—+o @ } O oo } >
B A cD
oY I ry = oel ry = e’
Level 1 Level 2 Level 3

Fig. 2. The locating system of node B.

to the set of nodes they are aware of, and assign each node a
position in the correspondent level of their locating system. For
example if the measured distance d satisfies r; < d < 141,
the node is positioned in the i*" level. All considered nodes
in the locating system are cluster leaders. In the following, we
describe the locating process operations.

A. Bootstrap and locating request

Initially, a newcomer, say node A, has to contact a global
well-known Rendezvous Point' to obtain the identity of a
randomly selected boot node, B. Node A measures the dis-
tance from itself to B, d(A, B) and assigns B a level in
its locating system, say level ¢. If A is in B’s scope, i.e.
d(A,B) < Rpaz, the clustering criterion is met and the
locating process terminates, and A sends a request to join B’s
cluster. Otherwise, A sends B a “Localization_Request”. Upon
receiving such request, the requested node B simultaneously
queries nodes that it considers as nearby to A. These queried
nodes have then to report the results back to the requested
node. If a queried node is closer to the newcomer than the
requested node, it is considered as a candidate. A list that
identifies the set of candidate nodes is sent by the requested
node to the newcomer A. Among this list, A initiates cluster
joining processes with all nodes that meet the clustering
criterion. If there are no such nodes in the list, nodes in the

lor any equivalent mechanism.

candidate list become possible requested nodes, since A re-
initiates the locating process with each node in this list sorted
in increasing distances. The list is updated at each response
from a requested node. This procedure is repeated until the
newcomer finds a cluster leader in its scope. Finally, it is
necessary to set a stop criterion to terminate the process within
a given time period by repeating the procedure at most C
times. If the algorithm ends without satisfying the clustering
criterion, A creates its own cluster.

B. The selective-locating process

During the locating request, each requested node has to
query a set of nodes. It then selects among them a list of
candidate nodes to send to the newcomer. In this subsection,
we answer the following question: How queried nodes are
chosen by the requested node?

The basic solution would be that the requested node asks
all the nodes in the same level than the newcomer and in
the adjacent levels, as potential queried nodes. To establish
a reference, we consider this solution that we call the “non-
selective” locating process. Although it has the advantage of
simplicity, this solution may induce high overhead. In fact,
while being in the same or adjacent levels than the newcomer,
some queried nodes should not be taken into consideration for
probing the newcomer, since they may be not closer to it than
the requested node.

We introduce the selection criterion in order to reduce
the number of useless probes during the locating process.
Basically, the “selective locating” consists in querying only
specific representative nodes. Nodes that are close enough to a
representative node, randomly selected by the requested node,
are not queried to measure their distance to A: the less queried
nodes, the less measurements and control overhead.

Closeness is defined by a distance threshold value ~;, which
is a function of the distance between the newcomer and the
requested node, d. If the newcomer is close to the level frontier
or to the requested node, the latter should use a fine-grained
selection and a small 7; value should be used. If not, the
requested node should use a greater ; value. In our algorithm,
we choose:

vi = ld =i % d
Ti+1

Nodes maintain for each level i a square matrix, M?,
representing learned distances of level i’s nodes to each other,
and to nodes in adjacent levels ¢ — 1 and 7 + 1. Values
in M are assigned as and when discovered through other
nodes’ locating requests. If a distance is not known, it is
set to a value large enough to discard the concerned node
from the selection. Each element M*(j,k) = d(N}, Ny{) in
M?" corresponds to the distance between nodes N; and Nj.
The j** row in M; represents the learned distances between
node N ; and other nodes in level ¢ and adjacent levels. The
selection algorithm run by a requested node is presented in
Algorithm 1 and can be described as follows: Each requested
node selects a random node, N!, from level i or adjacent
levels. If M'(j,k) = d(N}, Ny) is less than the threshold

1-4244-0476-2/06/$20.00 ©2006 IEEE. 5

Algorithm 1 Selection

Require: Distance

Ensure: List of representative nodes to query
Level — Assign_Level(Distance)
Candidates < Search_Nodes(Level)
Slevel GQet_Distance_Matriz(Candidates)

Threshold «— |Distance—rpeyer| X Distance
(rLevel+1)

repeat
j «— Random(Dimension(STtevel))
V « Extract_Row(Stevel 5)
for i € Dimension(SLevel) do
if V(i) < Threshold then
Represented «— Represented U Index_to_Node(t)
end if
end for
Representative < Representative + Index_to_Node(j)
glevel . glevel \ Columns(Represented)
until Elements(ST¢v¢!) = Representative

Return Representative

value -;, then node Nj is represented by Nj. Selected nodes
are represented by a matrix, say S*, which is initially equal to
M. At each iteration of the selection process, S * is diminished
by the columns of nodes in M* that can be represented by the
selected node N:. The selection algorithm terminates when S*

J
contains only distances of representative nodes.

