
FPQ: a Fair and Efficient Polling Algorithm with
QoS Support for Bluetooth Piconet

Jean-Baptiste Lapeyrie, Thierry Turletti
PLANETE Project

INRIA Sophia Antipolis, FRANCE
E-mail: jean-baptiste.lapeyrie@polytechnique.org, turletti@sophia.inria.fr

Abstract— Bluetooth is an emerging standard for short range,
low cost, low power wireless access technology. The Bluetooth
technology is just starting to appear on the market and there
is an urgent need to enable new applications with real time
constraints to run on top of Bluetooth devices. The Bluetooth
Specification proposes a Round Robin scheduler as possible
solution for scheduling the transmissions in a Bluetooth Piconet.
However, this basic scheme performs badly under asymmetric
traffic conditions. Recently, several polling schemes have been
proposed to improve performance on asymmetric transmissions
and to support bandwidth guarantee. However, there is no solu-
tion available to support both delay and bandwidth guarantees
required by real time applications. In this paper, we present FPQ,
a new polling algorithm for Bluetooth Piconet that supports both
delay and bandwidth guarantees and aims to remain fair and
efficient with asymmetric flow rates. We present an extensive set
of simulations and provide performance comparisons with other
polling algorithms. Our performance study indicates that FPQ,
while supporting flow rate and maximum delay QoS requests,
outperforms Deficit Round Robin [5] in term of delays by at
least 10% in all cases, sometimes by more than 30% to 50%.
Moreover, FPQ was designed to take the specifics of Bluetooth
into consideration, in particular the low complexity required for
cheap implementation.

I. INTRODUCTION

Bluetooth is an emerging standard for short range, low
cost, low power wireless access technology. It was originally
developed as a wireless replacement for cables between elec-
tronic devices. Today, the Bluetooth interface offers a full
wireless networking solution for ad-hoc networks. Figure 1
illustrates the Bluetooth stack, designed by the Bluetooth
Special Interest Group (SIG). The Radio layer, operating in
the 2.4 GHz Industrial, Scientific and Medical (ISM) band,
provides the physical channel among Bluetooth devices, with
a gross bit rate of 1 Mb/s. The Baseband layer manages the
transport service of packets on this physical link, while the
Link Manager Protocol (LMP) performs the connection set-
up and management of physical links. Higher level protocols
transmit and receive data through the Logical Link Control
and Adaptation Protocol (L2CAP), which implements features
like protocol multiplexing, Segmentation And Reassembly
(SAR). A Host Controller Interface (HCI) is used to provide
a command interface to the Baseband, the LMP, and access to
hardware.

In a Bluetooth Network, one station has the role of master
and all other Bluetooth stations are slaves. A master can drive
up to seven active slaves (i.e., take part in the data exchange).

Together, they all form a Piconet. Transmissions can take place
from master to slave (downstream traffic) or from slave to
master (upstream traffic).

Fig. 1. Bluetooth Stack

In order to support full duplex transmissions, a Time Divi-
sion Duplex (TDD), which divides each second into 1600 time
slots, is adopted in the MAC layer located in the Baseband.
The transmission of a Baseband packet usually covers a single
slot but it may last up to five consecutive time slots. Therefore,
the master fully controls the traffic in the Piconet; indeed, a
slave is allowed to transmit a Baseband packet only if in the
previous time slot the master has sent him a Baseband packet.
Hence, when the master sends data to a slave, it gives the
slave the opportunity to transmit data back as well. When
the master has no data to send, it may poll the slave with a
packet without payload (called a POLL packet). Then, the
slave has to respond by sending back data, if available, or by
sending a packet with no payload (called a NULL packet).
A critical point in the efficiency of Bluetooth Piconet is the
management of the limited available bandwidth of Bluetooth.
Consequently, the MAC protocol scheduling algorithm (i.e.,
the polling scheme) is a very important feature for determining
the Piconet’s efficiency, because it decides the order in which
Bluetooth units are polled, and therefore the order in which
Bluetooth units send or receive data.

Bluetooth can support simultaneous voice and data commu-
nications with only limited Quality of Service (QoS) support.
Two types of concurrent services are supported: Synchronous
Connection Oriented links (SCO) and Asynchronous Connec-
tionless Links (ACL) that have characteristics common with
respectively circuit switched and packet switched services.

The SCO link aims to carry real-time traffic such as voice
traffic. It uses a slot reservation mechanism which allows the
periodic transmission of SCO data with guaranteed delay and
bandwidth. However, it is not flexible and can only provide a
fixed symmetric bandwidth (at most 64 kb/s). Such a service
is not efficient for real time and delay sensitive applications
like streaming audio and video that may require variable and
asymmetric bandwidth. Moreover, the SCO has limited error
detection and correction capabilities, which makes it inefficient
when bit errors occur in bursts. On the other hand, the ACL
link was originally designed to support data applications. It is
based on a polling algorithm between a master and up to seven
active slaves. The ACL bandwidth is determined by the ACL
packet type and the frequency with which the device is polled.
It can provide both symmetric and asymmetric bandwidth.
Moreover, it can offer reliability in the presence of interference
(even when bit errors occur in bursts) using both Forward Error
Control (FEC) and retransmission mechanisms. Actually, since
the delay involved with retransmissions is short 1 in this type
of network, the ACL link could also be used to transmit real
time applications. For all these reasons, we will consider only
the ACL link in the remainder of the paper.

The aim of this paper is to enable Bluetooth to support new
services with asymmetric bandwidth and delay guarantees.
Given the characteristics of wireless networks, quantitative
QoS guarantees (i.e. hard guarantees) can not be provided
through the Bluetooth layer. However, new MAC scheduling
algorithms can be designed to support relative guarantees [6].
Indeed, upcoming Bluetooth applications such as audio/video
streaming require more QoS support.

Through this paper, we propose and evaluate a Fair Poller
with QoS support (FPQ) algorithm, which aims to remain fair
and efficient in presence of asymmetric flow rates. We add two
new QoS requests: a Flow Rate (FR) request and a Maximum
Delay (MD) request, since these are important QoS features
not supported by Bluetooth.

The rest of the paper is organized as follows. Section
II overviews the polling algorithms designed for Bluetooth.
Section III describes in details our FPQ polling algorithm.
Section IV discusses the three simulation models used to study
FPQ, and to compare it with other scheduling algorithms.
Section V evaluates the performance of FPQ through several
simulations. Concluding remarks are summarized in Section
VI.

II. RELATED WORKS

As mentioned previously, the Bluetooth Specification pro-
poses a simple Round Robin (RR) policy as a potential polling
algorithm. Such a basic scheduling policy supports a one-
limited service discipline that equally divides the total number
of polls among the slaves without taking into account the
different requirements of each slave. As a consequence, some
slaves are polled much more than necessary, while high-traffic
slaves may be polled less. If the overall traffic is low, or if the

1In Bluetooth Piconet, an acknowledgment can be received within 1.25 ms.

flow rates are similar, this kind of poller handles traffic well.
But, in any other situation, the RR poller is very inefficient [1].

