NN Dbk W

10
11
12
13
14
15
16
17
18

19
20

21

22
23
24
25
26
27
28
29
30
31
32
33
34
35

ELSEVIER

Available online at www.sciencedirect.com

science (@oimeer:

Computer Communications xxx (2006) xxx—xxx

computer
communications

www.elsevier.com/locate/comcom

Explicit routing in multicast overlay networks

Torsten Braun **, Vijay Arya °, Thierry Turletti ®

& University of Bern, Neubriickstrasse 10, CH-3012 Bern, Switzerland
® INRIA, 2004 route des Lucioles, B.P. 93, F-06902 Sophia Antipolis

Received 10 February 2005; received in revised form 16 February 2006; accepted 21 February 2006

Abstract

Application Level Multicast is a promising approach to overcome the deployment problems of IP level multicast by establishing deliv-
ery trees using overlay links among end systems. This paper presents algorithms to support traffic engineering, to improve the reliability
of multicast delivery, and to facilitate secure group communications. First, we introduce the so-called backup multicast tree algorithm to
compute a set of n — 1 backup multicast delivery trees from the default multicast tree. Each backup multicast tree has exactly one link of
the default multicast tree that is replaced by a backup link from the set of available links. The algorithm can calculate this set of trees with
a complexity of O(m log n), which is identical with the complexity of well known minimum spanning tree algorithms. The so-called
reduced multicast tree algorithm is based on the backup multicast tree algorithm and can calculate a tree from the default multicast tree
by removing a particular node and by replacing the links of the removed node. Using the algorithms trees can be calculated individually
by each of the nodes but it requires global topology knowledge. We therefore discuss distributed versions of the algorithms.

© 2006 Published by Elsevier B.V.

Keywords: Multicast; Overlay networks; Explicit routing

1. Introduction

Application level multicast also known as end system
multicast or overlay multicast has become a very popular
research topic during the last years due to the deployment
problems of IP multicast. Typically, application level mul-
ticast approaches apply similar concepts as IP multicast
such as running multicast routing protocols and building
multicast delivery trees, but with the difference that these
operations are performed on application rather than on
network level. Application level multicast avoids multicast
deployment problems in the Internet and can be used to
bypass routes established by underlying routing protocols
that do not consider the current load or congestion level
for the routing decision. Application level multicast is
based on the establishment of overlay networks. Multicast

* Corresponding author. Tel.: +41 31 631 4994; fax: +41 31 631 3261.
E-mail addresses: braun@iam.unibe.ch (T. Braun), Vijay.Arya@
sophia.inria.fr (V. Arya), Thierry.Turletti@sophia.inria.fr (T. Turletti).

0140-3664/$ - see front matter © 2006 Published by Elsevier B.V.
doi:10.1016/j.comcom.2006.02.022

packets are forwarded between the end systems via such
overlay networks.

Mechanisms for explicit path selection are not included in
most multicast distribution concepts. With explicit path
selection, the sender of a multicast packet can explicitly select
the distribution path (usually a tree) of a single multicast
packet. This allows a sender selecting individual multicast
trees for each single packet in order to react on events such
as link breaks, node failures, congested links, and group
member leaves. We propose that a sender of a multicast
packet can select a backup multicast tree instead of the
default multicast tree by inserting a fixed size identifier to
the multicast packet. A multicast delivery tree is typically
established by multicast routing protocols in case of IP mul-
ticast and by peer-to-peer protocols in case of application
level multicast. Such a multicast delivery tree is then used
for the distribution of multicast data. The selected backup
multicast tree can then be used to immediately react on link
failures without any delay caused by reestablishing a new
multicast delivery tree for the new topology. Load balancing
can be achieved by using different trees simultaneously and

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

mailto:braun@iam.unibe.ch
mailto:Vijay.Arya@ sophia.inria.fr
mailto:Vijay.Arya@ sophia.inria.fr
mailto:Thierry.Turletti@sophia.inria.fr

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

106
107
108

109
110

2 T. Braun et al. | Computer Communications xxx (2006) xxx—xxx

can be applied when a particular link of the default multicast
tree becomes congested or for increasing throughput.