V. THE CLUSTERING PROCESS

In this section, we describe the protocol to form and
maintain clusters. In this work, we emphasize mechanisms to
enhance the overlay QoS by increasing scalability and robust-
ness. In particular, we propose a proactive algorithm to manage
failures of leaders, and new cluster formation afterwards. We
also propose new mechanisms to smoothly manage cluster
topology changes due to leadership or underlying network
changes.

A. Cluster Creation

In early stage of the overlay formation, new clusters are
more frequently generated since few nodes exist. If the lo-
cating process ends with no leaders found in the newcomer’s
scope, the latter creates its proper cluster with a new cluster
ID. It then contacts the closest cluster leaders that the locating
process returns, to join the top-level topology. Contacted clus-
ter leaders inform their members by flooding a “New_Cluster”
message. Finally, members verify if they are in the new
leader’s scope, i.e. if they are potential edge nodes.

B. Cluster Joining

A classical joining operation is initiated by a newcomer
detecting cluster leaders in its scope after the locating
process terminates. The newcomer sends simultaneously a
“Join_Request” message to all the detected cluster leaders. The
request contains its fan-out value and the set of other clusters it
may belong to. Upon receiving “Join_Notification” messages,
it sends acknowledgement messages mentioning successfully
joined clusters.

In LCC, each top-level node has two types of neighbors:
nodes in its own cluster and other top-level nodes. Since a clus-
ter leader has limited available bandwidth, it should carefully
set its node degree to maintain a balance between connecting
to other top-level nodes for better overall performance and
serving as many nodes as possible in its own cluster. If the
cluster overall capacity is > 1, the cluster leader accepts the
newcomer. Note that the cluster overall capacity is null if all
nodes are edge nodes attached to the top-level topology. So,
considering the case where all of these nodes have a fan-out
value of 1, this would lead to a saturated cluster. This situation
can be recovered if the cluster leader requests an edge node
to leave other cluster membership to serve a newcomer.

If the newcomer is accepted , the cluster leader randomly
assigns it a cluster member to boot into the cluster-level mesh.
The newcomer gets cluster maintenance information from the
cluster members.

C. Cluster’s member state and Information updating

Using “Keep-Alive” messages exchanged by cluster mem-
bers allows to share cluster state, and to update cluster
information. Information about other overlay nodes is ob-
tained using a simple gossip style node discovery technique.
Basically, a node, ¢ maintains a list of known nodes in the
overlay. Periodically, ¢ randomly picks a node from the list,
say j and sends to it a randomly-constructed set of other
known members. Node j updates its own known nodes list
and replies using the same procedure. This simple informative
exchange allows nodes to maintain a minimal view of the
overlay membership. Next, we discuss how this knowledge
affects the average locating process iterations.

D. Leaders election

The cluster leader election is based on the value of priority
vectors (PV') used to maintain a nodes’ rank. Basically, a PV
is defined as: PV =< fmer - T, > Migrated >, where
DL stands for the node’s current perceived Latency in the intra-
cluster Delivery tree, CL denotes the minimum distance from
the node to a known foreign Cluster Leader, T represents how
long the node has stayed in the overlay, and Migrated is a
boolean indicating if the current cluster leader is included in
the node’s scope. The priority value is computed as a linear
combination of the first 4 components of PV with decreasing
weights. These priorities are used to sort appropriate eligible
nodes.