The Deficit Round Robin (DRR) algorithm [5] behaves
almost like RR, but gives higher priority to active slaves with
backlogged data (in downstream traffic as well as in upstream
traffic) and therefore improves the behavior of the RR al-
gorithm. For example, with only upstream traffic, the DRR
algorithm polls each slave until it has no more data, which
corresponds to reception of a NULL packet from the slave. In
this case, DRR stops polling a slave as soon as this slave sends
back a NULL packet. Compared to RR, the improvements of
the DRR are that it takes into account downstream as well as
upstream traffic and that it can handle asymmetric flow rates
among the slaves. However, the behavior of the DRR algorithm
reveals some weakness. For example, if a lot of packets are
waiting in a slave’s queue, DRR becomes unfair on short time
scale since it polls this slave until its queue becomes empty.
Meanwhile, the other slaves of the Piconet wait with their data,
which increases the delays of the packets in their queues.

The Predictive Fair Poller (PFP) [4] allows handling of
the FR QoS requests. Furthermore, this poller implements
interesting ideas about methods for handling upstream traffic
and asymmetric flow rates, e.g., a the probability that a slave
has data packets waiting in its queue, knowing the flow rates
of upstream traffic. The main idea consists in computing for
each slave an “urgency”, which is the barycenter of two values
taking into account the probability for the slave of having data
and the instantaneous bandwidth of the slave. Nevertheless,
this algorithm is especially designed for upstream traffic and
does not handle MD requests.

The Efficient Double-Cycle (EDC) polling algorithm [1]
outperforms RR by dynamically adapting the polling fre-
quency to traffic conditions. However, EDC differentiates
upstream traffic from downstream traffic and does not take
into account any QoS request.

III. THE FPQ SCHEME

When comparing different polling algorithms, the main
criteria to take into account as required by Bluetooth are
efficiency, fairness, and low complexity. Efficiency implies
transmission of the maximum amount of data. In particular,
time slots should not be wasted by using too many POLL and
NULL packets, which prevents the transmission of data pack-
ets waiting in the queues. On the other hand, fairness requires
fair share of bandwidth and fair distribution of delays among
the different slaves, independently of the flows’ characteristics.
Furthermore, polling algorithms have to be as independent as
possible of other layers in order to easily fit into the Bluetooth
stack.

We first describe and discuss the ideas and the principles of
FPQ. Then, we analyze in details its features and discuss its
complexity.

A. Role of HCI

First of all, as the connection requests are made through the
Host Controller Interface (HCI), the QoS requests have to be

accepted by the HCI, in the master side, before establishing
connections. Applications should provide their Flow Rate (FR)
requests. In fact, a FR request includes an average Interval of
Time between two consecutive Packets (ITP) and an average
Packet Length (PL). Applications may provide different pa-
rameters so that the HCI can compute the couple of parameters
(ITP,PL). On the other hand, PL should represent the number
of time slots required by the transmission of a packet. Thus,
PL takes into account the Segment And Reassembly (SAR)
policy of the L2CAP for the segmentation of the initial packet
in Baseband packets. The MD request corresponds to the
maximum end-to-end delay the application can support. We
note (ITPs,i, PLs,i, MDs,i) the parameters for flows from
slave i to master, and (ITPm,i, PLm,i, MDm,i) for flows
from master to slave i.

The HCI has to decide if the Piconet is able to handle all
the requests, with 1600 time slots per second. We chose to
compute the number of slots required by the QoS requests in
the worst case, i.e., in the case which requires the maximum
number of time slots for the satisfaction of the QoS requests.
We assume that between two Baseband packets, the master
(the corresponding slave) sends a POLL (NULL) packet. For
example, if an IP packet requires a 5-slot and a 3-slot Baseband
packet, the HCI can decide that it will use 8 time slots for
data transmission and 2 time slots for acknowledgment traffic,
taking consequently 10 time slots for its entire transmission.
Then, the HCI computes the total number of slots required
for the satisfaction of the FR requests. As we will see
in Section III-C.2, the MD requests imply supporting, in
the worst case, a POLL and a NULL packet every MDs,i

seconds2. Finally, the HCI calculates the total number of time
slots necessary for supporting all QoS requests in the worst
case. If the Piconet can handle all traffic requests, the HCI
forwards the parameters to FPQ, which will try to satisfy these
requests, as independently as possible of other layers. In other
cases, we could imagine some QoS negotiation between the
HCI and applications in order to establish communications
with lower QoS requests.

B. General Description

1) Objectives and issues:
FPQ tries to reconcile both efficiency and fairness objec-

tives. Knowledge of the different flow rates of applications
should permit a better distribution of the polls among the
slaves. This should help to limit the number of NULL and
POLL packets used, which improves the efficiency of the
polling algorithm. On the other hand, FPQ has to pay attention
to the differences of delays among similar flows, i.e. flows
with the same MD request. From a fairness point of view,
all similar flows should have almost the same distribution of
delays.

Moreover, if we decide (as in [1]) to separate both types of
traffic (i.e. upstream and downstream traffic), this may increase

2MD requests for downstream traffic do not inevitably imply a waste of
time slots.

the probability of having a POLL or a NULL packet sent for
each master-slave transmission. As a result, some time slots
will be wasted with Baseband packets without data. On the
other hand, if we mix both types of traffic, the delays may
increase. For example, if slave i is polled with 5-slot Baseband
packets rather than POLL packets (i.e. 1-slot packets), its end-
to-end delay will be larger. Therefore, to avoid a waste of time
slots, FPQ mixes upstream and downstream traffic together.

A packet sent by an application on top of a Bluetooth unit
will be denoted by an AP packet, independently of the type
of this packet. When the number of sources is high, triggering
several transmissions of AP packets in the same time can
become an issue. The more AP packets are transmitted in the
same time, the longer will be the transmission time. Conse-
quently, an important issue is to complete the transmission of
an AP packet before beginning the transmission of another AP
packet.

Fig. 2. Polling scheme at the master side

2) Principles and description:
We note Qs,i the queue of slave i and Qm,i the queue of

the master for packets towards slave i. We remind that in the
Baseband layer of the master, there is a queue for each active
slave.

Using the ITP from the QoS requests, the state of Qm,i and
the characteristics of the traffic through the Baseband layer, a
Slave Analyzer computes:

1) An instantaneous probability of having data in Qs,i

(Pdata s,i
).

2) An instantaneous probability of having data in Qm,i

(Pdata m,i
).

3) A Number of Slots since Last Poll (NSLP) for up-
stream traffic (Ns,i).

4) And for downstream traffic (Nm,i).
Then, each Slave Analyzer provides to the Selection Algo-

rithm two parameters Pdatai
and Ni, defined as follows:

Pdatai
= Pdata s,i

+ Pdata m,i
(1a)

Ni = Ns,i + Nm,i (1b)

Selecting the slave with the highest Pdatai
increases the

chance of having data packets transmitted; thus, Pdatai
is

directly linked to efficiency. Ni should permit to limit the

delays for each slave, and is linked to fairness. Using all Pdatai

and Ni, the Selection Algorithm decides which slave has the
highest priority.