Another usage of explicit path selection might be prevent-
ing particular nodes of a multicast group to receive a multi-
cast message. This might be useful in secure group
communications. In such cases, group keys must be updated
whenever a node joins or leaves [1]. For joining nodes, the
new key can be distributed along the old multicast delivery
tree and by explicitly sending the new key to the joining mem-
ber. However, in case of a leaving node, the old multicast
delivery tree can not be used, because the leaving node would
receive the multicast message with the new group key. A
naive approach for key distribution is to distribute the group
key via point-to-point connections between the root generat-
ing the new key and the individual group members, but this
approach is not scalable. Other tree based and hierarchical
approaches form sub-groups within the group and distribute
the new group key along the sub-group trees. Only a small
part of the sub-groups must be re-established for a joining
member and most of the established multicast distribution
trees for the various sub-groups can be used for efficient
key distribution [1,2].

In Section 2 we review related work on explicit path selec-
tion and on application level multicast, in particular con-
cepts to improve reliability. Section 3 introduces our
concept of explicit path selection in multicast overlay net-
works and presents an appropriate signaling protocol. The
proposed algorithm for constructing n — 1 backup trees
out of a single default multicast tree is described in Section
4. Also the complexity and performance of this algorithm
isevaluated. We will show that the complexity for calculating
n — 1 backup multicast trees for each of the links of the
default multicast tree has a similar complexity as calculating
a single minimum spanning tree. The result is confirmed by
an implementation of the backup multicast tree algorithm.
This algorithm is one of the key contributions of this paper.
Section 5 presents an algorithm for constructing a multicast
delivery tree, but with the condition that a particular node is
removed from the default multicast tree. This algorithm is
based on that one introduced in Section 4 and can be used
to calculate additional » alternative multicast delivery trees.
Section 6 presents our proposed encoding scheme to specify
within a multicast packet, which of the alternative multicast
delivery trees shall be used for multicasting the packet. The
encoding scheme is based on a cardinal representation of
trees and is another main contribution of the paper. Section
7 presents distributed versions of the algorithms presented in
Sections 4 and 5. The signaling protocol introduced in Sec-
tion 3 is extended accordingly. Section 8 concludes the paper.

2. Related work
2.1. Explicit path selection
Explicit path selection can be implemented by explicitly

specifying the nodes to be traversed, e.g., using the routing
header in IPv6 [3] or by describing the multicast group

member addresses in explicit multicast [4]. Since specifying
all the nodes to be traversed does not scale for large multi-
cast groups, it has been proposed for small groups only. As
an alternative, packets can be marked with a unique path
identification (ID) such as a label like in multi-protocol
label switching (MPLS) [5]. The label must be assigned
with a certain path using label distribution protocols,
which adds significant overhead in terms of signaling band-
width and delay. MPLS-like approaches add hard states to
the involved protocol entities.

In contrast to MPLS, the BANANAS concept [6] pro-
vides path IDs for IP level unicast forwarding without intro-
ducing a special signaling protocol. The path ID is derived
from a link state database, which must be known in advance
within a routing domain, and is encoded as a concatenation
of local link IDs of the routers to be traversed. Four bits are
sufficient per router with up to 15 interfaces. In this case, a
128 bit path ID can encode paths with a length of up to 32
hops. In order to eliminate the signaling overhead, BANAN-
AS proposes to calculate alternative paths in a distributed
manner such that each node calculates the same set of paths.
The concept is based on the assumption that a limited set of
possible alternative paths can be calculated in reasonable
time. It is proposed that each node i calculates the k; shortest
paths to each destination. Since the calculation is performed
at each node independently from each other, a distributed
validation process in order to harmonize the calculations is
required. According to [7], k shortest paths of a graph with
n vertices and m edges can be calculated with complexity
O(m+nlogn+k).

2.2. Application level multicast

Several Application level multicast schemes have been
proposed by other researchers. Some of them provide
mechanisms to support load balancing or reliability in case
of error situations such as node failures and broken links.
However, none of them supports the delivery of multicast
packets to exactly n — 1 group members, which can be
helpful for efficient key distribution in multicast groups.