Nodes update periodically their PV'. Each PV is distributed
as part of “Keep_Alive” messages. When receiving nodes’ PV,
a node sorts the cluster members with increasing priorities. In
fact, cluster nodes construct a proactive rescue plan, where
each node maintains a local cache storing shared information.
The local cache consists in a sorted list of nodes that are
eligible to become cluster leaders. In a dynamic network
environment, a cluster leader may depart unexpectedly at any
time. If the leader fails, nodes will know it after a period of
time as they do no more receive the “Keep_Alive” messages
from the leader. Meanwhile, the second node in the list

1-4244-0476-2/06/$20.00 ©2006 IEEE. 6

becomes automatically the leader and sends out “Keep_Alive”
messages. If the second also fails, the third one will stand up,
etc. It is important to notice that for stability purposes, eligible
nodes that win the leader election at their joining process, are
maintained at a second position in the local cache, until their
life time in the cluster reaches a greater value.

E. Dynamic Clusters topology

In this subsection, we discuss the behavior of LCC in
case of cluster members migration outside their cluster due
to new cluster election or underlying topology changes. We
distinguish three different clustering states:

« Stabilized state: where the cluster leader is included in
the scope of each member of the cluster.

« Temporary state: where at least one node have migrated
outside its original cluster.

o Recovering state: where during the temporary state, all
migrated nodes know about other migrated nodes, and
start to evolve towards a stabilized state.

We introduce an algorithm that allows the migrated nodes to
collaborate in order to create suitable new clusters after a
temporary state. It is based on the nodes’ rank in the local
cache. It consists in a recursive procedure, where a potential
leader node asks subsequent nodes in the cache to join its
cluster, and triggers a recovering procedure for migrated nodes
that are not in its scope.

Basically, nodes verify at each local cache update operation
whether the current cluster leader is in their scope or not. If
not, they mark it as foreign cluster neighbor in their PV with
Migrated = 1. At each received PV, a migrated node updates
a set of other migrated nodes. The first ranked migrated node
initiates the process by creating a new cluster and by sending a
“Recovering_Request” to the next migrated node. The request
contains identities of other nodes that are already in the node’s
scope. Hence, each node is able, through previous received
requests, to determine migrated nodes that can still be leaders
(eligible nodes). If the node is included in the requesting
node’s scope, it sends a positive ACK to join its cluster and
returns to a stabilized state. A node which sends a negative
ACK, verifies at each request if it has been contacted by
all prior ranked eligible nodes in the cache. In this case, it
becomes a cluster leader and initiates its proper recovering
procedure by sending requests to next nodes in the local
cache. The recovering algorithm terminates when contacting
the last ranked migrated node. It then informs its “new” cluster
neighbors along with its previous cluster leader of the cluster
split. Finally, it switches to a stabilized state and connects to
the top-level topology.

VI. PERFORMANCE EVALUATION

To evaluate and test the LCC scheme, we carried out
simulations and PlanetLab [13] experiments. While the goal
of simulation studies is to assess the effectiveness of proposed
techniques for large scale overlays, the PlanetLab experiments
aim to illustrate the system performance under particular real-
world environments.

A. Simulations and Experimentations

1) Simulation Setup: Using the BRITE Internet topology
generator [14], we simulated up to 10* nodes networks. We
used a node bandwidth reference model based on the Gnutella
peer bandwidth distribution observed by Saroiu et al. [15].
We modeled the node join using Poisson distribution with an
average rate of 60 node joins per simulation tick. The duration
distributions were modeled with an exponential distribution of
0.01 as parameter.

2) Experimentations on PlanetLab: We implemented LCC
in a C library, and built wrappers for well-known IP-multicast
applications (vic/rat, vic)>. We tested the LCC overlay over
a set of 212 wide spread PlanetLab nodes. The set consists
of 90 nodes in U.S, 90 nodes in Europe and 32 nodes in
Asia. All experiments were conducted over several days in
October 2005. In this paper, we discuss a representative set of
experimental results using “planetlabl.cs.cornell.edu” as the
data source. This source generates a 560 kbits/s (70 kB/s)
data stream sent to all the other group members. Nodes join the
overlay at the average rate of one every 2 seconds. We remove
the top 20% and bottom 20% of the measurement results and
take the average of the remaining values. In practice, pings
have been conducted using ICMP ECHO messages, and we
use 10 consecutive pings for latency measurements?.