Since 0 ≤ Pdatai
≤ 1 and Ni ≥ 1, the Selector calculates

first
∑

Active Slaves

Pdata,i (which is greater than 0 as long as

there is more than one active flow) and
∑

Active Slaves

Ni , in

order to obtain the following normalized parameters:

pdatai
=

Pdatai
∑

Active Slaves

Pdatai

ni =
Ni

∑

Active Slaves

Ni

(2)

Now, we have 0 ≤ pdatai
≤ 1 and 0 < ni < 1. As we

have pointed out above, efficiency is represented by pdatai
,

whereas fairness is represented by ni. In order to control both
efficiency and fairness, we have defined the priority Pri as
follows:

Pri = α ∗ pdatai
+ (1 − α) ∗ ni (3)

The parameter α controls the tradeoff between fairness and
efficiency. To be efficient, α must be close to 1. To increase
fairness, and if the traffic of Piconet does not require too much
efficiency, α must be close to 0. We believe that the parameter
α should be set by the HCI, and forwarded to the MAC Layer.
Through our various simulations3 where different schemes are
considered, we noticed that the value α = 0.8 achieves a good
compromise and provides a good performance. Nevertheless,
other algorithms could be implemented to meet different
criteria, such as for example, the satisfaction of 95% of QoS
requests.

Once the selector has decided which slave has the highest
priority, the master will send a data (or a POLL) packet to
the selected slave, which in turn will send back a data (or a
NULL) packet. By selecting slave i, we allow traffic to flow
towards slave i and then to flow from slave i.

The following section details the computation of the differ-
ent values Pdata s,i

, Pdata m,i
, Ns,i and Nm,i.

C. Computation of Pdatai
and Ni

1) Pdata s,i
calculation with only FR request:

Each Slave Analyzer assumes that the arrival times of
AP packets from the application follow a Poisson process.
The choice of a Poisson process is motivated by our aim to
simplify the analysis and to make it tractable. The Poisson
assumption on packet arrivals has been shown to provide a
good approximation for many applications4 (telnet, ftp, Web
browsing...) [8]. Its main advantage is that it simplifies consid-
erably analysis, due to its memoryless nature. Our simulation
results will show that this simplicity of the analysis is not at
the detriment of the performance of the mechanism, which
remains very good through different simulation schemes.

3Several simulations showing the impact of α on FPQ are available in [7].
4[8] shows that the Poisson process is a good estimation, but underestimates

the burstiness of most applications, such as telnet.

The problem with the Poisson assumption is that it does not
account for bursts observed in real traffic. To account for such
bursts, more complex processes can be introduced. The cost
will be a higher complexity of the analysis, which will make
the implementation of our mechanism questionable. Note that
our mechanism can support different types of processes, in
addition to Poisson, for computing the functions of the model.
During the QoS negotiations, a parameter could be given in
order to select the right process to be used.

When a slave answers with a NULL packet at time T0,
this means that there is no more AP packets waiting in its
queue. According to the Poisson process, it becomes quite
easy to determine the probability of having data at time T0 +
∆T. However, it is more difficult to determine this probability
when the slave responds with a data packet at time T0, because
we do not know the state of its queue. Before describing our
algorithm for determining these probabilities, we introduce the
following notation. T0 represents the last time at which the
slave responded with a NULL packet. T1,T2,...,TN , represent
the beginning of the transmission of each AP packet, with T0

< T1 < ...< TN . We note that P≥1,N is the probability of
having one or more AP packets in the queue of the slave at
time TN . P>1,N stands for the probability of having strictly
more than one AP packet in the queue at time TN , and
P=1,N for the probability of having exactly one AP packet
in the queue, at time TN . For all these probabilities, the only
assumption is to have no AP packet at time T0.

Additionally, we denote by P (= 1, TN , TN+1) the prob-
ability that one AP packet arrives between TN and TN+1,
P (≥ 1, TN , TN+1) the probability of having one or more than
one AP packet between TN and TN+1, and P (= 0, TN , TN+1)
the probability of having no AP packet between TN and TN+1.

Initializing the number of AP packets in the queue to exactly
one or zero at time T0 yields the same probabilities from a
Poisson process, so we choose the following initial values:

P=1,0 = 1 P≥1,0 = 1 P>1,0 = 0 (4)

We have the following recurrence formulas:

P=1,N+1 = P (= 1, TN , TN+1) ∗ P=1,N

+ P (= 0, TN , TN+1) ∗ P=2,N

(5a)

P≥1,N+1 = P (≥ 1, TN , TN+1) ∗ P=1,N + P>1,N (5b)

P>1,N+1 = P≥1,N+1 − P=1,N+1 (5c)

The term P=2,N prevents us from having a regular re-
currence. In order to get rid of this term, me make the
approximation that the ratio between P=2,N and P=1,N is
equal to the ratio between the probabilities of having N + 1
and N packets arrived in the time interval [T0, TN]:

P=2,N

P=1,N

=
P (N+1 packets in [T0, TN])

P (N packets in [T0, TN])
=

(TN − T0) ∗
1

ITP

N + 1
(6)

By substituting (6) in (5a) and computing P (=
1, TN , TN+1), P (= 0, TN , TN+1) and P (≥ 1, TN , TN+1)
under the assumption that the arrival times of AP packets

follow a Poisson process, we obtain the recurrence formulas,
with ∆T = TN+1 − TN :

P=1,N+1 = exp

(

−
∆T

ITP

)

∗
P=1,N

ITP
∗

(

∆t +
TN − T0

N + 1

)

(7a)

P≥1,N+1 =

(

1 − exp

(

−
∆T

ITP

))

∗ P=1,N + P>1,N (7b)

P>1,N+1 = P≥1,N+1 − P=1,N+1 (7c)

Now, we want to compute the probability of having one or
more packets at time t = TN+1 > TN , given that there were
one or more AP packets at times T1,T2...TN

Pdata s,i
= P ({≥ 1, N + 1} / ({≥ 1, N} ... {≥ 1, 1}))

=
P ({≥ 1, N + 1}...{≥ 1, 1})

P ({≥ 1, N} ... {≥ 1, 1})

=
P≥1,N+1

P≥1,N

(8)

By reporting (7b) in (8), we finally obtain :

Pdata s,i
=

(

1 − exp
(

−TN+1−TN

ITP

))

∗ P=1,N + P>1,N

P≥1,N

= 1 − exp

(

−
t − TN

ITP

)

∗
P=1,N

P≥1,N

(9)

However, an AP packet, after its segmentation by the
L2CAP, may require several Baseband packets to be fully
transmitted. If the master of the Piconet started but has not
finished receiving all Baseband packets of an AP packet from
slave i, that means that Baseband packets of this AP packet
are waiting in Qs,i. Consequently, the master is sure that the
next time it polls slave i, it will receive a Baseband packet
with data. In that case, as the presence of data in Qs,i is sure,
the probability must be:

Pdata s,i
= 1 (10)

The poller must now determine when it has received the
first segments of an AP packet but not the whole AP packet.
A simple way is to compare the length of the Baseband packet
and its maximum possible length. If they are different, the end
of the transmission of the AP packet is then reached, otherwise
the transmission of the AP packet will likely require at least
another Baseband packet.

2) Pdata s,i
calculation with full QoS request:

As the efficiency of the poller is directly influenced by
Pdata s,i

, we will use this parameter to improve the behavior
of the polling algorithm.