Scribe [8] is built on Pastry [9], a generic peer-to-peer
object location and routing substrate. Scribe generates a
tree routed at a rendezvous point, which corresponds to
the node with the closest node ID to the group ID of the
multicast group. A node can join the group by sending a
join message towards the root of the tree. Forwarding
entries are created in forwarder nodes as a result of join
messages. Nodes wishing to leave a group transmit leave
messages, which result in removing the forwarding entries
in the forwarder nodes. In case of a parent node or link
failure, a node must retransmit a join message towards
the tree in order to repair its branch.

Bayeux [10] is an application level multicast system on
top of Tapestry [11] routing. Multicast receivers are orga-
nized in a tree with a single root. Load balancing can be
achieved by replicating root nodes. A member joins by
sending a join message towards the root of the tree.

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

216

217

218
219

T. Braun et al. | Computer Communications xxx (2006) xxx—xxx 3

The root replies with a tree message. When receiving a tree
message, nodes on the path between the root and the join-
ing member add the new member as a node they have to
serve. Similarly, leave messages trigger prune messages in
case a member leaves a group.

NICE [12] arranges end systems into a hierarchy. Each
end system is assigned to a certain level in the hierarchy.
Members of the same level are grouped into different clus-
ters, which are controlled by a cluster leader. The cluster
leader is selected such that it has a minimum distance to
the other cluster members. The hierarchy is used to define
different structures for control message and data delivery.
Control messages are required for cluster management. A
joining host is mapped to a cluster, such that it has rather
close neighbors. Each member of a cluster on level n must
be the head of a cluster on level n — 1. Clusters exceeding a
certain size are split or merged if the cluster size violates
some upper or lower bounds.

A mechanism called Probabilistic Resilient Multicast
[13]is based on forwarding data not just once but multiple
times to randomly selected nodes. Obviously, this introduc-
es some bandwidth overhead. Negative acknowledgements
are used to detect losses.

Narada [14,15] constructs a multicast distribution tree in
two steps: first, a mesh is established out of a set of possible
links between two nodes based on continuous performance
measurements between two nodes. This mesh is then the
basis for the spanning tree construction in the second step
by applying a reverse shortest path mechanism. Spanning
trees are constructed for each potential sender in order to
optimize trees for each source. In case of node or link fail-
ures, new overlay links need to be added to the mesh. This
results in some delay to repair a failure.

The HostCast protocol [16] establishes an overlay data
delivery tree and a corresponding control mesh. Both cover
all group members. Reliability is achieved by establishing
specific secondary links between nodes and their grandpar-
ent nodes as well as their uncle nodes. Broken links of the pri-
mary data delivery tree can then be replaced by the secondary
links. HostCast requires establishing a control mesh. More-
over, the number of secondary links is quite large (>2n).

Network Coding and distribution of specially encoded
multicast streams over a redundant multicast graph has
been proposed in [17] The concept not only increases the
throughput that can be achieved by distributing data to
receivers that are reachable via various paths. If different
streams have to pass the same links, they can be combined
using network coding mechanisms. Each node has two
redundant paths to the source, but this does not protect
from arbitrary link failures.

3. Explicit routing in multicast overlay networks
3.1. Overview

The concept of explicit routing in multicast overlay net-
works as introduced in this paper proposes path IDs for

multicast data delivery. This allows selecting a certain mul-
ticast tree for explicit delivery of a multicast packet. We
propose to select one multicast delivery tree for application
level multicast packet distribution from a set of up to n
trees, where up to n — 1 backup multicast trees are con-
structed from the default multicast delivery tree. Each of
the n — 1 backup multicast trees has n — 2 links in common
with the default multicast tree and differs in exactly one
link. A sender of a packet can then choose among the n
trees to distribute the packet. The chosen tree must be iden-
tified by an ID within each multicast message. Since we
assume a limited ID space, we have to limit the set of pos-
sible trees among which a sender can choose. We present
the backup multicast tree algorithm that calculates the
n — 1 backup multicast trees belonging to a single default
multicast delivery tree. Based on this algorithm we present
the reduced multicast tree algorithm computing multicast
delivery trees that include all nodes of a group except a sin-
gle particular node to be removed from the multicast
group. For each node to be removed its links will be
replaced, if possible by links calculated for the n — 1 back-
up multicast trees mentioned above.