3) Metrics: We evaluate the LCC scheme in terms of (1)
scalability, by studying the control overhead during both data
distribution and overlay joining. We also observe the link
adjustment frequency and the locating process resources usage
(time and number of nodes needed to locate a newcomer);
(2) efficiency, by measuring several common metrics that
characterize the multicast overlay. In particular, we measure
the Average Relative Delay Penalty (ARD P) which is defined
as the average ratio between the overlay delay (d') and the
shortest path delay in the underlying network (d) from s to
all other nodes: 5 S " ”;((;’Z)), where N is the number
of nodes in the overlay. By considering that the delivery tree
“converges” or becomes “efficient” when the ARDP is less
than a threshold value (say 2), we study the convergence time.
Then we plot the ARDP and the stress on the link (which
represents the number of copies of an identical packet sent
over a single link), varying the overlay size; (3) robustness,
by verifying the scheme robustness to leaders failures and its
ability to recover in case of crash scenarios; (4) locating pro-
cess accuracy, by experimenting newcomers’ behavior during
the locating process and their ability to locate their closest
node in the underlying network, within a large overlay.

4) Comparison: In order to compare LCC to initially
randomly-connected overlays relying on periodic refinements,
we experiment a variant of LCC, disabling the locating process
and setting the scope value to zero, thus emulating MeshTree
behavior. We call this variant Flat MeshTree. In our simula-

2The LCC source code is available in the public domain and can be
downloaded from [16].

3Shen shows that latency measurements with 10 pings are sufficiently
accurate [17].

1-4244-0476-2/06/$20.00 ©2006 IEEE. 7

tions, we also compare LCC to two previously proposed mul-
ticast overlay structures: OMNI [5] as an infrastructure-based
approach and ZIGZAG [7] as a topology-aware hierarchical
approach.

B. Performance Results

In the following, we report both simulation and experimen-
tal results.

1) Control overhead: We ran simulations to evaluate the
control traffic overhead in the overlay and analyzed the pro-
tocol behavior in large size overlays. We assumed a basic
header size of 40 bytes per IP-packet and we measured the
overall control message traffic sent and received by each node
throughout a session. Fig. 3

3.5

——LCC Rmax =20 ms

—#-LCC Rmax =50 ms

w
L

—&—LCC Rmax = 100 ms

—+LCC Rmax=50 ms Selection ¥y
2.5 1 Criterion Disabled
—#-Flat meshTree . 4
—8-ZigZag
‘ —— OMNI
g A

o

===

0.5 T T T T T
32 64 128 256 512 1024

Overlay Size (log scale)

Message Overhead per node (kbps)
N
\

T T
2048 4096 8192

Fig. 3. Simulation of protocol overhead.

Selective Locating ———

Message Overhead per node (kbps)

0 L L L L

50 100 150
Overlay Size (nodes)

200

Fig. 4. PlanetLab: LCC overhead during the joining process.

shows the average overhead per node when varying the
overlay size. Control overhead of LCC is lower than those
of Flat MeshTree and ZigZag, and is comparable to OMNI.
We note that the per node overhead in LCC, for different
Rynae values, is steady for small overlays. The maximum
value reached for a 512 nodes overlay is 1.10 kbps for LCC
with R4 = 100ms, and control messages incur less than 2

kbps message overhead, in a 8000-nodes overlay. OMNI nodes
obtain lower control overhead. Since it is the application-level
multicast servers that are in charge of managing the delivery
tree, nodes in OMNI exchange a minimum number of control
messages to join the overlay. We note that the above results
include overheads due to network measurement, in particular
during the locating process, as we consider these results from
the instant the node contacts the Rendezvous Point.

To evaluate the cost of locating the closest cluster to join,
we measured on the PlanetLab testbed the average control
traffic overhead (in kbps) generated during overlay joining
for both the non-selective and selective locating process. We
observe in Fig. 4 the importance of the selection criterion
during the locating process. The per node overhead in the
selective locating process is reasonably small with about 0.7
Kbps for a 212 nodes overlay. In addition, it increases very
slowly with the number of members. The locating messages
are roughly 50% less frequent than those of a non-selective
localization. Not selecting nodes boosts the message overhead
due to useless measurement operations. In this case, requested
nodes would contact all the nodes in the newcomer’s level
and the adjacent levels. These queried nodes will also measure
their distance to the newcomer, which would incrementally add
network overhead. However, we note that the selective locating
process may require more time to locate the newcomer. In fact,
by selecting representative nodes, the newcomer may need to
contact more requested nodes than the non-selective process
as discussed later and shown in Fig. 13.