We first analyze how to support the Maximum Delay
request, transmitted through the parameter MDs,i. As we do
not know the arrival times of the AP packets in the queues
of the slaves, one way to satisfy the new request is to make
sure that the Qs,i is empty every MDs,i seconds. The poller
knows that Qs,i is empty when it receives a NULL packet.
Assume that at time T0, slave i sends back a NULL packet.

To fulfill the MD request, the poller must then receive a NULL
packet from slave i at time T1 < T0 + MDs,i. Then, it must
receive another NULL packet before T1 + MDs,i. Else, there
may be two different reasons: either slave i has always sent
back data packets or it has not been polled in the meantime.
In both cases, the poller has to poll slave i as soon as possible
until it finally sends back a NULL packet. Let T

′

1 be the time
this NULL packet is received by the poller, Slave i must now
receive the next NULL packet before T

′

1 + MDs,i.
Thus, we introduce a new variable for each slave: the

Interval of Time since Last Null packet received (ITLNi).
When we are sure that a slave has data to send (i.e. an
AP packet transmission is pending), PData,i is set to 1, its
maximum value. The MD request asks for higher priority for
the corresponding slave. After experimenting with different
approaches, we decided to define the new value for PData,i

as follows:

P̂Data,i = PData,i + 1{ITLNi≥MDs,i} (11)

A potential problem appears when P̂Data,i ≥ 1; but, as the
Selection Algorithm normalizes each parameter, this is not a
problem.

3) Pdata m,i
calculation with only FR request:

Looking at the states of Qm,i and following the previous
scheme of Pdata s,i

, we may determine Pdata m,i
as follows:

PData m,i
=

{

0, when Qm,i is empty
1, when Qm,i is not empty

(12)

However, this method has some drawbacks. For example,
assume that a packet arrives in Qm,i while this queue is empty.
The following situation occurs:

Pdata s
Pdata m

Pdata

Slave i 1 0 1
Slave j 0.05 1 1.05

Whereas slave i has started transmission of an AP packet
towards the master (because of Pdata s,i

= 1), the FPQ
algorithm automatically sets the highest priority to slave j
for transmission of an AP packet towards slave j. Indeed,
the choice of slave j increases the probability of having data
packets in both directions. The point is that as soon as a
new packet arrives in Qm,j , it receives the higher priority for
transmission, interrupting the transmission of an AP packet
from slave i. It would be more efficient to wait for the end
of the transmission of the AP packet of slave i before polling
slave j. Moreover, with this approach, we do not differentiate
Baseband packets which correspond to the first segment of an
AP packet from the other Baseband packets: consequently, this
method is not able to provide any priority to transmissions of
AP packets which are in progress.

We note HoLPm,i the Head-of-Line packet of Qm,i (i.e.
the first Baseband packet of Qm,i), and FSA, a packet which
is the First Segment of an AP packet (i.e. the first Baseband
packet of the transmission of an AP packet). We distinguish
three possibilities, depending on the state of Qm,i:

1) Qm,i is empty.
2) The HoLPm,i is not a FSA.
3) The HoLPm,i is a FSA.

We set Pdata m,i
to 0 in the first case and to 1 in the second

case. In the third case, since there are data remaining in Qm,i,
Pdata m,i

should be greater than 0. Moreover, as we want FPQ
to establish a distinction between FSA packets and the other
Baseband packets, Pdata m,i

should be lower than 1 in this
third case. So, this value should influence the behavior of the
poller without giving a higher priority to the data in Qm,i. We
have empirically set Pdata m,i

to 0.5 in the third case:

Pdata m,i
=







0, when no packet is in Qm,i

0.5, when HoLPm,i is a FSA
1, when HoLPm,i is not a FSA







(13)

4) Pdata m,i
calculation with all QoS requests:

We have already described and explained how to handle the
MD request for upstream traffic. The principle for fulfilling
this request is to ensure that Qm,i is empty every MDm,i

seconds. The same scheme as above will be used to compute
Pdata m,i

: FPQ calculates a new variable, the Interval of Time
since last time Qm,i was Empty (ITQEi). As for upstream
traffic, we compute the new value of Pdata m,i

as follows, as
so to give the highest priority to this flow:

P̂Data,i = PData,i + 1{ITQEi≥MDm,i} (14)

5) Ns,i calculation:
The Ns,i is used to estimate the amount of time between

each opportunity the slave has to begin the transmission of an
AP packet. Thus, the Ns,i parameter allows harmonization of
the delays among the active slaves of the Piconet. We therefore
distinguish two types of Polls. The first type corresponds to
the case where Pdata is set to 1, meaning that the slave is
transmitting an AP packet through several Baseband packets.
However, these Polls do not bring any information about AP
traffic, and do not allow the slave to transmit another AP
packet, in case AP packets remain in the queue. On the other
hand, the second type of poll, corresponding to Pdata different
from 1, is very useful since it provides information about AP
traffic. Indeed, the state of Qs,i is advertised to the poller by
the existence, or by the absence, of AP packets waiting for
transmission. Only in this case has the slave an opportunity
to begin transmission of an AP packet. Consequently, Ns,i is
set to 0 only in this second case and is always incremented at
each slot.

6) N m,i calculation:
We will use a similar scheme to N s,i to compute N m,i. As

soon as Qm,i is empty, N m,i is set to 0, since there are no data
in Qm,i. When there are data in Qm,i, N m,i is incremented
at each slot and set to 0 when slave i is selected and in the
meantime, the HoLPm,i is the first segment of an AP packet.

D. Evaluation of Complexity

To enable cheap implementation of Bluetooth, the com-
plexity of polling algorithms should be kept low. Our FPQ
implementation requires some registers (about ten per slaves)
used for the Slave Analyzers. The exponential expressions are
the most greedy of CPU. However, we do not need many
operations per active slave, as can be seen from describing the
process in detail. For computation of Pri, each slave obtains
Pdata m,i

, Nm,i and Ns,i by reading registers or flags. The cal-
culation of Pdata s,i

require at most 1 exponential calculation,
2 additions, 2 divisions and 1 multiplication. However, if Qs,i

is not empty, Pdatas,i
is set to 1, without any calculation. After

that, 2 additions are necessary to compute Pdatai
and Ni. We

can modify the expression of the probabilities to obtain:

Pri = Pdatai
+









(1 − α)

α
∗

∑

ActiveSlaves

Pdatai

∑

ActiveSlaves

Ni









∗Ni (15)

where
(

(1−α)
α

∗
∑

ActiveSlaves Pdatai
∑

ActiveSlaves Ni

)

= Constant. This
constant can be computed once for all slaves. Then, 2 opera-
tions for computation of Pri and one comparison for finding
the slave with highest priority are required for each slave.

After selecting a slave, and receiving back the slave’s
Baseband packet, FPQ has to update some registers. FPQ
only resets or increments some registers (for example Ns,i),
except for the probabilities needed by Pdata s,i

of the selected
slave, which may require up to 1 exponential, 3 divisions,
3 multiplications and 6 additions. If the selected slave sends
back a NULL packet, the probabilities are set to initial values.
So, the number of operations to perform per slave is kept low.
Moreover, as we have a maximum of 800 polls per second, we
believe that current low cost chips are able to perform these
operations.