Alternatively, a tree that is as disjoint as possible to the
default multicast tree could be calculated. However, such a
single disjoint tree can not be used for the construction of
trees that exclude particular nodes. Moreover, our algo-
rithm for the backup multicast trees minimizes the number
of backup links that are required to build the n — 1 backup
multicast trees.

Since we believe that application level multicast will be a
promising basis for future multicast services and applica-
tions, we develop our concept within this context. For
our work, we assume some kind of overlay network such
as CAN [18], Chord [19], RON [20] or Tapestry [11] on
top of which the application level multicast protocol can
run. Our concept is independent of the underlying proto-
cols. We only assume that the underlying protocols estab-
lish a mesh of links between nodes, not necessarily a full
mesh. A certain connectivity is also required to be able to
identify backup links that shall replace the links of the
default multicast tree in certain conditions.

Our concept is independent from specific applications
and could support applications such as streaming,
audio/video conferencing, games and computer-supported
collaborative work. It is based on the calculation of a
spanning tree for multicast data delivery. Spanning trees
can be used for both any source multicast and source-spe-
cific multicast. Scalability is limited by the overhead to
distribute topology information and to compute a span-
ning tree based on this information. However, by intro-
ducing hierarchical structures as proposed in NICE [12],
the concept should be able to support large numbers of
group members. We therefore think that our proposed
mechanisms could be integrated into NICE. However,
the concept should also be applicable to other protocols
that are generating spanning trees for multicast data
delivery, e.g. Narada [14].

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

2717

278
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

4 T. Braun et al. | Computer Communications xxx (2006) xxx—xxx

3.2. Signaling support

The mechanism for computing backup multicast trees
can be used in three modes:

1. Independent mode. Each node must get a complete view
of the multicast overlay topology, in order to calculate
the backup multicast trees independently from any other
node. This is a similar requirement as in [6], where each
node needs the complete knowledge of a domain’s topol-
ogy. In our case, each multicast overlay node performs
exactly the same algorithm and computes exactly the
same set of backup multicast trees for a given default
multicast tree. The algorithm is described in Section 4.
In order to get this complete overlay topology view,
the exchange of topology information is required. In this
section, we propose a simple signaling protocol that sup-
ports the distribution of topology information.

2. Distributed mode. The exchange of complete topology
information can be avoided by a distributed version of
the proposed mechanism. This allows reducing the
amount of exchanged information. It also allows a node
to know only the local neighborhood, but it requires a
sophisticated signaling protocol, which is tailored to
support the backup multicast tree algorithm. This proto-
col is described in Section 7 in more detail.

3. Central mode. The algorithm can also be used at the root
of the multicast delivery tree only. In this case, only the
root calculates an appropriate tree for multicast data
delivery and specifies the tree using a self-describing
specification of the multicast tree in the multicast data
packet. This can be done using a cardinal representation
as described in Section 6. However, such a cardinal rep-
resentation might exceed the space available for a tree
description and might be applicable to limited group siz-
es only.

An important task to enable multicast data distribution
is the management of a multicast group and the multicast
delivery tree establishment. We propose to use a simple
protocol in order to exchange complete topology informa-
tion among the multicast overlay network and to support
the independent mode (1.) as described at the beginning
of this sub-section. The signaling protocol makes use of
three signaling messages: join, leave and tree. Those signal-
ing messages can be encrypted or signed depending on
security requirements.