2) Link adjustment rate: Fig. 5 shows the LCC struc-
ture stability during membership changes. On the PlanetLab
testbed, we start tracking the link adjustment counts right after
the last node joined the overlay. Results are collected at 30-
second intervals. We observe that the link adjustment rate
mostly falls below 5 per hour per node for the LCC overlay,
whereas it stabilizes at roughly 10 per node per hour for the
Flat MeshTree. To confirm that the LCC efficiency is robust,
in case of membership frequent changes and crash scenarios,
we inject a simultaneous 20-nodes failure in 7 different sites
at the 90*" minute and we let them rejoin the overlay at the
120%" minute. We observe that the link adjustment activity for
LCC is moderate (mostly under 5 per hour per node) during
the membership changes. After the 140t minute, the average
link adjustment count falls around 2 per hour per node. Due to
randomness in initially connecting newcomers to the clusters,
the link adjustment rate of MeshTree is maintained at 10. This
assesses our intuition that non-initially locating schemes may
require high control messages for quality maintenance and
structure repairs operations.

The simulation results shown in Fig. 6

confirm the PlanetLab experiments conclusions. Flat
MeshTree suffers from high adjustment rate, almost more than
20 links change per node per simulation tick. Compared to
ZigZag, the LCC structure has a very low adjustment rate.
This rate is stabilized at less than 5 adjustments per node
per tick. Link changes in OMNI are less frequent than other
improvement-based overlay structures. OMNI nodes achieve

1-4244-0476-2/06/$20.00 ©2006 IEEE. 8

30

.
g —— LCC Rmax = 40ms|
S 25 et

B [Time 120:site 1 and 2 rejoin |- - = LCC Rmax = 20ms|
< P Time 122:site 3 and 4 rejoin

g’_ -t 20 nodes in 7 Time 124:site 5, 6 and 7 rejoin| T 18t MeshTree

2 20 v sites fail at the K

o Y\ 90th minute I .

TR | TR

S 8 15 11 AL

£) I | iM .

- N . 1 .

£ A \ : N

= | - LA ~
s 10 : AN | ‘ -
e N AT
= : PR /\ .

2 ’ [| n [,\

g 5 S

5 \

a L \W WV \J \M vk

0 20 40 60 80 100 120 140 160 180

Time after 212 nodes join (mn)

Fig. 5. PlanetLab: experimentation results of Link Adjustment rate.

45

0 -+ Rmax=40
\ -= Rmax=20

35 - -
-\\{\:\\ - Flat MeshTree

30 '\ -e-ZigZag

- C\\i\ \ﬂ\k —~OMNI |

20 M \‘\./\K /\‘\YA

. N i

. '\5;\/\ SN,
\/W

0 S L A s e e e L S s e e
0 40 80 120 160 200 240 280

Simulations ticks after 2000-nodes join

Adjustment rate per node per tick

Fig. 6. Simulations: Link Adjustment rate results.

an average link adjustment per node per tick of 12.9, with a
minimum of 0.78. Nodes in LCC (R, = 20 ms) have an
average of 11.4 adjustments per node per tick with a minimum
links change of 1.4.

3) Convergence Time: The refinement-based approaches
depend on the choice of a refinement period, say R7'. A small
RT value reduces the convergence time, as more adjustment
procedures are processed within a short time, but may induce
high overhead. A large RT may reduce overhead at the
expense of increased convergence time. In the following ex-
periments, we set the improvement period R to 30 seconds,
for each receiver, and study the convergence time metric
which describes the overlay structure evolution in time. Fig. 7
illustrates the convergence time, showing ARDP versus the
multicast session time in both simulations (Overlay size =
2000 nodes) and PlanetLab testbed. All nodes join the overlay
within the first 100 seconds.