IV. DESCRIPTION OF SIMULATIONS

We use three different models of traffic to evaluate per-
formance of FPQ. The first model, called Upstream Traffic
Model (UTM), simulates the polling algorithms with only
upstream traffic. The second model, called Downstream Traffic
Model (DTM), only offers downstream traffic with FTP traffic.
The third model, called Mixed Traffic Model (MTM), mixes
both upstream and downstream traffic. We used the Network
Simulator (NS2) [11] with Bluehoc extensions [10] from IBM.
We added some changes to Bluehoc and NS2 to allow traffic
in both directions. In addition to the implementation of FPQ,
we use the Bluehoc implementation of DRR, and our own
implementation of PFP. Our simulations are available in [12].

We now describe in details the three models we have used.
In each model, the Piconet consists of one master and seven
active slaves.

A. Upstream Traffic Model (UTM)

DRR and PFP have been used for comparison in this model
of traffic. We use the same simulation conditions as in [4].

There is only traffic from the slaves to the master, and only
one application per slave that generates IP packets. Arrivals of
IP packets follow a Poisson process. The Bluetooth Baseband
packet types used are DH1, DH3, DH5 which respectively
take one, three and five slots, and have payloads of 27 bytes,
183 bytes and 339 bytes. We use a trimodal distribution of IP
packets size [3]. 30% of IP packets have a size of 40 bytes,
12% a size of 1500 bytes and 58% a size uniformly distributed
between 300 bytes and 600 bytes.

Let d̄ be the average number of data slots of IP packets,
p̄ the average number of Poll packets required per IP packet,
and PL the average packet length, we have:

d̄ = 8.30 p̄ = 1.99 PL = 10.29 (16)

In order to compare performance with PFP, we use the
following rates of the Poisson arrival process as in [4]:

λ3 = λ4 = λ5 = λ6 = λ7 = λb (17a)

λ1 = λ2 = λa ≥ λb (17b)

and we have as well:

COV =

√

∑

i λ2
i
− 1

7 (
∑

i λi)
2

6

1
7

∑

i λi

with i ∈ {Active Slaves}

(18a)

ρ =

∑

i λid̄

1600
with i ∈ {Active Slaves}

(18b)

ρ represents the percentage of slots used only by data
packets. All the simulations are made with ρ = 0.7. COV
represents the coefficient of variation of the seven flow rates.
COV = 0 means that all flow rates are the same, and, the
higher the COV is, the larger is the difference between λa

and λb. Due to equations (17) and (18), each combination
of ρ and COV gives a unique solution for the arrival rates
(λ1, ..., λ7). Thus, with ρ = 0.7, it is possible to use COV as
input for the simulations.

We introduce MD requests for each slave, and all QoS
requests are summarized in Table I

TABLE I

QOS REQUESTS SUMMARY

Slaves S1 S2 S3 S4 S5 S6 S7

λ used λa λa λb λb λb λb λb

MD (ms) 100 200 200 300 300 300 500

According to these QoS requests, using the same calculation
as the HCI, defined in section III-A, 91% of the slots are used
for data transmission and satisfaction of MD requests as well.
Thus, the Piconet is highly loaded. Finally, the simulations, as
in the MTM model, have a duration of 1200 seconds.

B. Downstream Traffic Model (DTM)

The DTM model is used to study performance of FPQ with
only downstream traffic and using some FTP traffic [2].

The results which will be presented in the next section can
be compared to the results of the AFP and StickyAFP algo-
rithms [2], which were designed especially for downstream
traffic. In table II, we describe the protocols, applications,
flow rates, start and stop times of applications used for traffic
towards each slave.

TABLE II

QOS REQUESTS SUMMARY

Slave S1 S2 S3 S4 S5 S6 S7

Protocol TCP TCP UDP UDP UDP UDP UDP
Applications FTP FTP CBR CBR CBR CBR CBR
Rates (kbps) — — 17.6 35.3 17.6 5.5 5.5

Start(sec.) 0 10 5 20 0 0 10

Stop (sec.) 60 20 25 50 60 40 60

TCP Reno is used in the simulations, since it is one of the
most common reference implementation for TCP.

C. Mixed Traffic Model (MTM)

DRR has been used for comparison in this model of traffic.
Arrival times of IP packets from all applications follow a
Poisson process. All QoS requests are summarized in Table
III, where “Up” stands for upstream traffic and “Down” for
downstream traffic:

TABLE III

QOS REQUESTS SUMMARY

Slave S1 S2 S3 S4 S5 S6 S7

Up : FR 3.λu 3.λu λu λu λu λu λu

Up :MD(ms) 100 200 150 150 200 200 500
Down: FR 0 2.λd λd 0 2.λd 4.λd 0
Down:MD(ms) — 200 200 — 100 150 —

Each application generates IP packets with the same distri-
bution of packet size than in the UTM. Each second, about
140 packets are sent by the applications to Bluetooth units:

∑

Active Slaves

λu,i + λd,i = 11.λu + 9.λd = 140

This implies that 73% of time slots should be used only for
data transmission, without taking into account POLL or NULL
packets. In the worst case, these QoS requests use 95% of all
time slots. Thus, the Piconet is highly loaded.

We introduce the parameter µ that represents the distribution
of flows among upstream and downstream traffic.

µ =

∑

Active Slaves

λd,i

140
(19)

With µ = 0, there is only upstream traffic, with µ = 0.5,
upstream and downstream traffic are equal, and µ = 1 implies
downstream traffic only.

V. RESULTS

For all the polling algorithms, we use the same SAR policy
in the L2CAP layer as described in [2] (i.e. SAR-Optimum

Slot Utilization (OSU), with slot limit=5), because this policy
performs well in terms of throughput, link utilization and end-
to-end delay [2]. Moreover, in our simulations, all the buffers
of the Bluetooth stack are considered as infinite. Nevertheless,
if FPQ obtains small delays for packets in the simulations, it
implies that small buffers are sufficient. We do not use any loss
model for the transmission channel because we want to study
our algorithm independently from the constraints and effects
of other layers. A loss model would naturally introduce larger
delays and lower throughput. However, thanks to the Bluetooth
QoS parameters, we have the possibility of limiting the number
of retransmission of Baseband packets. Moreover, this loss
model does not have any additional negative effect on the
behavior of FPQ. In the simulations, we assume that only one
application per slave sends data. If there are many applications
on top of one Bluetooth unit and after each application has
forwarded its QoS requests, the HCI should summarize all
these QoS requests as if there were only one application on
this slave: the FR request would be equal to the sum of all FR
requests, and the MD request would be equal to the lowest
MD request.

PFP and FPQ have both a tuning parameter α. We choose
to present each poller with a particular value, α = 0.8,
which achieves a good tradeoff between efficiency and fairness
with both polling algorithms. All the results presented in this
section are the average values obtained from four different
simulations.