The join message is sent by any node that wants to join
the multicast group. The join message contains information
about the connectivity of the new member to other peers
and is forwarded towards the root of the multicast tree.
In order to limit the join implosion problem in case of a
large group, we can have multiple root nodes that individ-
ually serve a certain subset of multicast member nodes. In
that case, these root nodes have to organize themselves on
a higher level such that each root node gets all multicast
packets sent to the multicast group. Naturally, the root

nodes of the various sub-trees perform the same protocol
but just one level higher. This two-tier architecture also
corresponds to peer-to-peer networks with super peers.
Super peers are peers with special characteristics such as
higher access network bandwidth or higher processing
power. They are ideal candidates to serve as root nodes
for sub-trees. Such a two-tier architecture as depicted
in Fig. 1 can also preserve the scalability of the approach
in case of large groups. Note that similar as proposed in
[12] more than two levels can be formed. In that case, a
node must only know the topology of its own sub-tree.

In response to a join message, the root sends a tree mes-
sage to the group members possibly after the root has
checked whether the node is allowed to join the group.
The purpose of the tree message is to inform the other
group members about newly joined nodes and to update
the connectivity information of that peers. We assume that
the exchange of tree messages ensures that the peers are
always aware of the connectivity within the multicast over-
lay network. If the overlay network does not provide infor-
mation about the quality of the links, the nodes might
measure parameters like round trip times or available
bandwidth to other nodes themselves. In case of a super
peer based network, each peer only needs to know the con-
nectivity of the peers belonging to the same sub-tree served
by a super peer. After receiving the tree message each node
updates its information about the peer-to-peer network. It
also calculates the alternative multicast delivery trees, i.e.
the default multicast tree, e.g. using a minimum spanning
tree algorithm, and the backup multicast trees using the
backup multicast tree algorithm presented in Section 4.
The alternative multicast delivery trees are assigned to
some unique tree ID as discussed in Section 6. Each multi-
cast message must carry this tree ID. A node receiving a
message can derive from the tree ID and the knowledge
about the topology how to forward the message.

If a peer node wants to leave a group, it sends a leave
message towards the root. In this case, the root updates
its member list as well as the overlay network topology
and sends a tree message to the group in order to update

Super
Peer
Root

Fig. 1. Two-tier application level multicast architecture.

332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404

405

406

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

T. Braun et al. | Computer Communications xxx (2006) xxx—xxx 5

the group membership and topology information. All
group members have to update their group membership
and topology information accordingly and have to recalcu-
late the alternative multicast delivery trees including their
tree 1Ds.

Tree messages are sent in response to join or leave mes-
sages, but should also be sent periodically (typically in the
range of several seconds or tens of seconds as usual in link
state routing protocols) in order to refresh group member-
ship and topology information. In case of a refresh the tree
messages can use an already existing multicast delivery tree
and can be sent by the root with the corresponding tree ID.
The same is true in the case of a leave message. The leaving
node should take this tree message as an acknowledgement
that the root has received the leave message. For the other
nodes, the tree message serves as a message to indicate that
a node has left the group. Recalculation of the alternative
multicast delivery trees and updating the tree IDs should
occur after forwarding the tree message to the next node.
If the tree message is sent in response to a join message,
it can be sent using a previously used tree ID identifying
the multicast delivery tree without the new node. In addi-
tion, a separate tree message with complete group member-
ship and topology information can be unicast to the new
peer.

The transmission of a multicast message can be per-
formed always via the root node in order to allow admis-
sion control for group messages. If an incoming message
contains an unknown tree ID, the message should be for-
warded as a broadcast message to the neighbor nodes of
the peer. Broadcast messages should be kept in memory
for a certain duration in order to detect and discard dupli-
cated broadcast messages.

4. Backup multicast trees
4.1. Overview

The main motivation of explicit multicast routing is to
enforce packet forwarding along pre-selected alternative
paths. Alternative paths can be used in several situations
such as link failures, congestion, and leaving nodes. The
corresponding multicast delivery trees need to be calculated
in advance and each node must be able to assign a tree ID.