We observe that in LCC, ARDP rapidly decreases to a
value less than 2 after the first 400 seconds, i.e. less than 14
improvement rounds per node. For Flat MeshTree, it takes
much more time for ARDP to stabilize with almost 1300
seconds. This shows the importance of pro-actively organizing

—e— (PlanetLab) LCC Rmax = 40 ms
2 —=— (PlanetLab) LCC Rmax =20 ms
5 —a4— (PlanetLab) Emulated Flat MeshTree [
—— (Simulation) LCC Rmax = 40 ms
—e— (Simulation) LCC Rmax = 20 ms
4 —&— (Simulation) Flat MeshTree
- (Simulation) OMNI
E - - - - (Simulation) ZigZag
z 3
<
2
1 "
All nodes join between
time 0 and 100
oO+—F——7F77——F—7—77 7777777 7717

0 200 400 600 800 1000

Time (seconds)

1200 1400 1600 1800

Fig. 7. Convergence Time property.

the overlay, to converge very quickly to an efficient structure.
The ZigZag overlay reaches an acceptable ARD P value much
more quickly than MeshTree. Although stabilized, this value
is more than 2, which is still inefficient to consider the overlay
converged. The convergence time of ZigZag is around 1400
seconds when ARDP falls under 2. The reason why ZigZag
does not converge quickly is that during overlay growth,
several group merges and splits are imposed to not exceed
the maximal group size. This may induce several improve-
ments rounds, and link adjustments. The OMNI server-based
structure is not affected by frequent membership changes and
converges quickly, similarly to LCC.

4) The Average incurred delay: We characterize the average
incurred delay observed by the receivers in a large populated
overlay by observing the ARDP variation according to the
overlay size in Fig. 8.

6.5 .
OMNI ——
6 r 4
55 | LCC with Rmax=50ms —=— /]
5 LCC with Rmax=100ms —=—
45 L ZigZag —e—]
E 4r —%]
2 35

2.5

100 1000
Size of the Overlay (log scale)

Fig. 8. Simulations: Average RDP property.

In Flat MeshTree, the ARD P increases drastically to more
than 4 demonstrating that this protocol does not scale to
a few thousands of nodes. Nevertheless, we note that Flat
MeshTree has lower ARDP than LCC structures in small

1-4244-0476-2/06/$20.00 ©2006 IEEE. 9

3 . . -
OMNI —+—
28 LCC with Rmax=50ms —=— I |
’ LCC with Rmax=100ms —&— +
26 | ¥ 1

T T
T

ARDP

14 L L L L

4000 6000 8000

Size of the Overlay

10000 12000

Fig. 9. Simulations: A zoomed in view of Average RDP variations.

groups (overlay size < 500 nodes). ZigZag maintains a stable
ARDP value while the overlay size is increasing but suffers
relatively poor performance with ARDP > 2.5 in a 3000-
nodes overlay. To make it easier to read, we zoom in on a
portion of the graph in Fig. 9. We observe that the ARDP
of LCC is about 60% of ZigZag. For R,,,,=50 ms and 100
ms, ARDP values of LCC are roughly maintained at values
between 1.4 and 2 for large overlays. OMNI has almost a
constant ARD P value (1.82) and performs on average better
than LCC in 12000-nodes overlay. We also note that in large
overlays, for clusters defined with 10 ms as node’s scope,
ARDP increases to reach 3, as nodes are more likely to be
scattered. Larger scopes are more efficient in this case.

5) Stress: Fig. 10 shows average physical network stress for

LCcC (i{mux = 50m‘.s) —
OMNI ——

Flat MeshTree ——

Mean Link Stress

0 50 100 150 200 250 300

Simulation time (ticks)

Fig. 10. Simulations: Stress on the links.

each of the overlays, namely OMNI, ZigZag, Flat MeshTree
and LCC (R,,qa: = 50ms) 2000 seconds after the last node
joined. OMNI and ZIGZAG stress values stabilize between 6.5
and 7. The Flat MeshTree overlay leads to somewhat lower
stress than OMNI and ZIGZAG with stress highly oscillating
between 4 and 5 due to random connections established by

newcomers. We note finally that LCC has an impressively
low stress, 2 to 3 times less than other overlays, with a
steady stress value between 2.5 and 2.8. Topology information
is of paramount importance in this observation, as packets
sent through the top-level hierarchy are sent to the cluster
leader and in some cases to potential edge nodes. Our clus-
tering process allows then to reduce the amount of redundant
flows entering each network, considering clusters as “local
networks”, and cluster leaders as “multicast-enabled routers”.