A. Upstream Traffic

1) Comparison of Throughputs:
We first analyze the overall throughput of the three polling

algorithms to ensure that they handle all the traffic. As we can
observe on Fig. 3, the three pollers are able to handle the high
traffic of this model with very low variations (less than 1%),
certainly introduced by the random model of the simulations.
We now analyze more precisely how each polling algorithm
distributes the polls among the slaves.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
480

483

486

489

492

495

0.0 0.2 0.4 0.6 0.8 1.0 1.2
480

483

486

489

492

495

♦
♦

♦

♦

♦ ♦
♦

∆
∆ ∆

∆

∆ ∆
∆

×
×

×

×

×
×

×

Total : Throughput (kb/s)

COV

(kb/s)

 DRR
 PFP
 FPQ

♦
 DRR ∆
 PFP×
 FPQ

Fig. 3. Overall throughput versus COV

2) Comparison of polls:
The way each poller divides the number of polls helps

in understanding the behavior and the priorities of polling
algorithms. Since slaves with high throughput have to be
polled frequently, we analyze the ratio of good polls for each

slave, i.e. the number of Polls with remaining data packet in
the following slot, divided by the total number of Polls.

Efficiency leads to a total number of polls for each slave
proportional to its flow rate and therefore to the same ratio
of good polls for each slave. As a consequence, slaves with
low flow rates are polled less often than other slaves, so
their packets may wait a longer time before being transmitted.
Therefore, in order to increase fairness, it is necessary to send
more polls to these slaves, which will obtain lower ratio of
good polls.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.67

0.72

0.77

0.82

0.87

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.67

0.72

0.77

0.82

0.87

×

×
×

×
×

×
×

⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕

∇
∇

∇ ∇
∇ ∇ ∇

Slave 1 : Ratio of good Polls

COV

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.67

0.72

0.77

0.82

0.87

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.67

0.72

0.77

0.82

0.87

×

×
×

×
×

×
×

⊕
⊕ ⊕ ⊕ ⊕ ⊕ ⊕

∇
∇

∇ ∇ ∇ ∇ ∇

Slave 2 : Ratio of good Polls

COV

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.52

0.57

0.62

0.67

0.72

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.52

0.57

0.62

0.67

0.72 ×
×

×
×

×

×

×

⊕ ⊕ ⊕
⊕

⊕
⊕

⊕

∇ ∇
∇

∇
∇

∇

∇

Slave 3 : Ratio of good Polls

COV

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.52

0.57

0.62

0.67

0.72

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.52

0.57

0.62

0.67

0.72 ×
×

×
×

×

×

×

⊕ ⊕ ⊕
⊕

⊕
⊕

⊕

∇ ∇
∇

∇
∇

∇

∇

Slave 5 : Ratio of good Polls

COV

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.52

0.57

0.62

0.67

0.72

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.52

0.57

0.62

0.67

0.72 ×
×

×
×

×

×

×

⊕ ⊕ ⊕
⊕

⊕

⊕

⊕

∇ ∇
∇

∇
∇

∇

∇

Slave 7 : Ratio of good Polls

COV

 DRR
 PFP
 FPQ

×
 DRR ⊕
 PFP∇
 FPQ

Fig. 4. Distribution of good polls versus COV

Fig. 4 confirms that slaves are differentiated by the polling
algorithms through their flow rates. All the schemes show
continuous increases of their values with respect to COV for
slaves 1 and 2, and continuous decreases for slaves 3,5 and 7.
One may notice that PFP and FPQ try to be more efficient,
and thus perhaps less fair than DRR, because they poll more
often high rate slaves (i.e. slaves 1 and 2), and consequently
less often low rate slaves.

As we expected, slaves with low MDs,i have been favored
by FPQ, principally Slave 1 and to some extent Slave 3, since
they have been polled more often than other slaves. FPQ has
consequently given high priority to the slaves requesting a low
MDs,i. Nevertheless, the other slaves have not been too much
penalized; they have only lost some priority.

3) Analysis of delays:
We only consider end-to-end delays of IP packets because

they are the most relevant delays for applications on top
of Bluetooth units. We analyze the evolution of the average
delays for all packets, with respect to the COV value, and
then for Slaves 1,2,3 and 7, which have all different QoS
requests. As each poller handles correctly all the traffic,
efficiency is evaluated through the average delay of all packets.

Then, comparison of delays between the slaves provides an
estimation of the fairness of each poller: a low MDs, i should
naturally lead to a low average delay for slave i.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.050

0.055

0.060

0.065

0.070

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.050

0.055

0.060

0.065

0.070

×
×

× ×
× × ×

⊕ ⊕ ⊕ ⊕
⊕

⊕
⊕

∇ ∇ ∇ ∇ ∇
∇

∇

Overall Average Delay

COV

Delay (s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.03

0.04

0.05

0.06

0.07

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.03

0.04

0.05

0.06

0.07
× × × × × × ×

⊕

⊕
⊕

⊕
⊕ ⊕

⊕

∇ ∇ ∇ ∇ ∇ ∇ ∇

Slave 1 : Average Delay

COV

Delay (s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.03

0.04

0.05

0.06

0.07

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.03

0.04

0.05

0.06

0.07
× ×

× × × × ×

⊕

⊕
⊕

⊕
⊕ ⊕ ⊕

∇ ∇
∇ ∇ ∇

∇ ∇

Slave 2 : Average Delay

COV

Delay (s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.050

0.075

0.100

0.125

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.050

0.075

0.100

0.125

× × × × × × ×
⊕

⊕
⊕

⊕
⊕

⊕

⊕

∇ ∇ ∇ ∇ ∇ ∇
∇

Slave 3 : Average Delay

COV

Delay (s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.050

0.075

0.100

0.125

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.050

0.075

0.100

0.125

× × × × × × ×
⊕

⊕
⊕

⊕
⊕

⊕

⊕

∇ ∇ ∇ ∇
∇

∇
∇

Slave 7 : Average Delay

COV

Delay (s)

 DRR
 PFP
 FPQ

×
 DRR ⊕
 PFP∇
 FPQ

Fig. 5. Average end-to-end delays versus COV

Although FPQ supports QoS requests, Fig. 5 reveals that
FPQ performs better than the other polling schemes, improving
the overall average delay with a gain of around 10%. By look-
ing at this overall average delay we notice that PFP and FPQ
are more sensitive to the evolution of COV : consequently,
FPQ adapts itself better to the changes of traffic conditions. As
the distribution of polls has shown, PFP and FPQ are less fair
than DRR. Nevertheless, FPQ remains quite fair, and provides
the same enhancement for the overall average delay. Moreover,
we can clearly observe the effects of MDs,i requests on the
average delays. For example, if we consider Slaves 1 and 2,
they have the same FR request but different MD requests:
Slave 1, with a low MDs,1, has been consequently favored.
In the same way, Slave 3 has been favored compared to Slave
7; yet, Slave 7, which has the highest MDs,i, has not been
too much disadvantaged compared to the other slaves.

Although average delays characterize well the behavior and
the efficiency of each poller, the distribution of delays brings
other important information such as the percentage of packets
which fulfill the MD requests. So, we present distributions
of delays for several slaves on Fig. 6, where each curve
represents, with respect to time t, the number of IP packets
sent by the slave with a delay less than t, divided by the total
number of IP packets sent by this slave. For lack of space,
we have decided to present the results with the mean value
of COV , i.e. COV = 0.6. However, the results remain very
similar with different values of COV .

Fig. 6 confirms the previous results reported on efficiency
and fairness for each polling algorithm. We observe how FPQ
differentiates the slaves in order to satisfy the QoS requests.