We assume that n nodes (vertices) of an overlay network
are interconnected by a mesh of m links (edges). For a full
mesh with n vertices, the number of edges is m = n (n — 1)/2.
However, usually application level multicast approaches do
not establish full meshes, but only certain links between
nodes. For example, Narada [14] proposes to select the best
links that fulfill certain quality requirements. Moreover,
since overlay networks are established between nodes
behind firewalls, we have to assume that not each node
can connect arbitrarily to any other node. On the other
hand, in most approaches each node tries to establish a
certain number of links to other nodes. This also improves
the reliability of the overlay network.

Out of the finally resulting mesh a huge number of pos-
sible multicast delivery trees could be calculated. We
assume that multicast delivery trees are spanning trees con-
sisting of n vertices and n — 1 edges. Since the tree ID is
limited to a certain size, we need an algorithm that restricts
the number of possible multicast delivery trees. We propose
to restrict this number to n and to compute n — 1 backup
edges that can replace each of the n — 1 edges of the default
multicast tree in case of link breaks or congestion situa-
tions. The basic idea of our approach is compute a backup
edge from the set G-T (G: set of edges of the graph, T: set
of default multicast tree edges) for each edge of the default
multicast tree T. Replacing each of the n — 1 edges of T by
its corresponding backup edge results in n — 1 backup mul-
ticast trees. Note that a single edge can serve as backup
edge for more than one default multicast tree edges. The
default multicast tree and the n — 1 backup multicast trees
result in n alternative multicast delivery trees that can be
used for a delivery over a multicast overlay network.

In this section, we present the algorithm for modes 1 and
3 as described at the beginning of Section 3.2. We assume
that each node knows the default multicast tree. There
are several ways how to build such a default multicast tree.
It can be built based on multicast routing protocols or by
using a minimum spanning tree algorithm. Assuming
Prim’s minimum spanning tree algorithm [21] with a com-
plexity of O (m log n), one could naively calculate n — 1
minimum spanning trees for the n — 1 graphs G—e; with
e; = edge i of the minimum spanning tree, i=1,...,n — 1.
The complexity for calculating n» — 1 backup multicast
trees is O(m n log n) in this case. Our intention is not to cal-
culate backup multicast trees with optimal link weights,
but those that can be calculated at low cost. Another goal
is to determine a rather small set of edges that can serve as
backup edges for the edges of the default multicast tree.
Moreover, we select backup paths in such a way that they
have minimum overlap with the default path.

The idea for the proposed algorithm to calculate the
n — 1 backup multicast trees for a given default multicast
tree is taken from the observation that one broken edge
of the default multicast tree can either be repaired with a
single replacement of this edge by a backup edge that is
not in the default multicast tree or it can not be repaired
at all. A backup edge can repair all other edges of the
default multicast tree with which the backup edge forms
a cycle. For example, in Fig. 2 edges (C, E), (E, I), (I,
M), (M, N), (C, H), and (H, L) can be repaired by edge
(N, L) or (L, N). In this case, edges (N, L) or (L, N) gen-
erate a cycle with the other edges that can be repaired by
that edge. Also, (J, L) forms a circle with the edges (A,
O), (C, H), (H, L), (A, B), (B, D), (D, F), and (F, J). Again
(J, L) or (L, J) can repair all these edges by a single replace-
ment. From these examples we also see that both (C, H)
and (H, L) can be repaired by either (N, L) or (J, L).
Our algorithm selects the backup edge that has the lowest
match with the path to be repaired. This is motivated by
the goal to circumvent the edge to be replaced as far as pos-

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

483
484
485
486
487
488
489

490

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

6 T. Braun et al. | Computer Communications xxx (2006) xxx—xxx

SACEIMNL/3 |
SACHLN/3 |

SACHLJ/2|
SABDFJL/2|

SABDFK/4 //
ABDGKF/4/
: SABDGKJ/4—
~ SABDFUK/4

Fig. 2. Default multicast tree with backup edges.

sible. In our example, (H, L) will be replaced by (J, L), but
not by (N, L), because (J, L) generates the path SABDFJL
from S to L, while (N, L) generates the path SACEIMNL.
SABDFJL has only the first two nodes in common with the
original path SACHL, while SACEIMNL has three nodes
in common with SACHL. Note that in Fig. 2, edge (S, A)
can not be repaired.