6) Robustness: When a non-leaf node quits, the overlay
needs to be reconstructed. So, it is important that this node’s
children can quickly locate a new parent to resume the session.
In addition, the recovery process should not result in a fan-out
violation in any node. In LCC, to recover from the failure of
its neighbor a node has to redirect packet requests from that
neighbor to another nearby in its proper cluster. We compare
LCC to the grandparent recovery scheme studied in [18]. In
this scheme, the children of the node which departs try first to
attach to their grandparent provided that the latter has enough
capacity. Otherwise, they are redirected to its descendants. We
instruct a number of randomly selected nodes in a 5000-nodes
overlay to leave the session simultaneously. Then, we observe
the recovery time of members, as the average time for an
affected node to resume the session. Results in Fig. 11 show

14

" Flat MeshTree ———

12 ¢ LCC Rmax =50 ms —=— g
Grand Parent Recovery scheme —=—

Average Recovery time (seconds)

0 | L L L

10 100 1000
Number of simultaneous failures
Fig. 11. Simulations: Failure Recovery time property.

that LCC always yields a smaller recovery time than the tree-
based grandparent recovery scheme. On average, LCC takes
3.85 seconds to recover from failures, which is about 35% less
than for the grand-parent recovery scheme.

In Fig. 12, we study the capacity of the LCC overlay
to recover from cluster leader failures. Each 10 seconds,
a set of randomly selected cluster leaders are instructed to
simultaneously leave a 5000-nodes LCC overlay (R, =
50 ms). We observe that when 30% of cluster leaders fail
simultaneously, the recovery time is almost < 2 seconds. LCC
is robust thanks to: 1) the proactive rescue plan of leaders
election and 2) the edge nodes connected to the top-level
topology, that allows to achieve data in case of leaders’ data
disruption.

1-4244-0476-2/06/$20.00 ©2006 IEEE. 10

10 “7(leaders fﬂi]u;'e —

30 % leaders failure —=—
40 % leaders failure —&—

60 % leaders failure

Average Recovery time (seconds)
[=)}

0 20 40 60 80 100
Session Time (seconds)

Fig. 12. Simulations: Impact of Leaders failures.

7) The locating process efficiency: To evaluate the behavior
of newcomers during the locating process, we observe the
average number of requested nodes contacted by a newcomer.
Fig. 13 depicts the average number of requested nodes versus
the total number of known cluster leaders in each requested
node’s locating system. The figure plots both PlanetLab re-
sults and simulations of 200 newcomers running the selective
locating process, once the overlay size reaches respectively
2000, 3000 and 4000 nodes, resp. denoted by Ov = 2000, Ov
= 3000 and Ov = 4000 in Fig. 13.

25

. —#— (PlanetLab) LCC Rmax= 30 ms Selection Enabled

20 —=+— (PlanetLab) LCC Rmax= 30 ms Selection Disabled

(Simulation) LCC Rmax = 30 ms, Ov = 2000

— #— (Simulation) LCC Rmax = 30 ms, Ov = 3000

- -# - (Simulation) LCC Rmax = 30 ms, Ov = 4000,

Average number of requested nodes

10 50 90 130 170 210

Cluster leaeder's neighborhood

Fig. 13. Average number of requested nodes.

We expected that the selective locating process needs more
requested nodes than the non selective process. Indeed, since
it queried representative nodes at each iteration, it may be less
accurate in one iteration, and hence requires to contact more
nodes afterwards. Results show however, that the selection
has little impact on the locating efficiency. The selective
locating process performs almost as well as the non-selective
process, with a maximum of 13 requested nodes in PlanetLab
experimentations. Moreover, curves are very close when the
number of known cluster leaders is large. We also observe

0.16
I
0.14 1
I
L I |
4 0.12 I 1 I
i I 1]
& 0.1 r 1
= |
& 008} L 1
=1 71
T 006 1
8 004t]
0.02 : I 1
0 —t 1 L L
0 5 10 15 20
Average number of requested nodes
Fig. 14. Simulations: Distribution of nodes during the locating process.

that the locating process scales well to large overlays: In a
4000-nodes overlay, newcomers are located by contacting less
than 12 requested nodes that know about only 60 nodes in
their locating system. The distribution of nodes depicted in
Fig. 14 shows that more than 80% of a 2000-nodes overlay
are able to terminate the locating process by contacting less
than 15 requested nodes. On average the locating time in
the experiment is very low with a mean locating time of
3.2 seconds, a maximum of 7.2 seconds and minimum of
1.8 seconds. Finally, we note that 98.4% of newcomers are
able to connect to their closest cluster upon their arrival. 300
seconds after the last node joins the overlay, 99.3% of nodes
are connected to their closest node. This demonstrates the
locating process accuracy, which is one of the reasons for the
resulting promising performances of LCC.