0.05 0.10 0.15 0.20 0.25
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.05 0.10 0.15 0.20 0.25
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

×

×

×

×
×

× ×

⊕

⊕

⊕

⊕

⊕

⊕
⊕ ⊕

∇

∇

∇

∇

∇
∇

∇ ∇Slave 1 : Distribution of Delays

Time (s)

0.05 0.10 0.15 0.20 0.25
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.05 0.10 0.15 0.20 0.25
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

×

×

×

×
×

× ×

⊕

⊕

⊕

⊕

⊕

⊕
⊕ ⊕

∇

∇

∇

∇

∇

∇
∇

∇
∇ ∇Slave 2 : Distribution of Delays

Time (s)

0.05 0.10 0.15 0.20 0.25
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.05 0.10 0.15 0.20 0.25
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

×

×

×

×
×

×
× ×

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕ ⊕

∇

∇

∇

∇

∇

∇

∇
∇

∇
∇ ∇Slave 3 : Distribution of Delays

Time (s)

0.05 0.10 0.15 0.20 0.25
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.05 0.10 0.15 0.20 0.25
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

×

×

×

×
×

×
× ×

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕ ⊕

∇

∇

∇

∇

∇

∇

∇
∇

∇
∇

∇ ∇Slave 5 : Distribution of Delays

Time (s)

0.05 0.10 0.15 0.20 0.25
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.05 0.10 0.15 0.20 0.25
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

×

×

×

×
×

×
× ×

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕
⊕

⊕ ⊕

∇

∇

∇

∇

∇

∇

∇
∇

∇
∇

∇ ∇Slave 7 : Distribution of Delays

Time (s)

 DRR
 PFP
 FPQ

×
 DRR ⊕
 PFP∇
 FPQ

Fig. 6. Distributions of delays per slave versus time

One may notice the efforts made to obtain high values for
each slave at the critical time t = MDs,i.

FPQ has been specially designed for supporting upstream
traffic with QoS requests. These results above show the
efficiency of our polling algorithm and its ability to adapt itself
to various traffic conditions. Moreover, the simulations show
that, with only upstream traffic, FPQ successfully provides
QoS support for Bluetooth Piconet.

B. Simulation with Downstream Traffic

We now study FPQ with only downstream traffic and
some FTP traffic. In this model of simulation, there is only
downstream traffic, with two FTP sources. As in subsection V-
A, we present the results of FPQ with the parameter α = 0.8.
In order to obtain significant values, independently of punctual
events, the throughputs shown on Fig. 7 are averaged every
0.5 seconds for Slaves 1 and 2, and every 2 seconds for the
other slaves. The most important point is the evolution of TCP
throughput of Slave1; compared to the results obtained in [2],
we obtain about the same throughput for Slave 1. Furthermore,
we may notice the perfect share of bandwidth between the two
FTP streams, represented by slaves 1 and 2, when they are both
active. On the other hand, CBR traffic is completely handled
by FPQ.

The average delays shown on Fig. 8 reveal higher delays for
FTP traffic, compared to CBR traffic. These high delays are
certainly caused by the fact that FTP traffic generates some
“bursts” of IP packets, which consequently increases queuing
delays. Yet, the most important point for this type of traffic is
not delays, but the overall throughput. On the contrary, CBR
traffic with low flow rates obtains very low delays compared
to [2]. Although FPQ was originally designed for upstream

0 10 20 30 40 50 60
0

100

200

300

400

500

600

0 10 20 30 40 50 60
0

100

200

300

400

500

600

0 10 20 30 40 50 60
0

100

200

300

400

500

600

××
××

×

×××××

××
××

×
××××××××××

××××

0 10 20 30 40 50 60
0

100

200

300

400

500

600

♦♦♦♦♦

♦♦♦♦♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

Throughput of Slaves 1 and 2

Time (s)

(kb/s)

 Slave 1
 Slave 2

×
 Slave 1 ♦
 Slave 2

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

36

40

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

36

40

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

36

40

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

36

40

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

36

40

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

36

40

+++

+

+
++

+
++

+
+

+

+

+

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

36

40

⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕

⊕
⊕⊕⊕

⊕
⊕⊕⊕

⊕
⊕⊕⊕

⊕
⊕⊕

⊕

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

36

40

◊

◊◊
◊

◊◊
◊

◊
◊

◊◊
◊

◊◊
◊

◊
◊

◊◊
◊

◊◊
◊

◊
◊

◊◊
◊

◊◊

◊

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

36

40

∇

∇∇∇
∇

∇∇
∇

∇∇
∇

∇∇∇
∇

∇∇
∇

∇∇
∇

∇

0 10 20 30 40 50 60
0

4

8

12

16

20

24

28

32

36

40

♣♣♣♣♣♣

♣♣♣
♣

♣♣
♣

♣♣
♣

♣♣♣
♣

♣♣
♣

♣♣
♣

♣♣
♣

♣

♣

Throughput of Slaves 3 to 7

Time (s)

(kb/s)

Slave 3
Slave 4
Slave 5
Slave 6
Slave 7

+
Slave 3⊕
Slave 4◊
Slave 5∇
Slave 6♣
Slave 7

Fig. 7. Throughput per slave versus time

traffic, our results show that FPQ is suitable for handling
downstream traffic and FTP traffic as well.

1 2 3 4 5 6 7
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

×

×

× × × × ×

Average Delay per Slave

Slave

Delay (s)

Fig. 8. Average delays versus slave number

C. Simulation with Mixed Traffic

We now study performance of FPQ with both upstream and
downstream traffic, and analyze the influence of streams on
each other. As in the previous cases, we have decided to
present the results with α = 0.8 for FPQ. As for upstream
traffic, the simulations are made for a duration of 1200
seconds. Fig. 9 and 10 correspond to simulations without
any MD request.

We recall that when µ = 0, there is only upstream traffic,
when µ = 0.5 upstream and downstream traffic are equal and
when µ = 1 there is only downstream traffic.

Fig. 9 represents the overall delays for upstream and down-
stream traffic. We notice that FPQ performs well for both
streams and decreases delays from 10 to 30% for upstream
traffic and far more than 50% for downstream traffic compared
to DRR. With FPQ, average delays for downstream traffic
(upstream traffic) decrease when downstream traffic (upstream
traffic) decreases. Moreover, in comparison with previous
simulations, upstream traffic seems not to be penalized by

0.0 0.2 0.4 0.6 0.8
0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.0 0.2 0.4 0.6 0.8
0.030

0.035

0.040

0.045

0.050

0.055

0.060

♣

♣ ♣
♣ ♣

♣
♣

∆

∆

∆
∆ ∆

∆

∆

Upstream traffic : Average Delay

µ

Delay (s)

♣
 DRR ∆
 FPQ
 DRR
 FPQ

0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

♣
♣

♣

♣

♣

♣

♣

∆
∆

∆ ∆ ∆ ∆
∆

Downstream traffic : Average Delay

µ

Delay (s)

♣
 DRR ∆
 FPQ
 DRR
 FPQ

Fig. 9. Average delays versus distribution of upstream/downstream flows (µ)

downstream traffic. However, this traffic is better handled than
upstream traffic, since we have further information about the
Qm,i.