VII. CONCLUSION

In this paper, we proposed a practical solution to enhance
different QoS aspects of overlays, namely scalability and
efficiency. The overlay construction is initiated by a simple
and scalable locating process that allows newcomers, after
contacting a few nodes, to locate the closest cluster in the
overlay. The locating process includes a selection algorithm to
minimize measurement overhead. On the basis of the locating
process, we proposed an hierarchical topology-aware overlay
construction. We introduced mechanisms to pro-actively deal
with leaders failures and underlying topology characteristics
changes. Our PlanetLab and simulations experiments prove
that LCC incur low overhead during both localization and
data distribution. Compared to other enhancement-based and
topology-aware approaches, LCC achieves shorter conver-
gence time and performs less link adjustments rate. At the
same time, the scheme is robust to nodes’ failures and per-
forms well in terms of data distribution efficiency especially
in large overlays. In conclusion, we believe that LCC is very
suitable for large-scale applications such as event broadcast
for thousands of attendees. In future works, we will focus on
ways to automatically tune different parameters such as nodes’

1-4244-0476-2/06/$20.00 ©2006 IEEE. 11

scope and stop criterion, through real-life tests. We will also
investigate techniques to secure the overlay and detect/prevent
users from cheating.

REFERENCES

[1]1 Y. H. Chu, S. G. Rao, and H. Zhang, A case for end system multicast.
In ACM SIGMETRICS, Santa Clara, June 2000.

[2] D. A. Helder and S. Jamin, End-host multicast communication using

switch-trees protocols. In GP2PC, Berlin, May 2002.

Z. Li and P. Mohapatra, Hostcast: A new overlay multicast protocol. In

IEEE ICC, Anchorage (Alaska), June 2003.

S. W. Tan, A. G. Waters, and J. Crawford, Meshtree: A Delay optimised

Overlay Multicast Tree Building Protocol. Tech. Report 5-05, U. of Kent,

April 2005.

[5] S. Banerjee, et al., Construction of an Efficient Overlay Multicast Infras-
tructure for Real-time Applications. In IEEE Infocom, San Francisco,
March 2003.

[6] L. Lao, et al., TOMA: A Viable Solution for Large-Scale Multicast
Service Support. In IFIP Networking, Waterloo Ontario, May 2005.

[7]1 D. Tran, K. Hua, and T. Do, Zigzag: An Efficient Peer-to-Peer Scheme

for Media Streaming. In IEEE Infocom, San Francisco, March 2003.

S. Banerjee, B. Bhattacharjee, and C. Kommareddy, Scalable Applica-

tion Layer Multicast. In ACM SIGCOMM, Pittsburgh, August 2002.

[9] J. K. Sollins, Exploiting Autonomous System Information in Structured

Peer-to-Peer Networks. In ICCCN, Chicago, October 2004.

M. Kwon and S. Fahmy, Topology-aware overlay networks for group

communication. In NOSSDAV, Miami Beach (Florida), May 2002.

S. Ratnasamy, et al., Topologically-Aware Overlay Construction and

Server Selection. In IEEE Infocom, New York, June 2002.

B. Wong, A. Slivkins and E. G. Sirer, A Lightweight Approach to

Network Positioning without Virtual Coordinates. In ACM SIGCOMM,

Philadelphia, August 2005.

http://www.planetlLab.org

A. Medina, et al., BRITE: Universal topology generation from a user’s

perspective. Tech. Report TR-2001-003, Boston, January 2001.

S. Saroiu, P. K. Gummadi, and S. D. Gribble, A measurement study

of peer-to-peer file sharing systems. In MMCN, San Jose (California),

January 2002.

http://www-sop.inria.fr/planete/software/LCC

K. Shen, Structure Management for Scalable Overlay Service Construc-

tion. In USENIX NSDI, San Francisco, March 2004.

M. Yang and Z. Fei, proactive approach to reconstructing overlay

multicast trees. In IEEE Infocom, Honk kong, March 2004.

3

[t

[4

=

[8

[10]

[11

[12]
[13]
[14]
[15]
[16]
[17]

[18]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