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

×

×
×

× ×

♣

♣

♣

♣

♣
♣ ♣(UT) Slaves(1,2): Distribution of delays

Time(s)

×
 Slave 1 ♣
 Slave 2
 Slave 1
 Slave 2

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

×

×

×
×

× ×

♦

♦

♦

♦

♦

♦

♦
♦

♦ ♦

∆

∆

∆

∆

∆

∆
∆ ∆

♣

♣

♣

♣
♣ ♣(UT) Slaves(3,4,5,6): Distribution of delays

Time(s)

×
 Slave 3 ♦
 Slave 4 ∆
 Slave 5♣
 Slave 6

 Slave 3
 Slave 4
 Slave 5
 Slave 6

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

×
× ×

♣

♣

♣

♣

♣
♣ ♣(DT) Slaves(2,5): Distribution of delays

Time(s)

×
 Slave 2 ♣
 Slave 5
 Slave 2
 Slave 5

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

× ×

◊

◊

◊

◊
◊ ◊

♣

♣

♣

♣

♣
♣

♣ ♣(DT) Slaves(3,5,6): Distribution of delays

Time(s)

×
 Slave 3 ◊
 Slave 5♣
 Slave 6

 Slave 3
 Slave 5
 Slave 6

Fig. 10. Distribution of delays versus time without MD requests

Fig. 10 shows the distribution of delays for each flow, with
µ set to 0.5 and UT standing for upstream traffic and DT for
downstream traffic. Basically, on this Fig., we compare slaves
with same flow rates for upstream or downstream traffic, but
with different flow rates in reverse traffic. With this scenario,
we can observe the effects of the streams on each other. As
expected, flow rates of reverse traffic interacts with the delays
of each stream: for example, if we have a significant flow rate
towards Slave 2, this means that Slave 2 will often receive
data, and thus, it will be often polled and will obtain low
delays for its upstream traffic. In spite of these differences,
the main points are the overall efficiency of FPQ and the fact
that no slave seems to be penalized.

Fig. 11 shows the distribution of delays for each flow, with
µ = 0.5 and using MD requests. The following results can be

compared to those obtained on Fig. 10.

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

×

×
× ×

♣

♣

♣

♣

♣
♣ ♣(UT) Slaves(1,2): Distribution of delays

Time(s)

×
 Slave 1 ♣
 Slave 2
 Slave 1
 Slave 2

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

×

×

×

×
×

× ×

♦

♦

♦

♦

♦

♦

♦

♦
♦

♦ ♦

∆

∆

∆

∆

∆

∆

∆
∆

∆ ∆

♣

♣

♣

♣

♣
♣

♣ ♣(UT) Slaves(3,4,5,6): Distribution of delays

Time(s)

×
 Slave 3 ♦
 Slave 4 ∆
 Slave 5♣
 Slave 6

 Slave 3
 Slave 4
 Slave 5
 Slave 6

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

×
× ×

♣

♣

♣

♣

♣
♣

♣ ♣(DT) Slaves(2,5): Distribution of delays

Time(s)

×
 Slave 2 ♣
 Slave 5
 Slave 2
 Slave 5

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.05 0.10 0.15 0.20
0.70

0.75

0.80

0.85

0.90

0.95

1.00

×

×

×

×
×

× ×

◊

◊

◊

◊

◊
◊

◊ ◊

♣

♣

♣

♣

♣

♣
♣

♣ ♣(DT) Slaves(3,5,6): Distribution of delays

Time(s)

×
 Slave 3 ◊
 Slave 5♣
 Slave 6

 Slave 3
 Slave 5
 Slave 6

Fig. 11. Distribution of delays versus time without MD requests

We can notice the efforts made by the poller to fulfill
the new requests for both streams. Nevertheless, as we use
Poisson process, we can not statistically assure fulfillment
of all the QoS requests. However, these results show that
FPQ does take into account the MD requests and respects
these requests in more than 98% of cases. The changes in the
different distributions are particularly noticeable in proximity
of the critical values MDm,i and MDs,i. As in the upstream
traffic model, slaves with low MD requests now obtain a better
distribution, without penalizing too much the other slaves.

VI. CONCLUSIONS

We have designed and evaluated a new MAC scheduling
for Bluetooth Piconet, with the aim of supporting asymmetric
flow rates and QoS requests. The various simulations we have
made prove the good performance of FPQ, compared to other
schemes in terms of throughput, delay, fairness, and ability
to support both a Flow Rate request and a Maximum Delay
request. With the exception of a few changes in the HCI for
QoS negotiations, FPQ does not imply any changes in other

layers and is not too complex, which is required by Blue-
tooth.

In our work, we have focused on the ACL traffic. How-
ever, FPQ is also able to support SCO links, with reserved
time slots: the support of SCO links could be provided by
the Segmentation and Reassembly scheme proposed in [2].
Basically, the scheme takes into account the number of SCO
connections, and thus, limits the size of Baseband packets, in
order that ACL traffic fits into the time slots reserved for SCO
link.

Future works seek to design an algorithm in order to adapt
the value of the parameter α of FPQ, with respect to QoS
requests and traffic conditions.

ACKNOWLEDGMENTS

The authors would like to thank Chadi Barakat for providing
valuable comments.

REFERENCES

[1] R. Bruno, M. Conti and E. Gregori, “Bluetooth: Architecture, Protocols
and Scheduling Algorithms ”, Cluster Computing, Vol. 5, Number 2, pp
117-131 , April 2002.

[2] A. Das, A. Ghose, A. Razdan, H. Saran and R. Shorey, “Enhancing
Performance of Asynchronous Data Traffic over Bluetooth Wireless Ad-
hoc Network” in the proceedings of IEEE INFOCOM ’2001, Alaska,
USA, April 2001.

[3] R. Epsilon, J. Ke and C. Williamson, “Analysis of ISP IP/ATM Network
Traffic Measurements”, in Performance Evolution Review, vol. 27,no. 2,
pp 15-24, 1999.

[4] G. Heijenk and R. Ait Yaiz, “Polling Best Effort Traffic in Bluetooth”,
Proceedings of 4th International Symposium on Wireless Personal Mul-
timedia Communications (WPMC’01), Denmark, September 2001.

[5] M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round
robin”, IEEE/ACM Trans. on Networking, Vol. 4, No 3, pp. 375-385,
1996.

[6] M. Van der Zee, G. Heijenk, “Quality of Service in Bluetooth Network-
ing” Technical Report University of Twente, TR-CTIT-01-01 , January
2001.

[7] J.-B. Lapeyrie and T. Turletti “Adding QoS Support for Bluetooth
Piconet” INRIA Research Report, RR-4514, http://www.inria.fr/rrrt/rr-
4514.html, July 2002.

[8] V. Paxson andS. Floyd “Wide-Area Traffic: The Failure of Poisson
Modeling” SIGCOMM 2004.

[9] Bluetooth Special Interest Group, “Specifications of the Bluetooth System
1.1”, http://www.bluetooth.com 2001.

[10] The Bluehoc Web site “http://www-
124.ibm.com/developperworks/opensource/bluehoc”.

[11] The Network Simulator (ns2). Software and documentation available
from “http://www.isi.edu/nsnam/ns”.

[12] FPQ implementation for Bluehoc and simulations available from
“http://www-sop.inria.fr/planete/turletti/bluetooth/”.