4.2. Backup multicast tree algorithm

In the following we describe an algorithm for uniquely
determining the backup edge for each single default multi-
cast tree edge using a C-like pseudo code. We assume that
the complete graph is stored in a linked data structure of
vertices with pointers to their edges and neighbor vertices
as it would result from a minimum spanning tree calcula-
tion. We also assume that the default multicast tree edges
are labeled as such and that each vertex has a vertex ID.

In the first part, we calculate the path from the root to
each vertex in T and store this path with each vertex
(path_from root). We also store the distance (dis-
tance_to_root) of each vertex to the root. We begin with
the root as first vertex and add all vertices that can be
directly reached from the root to set V. The path from
the root as well as the distance is stored at all the vertices
that can be directly reached from the root. After processing
all direct neighbors of the root, we select all the vertices of
set V after each other and perform the same operations as
for the root. This is repeated until all nodes of the tree have
been processed.

In the second part, we calculate for each edge in G-T the
resulting path from the root via the first vertex to the sec-
ond vertex of the edge (backup_path). That path is called
backup path for the second vertex, since it allows reaching
a vertex via an alternative path other than the default path
along the default multicast tree. The backup paths can be
used to reach vertices in case of edge failures. For example,

edge (L, N) stores backup path SACHLN (S — L, N),
while (N, L) stores backup path SACEIMNL (S — N,
L). Edge (A, D) stores backup path SAD (S — A, D), while
edge (D, A) stores SABDA (S — D, A), which will later be
detected as not valid, because A occurs twice in it. This
means that a vertex can be reached via several paths: First
via the path along the default multicast tree and in addition
via several backup paths. For example, node L can be
reached via the default multicast tree, but also via a backup
path via J and another backup path via N. For all backup
paths we also determine at which node the backup path
and the path along the default multicast tree begin to differ.
For example, node L can be reached via the backup path
SACEIMNL (S — N, L) and by the path along the default
multicast tree SACHL (S — L). These two paths begin to
differ in the fourth vertex (E vs. H), but the first three ver-
tices (SAC) are identical. Therefore, we store the value of 3
(also called common path length) with the backup path
(SACEIMNL/3) at (N, L). Fig. 2 shows the result of the
first two parts of the algorithm.

In the third part, we copy the backup paths from the
edges in G-T to the leaf edges of the default multicast
delivery tree. After the copy operation we extend the back-
up path by that node of the edge that is closer to the root of
the tree. If a leaf edge connects to two edges of G-T, we
only keep one backup path, in particular that path with
the lowest common path length. For example, edge (H,
L) connects to two edges in G-T: (N, L) and (J, L). We
only keep backup path SABDFJLH/2 from (J, L), but do
not keep SACEIMNLH/3 from (N, L) due to the lower
common path length at (J, L)h. This approach selects
among several alternative backup paths that one with the
lowest number of common nodes shared with the path
from the root to a node along the default multicast delivery
tree. We consider that backup path as the best choice. The
inner while loop of part 3 is executed twice, once for all
edges in T and once for all edges in G-T. Only the “best”
backup path is copied from edge f to the considered edge e.
After processing the inner while loop twice, the considered
edge becomes labeled. If the upstream edge of e(g) then
only has labeled downstream edges, g is added to set E.
The set E contains all edges that are ready to be processed
by the inner while loop.

Algorithm.

vertex _set N, V;

vertex root, n, v, X;

edge_set E, F, G, T;

edge e, T, g, hj

V:={root}; root.path from root := (root);

root.distance to_root : = 0O;

while (V !'=) /*part 1: O(n) */

{
v:=first_element(V); V:=V - v;
N:={all vertices x | edge (v, x) € T};
while (N !'= &) {

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

561

562
563
564
565
566
567
568
569
570
571
572

573
574
575
576
577
579
580
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
598
599
600
602
603
604
605
606
607
608
609
610
611
612
613
614
615
618
618
619
620
622
623
624
625
626
623
629
630
633
632
636
637
638
639

T. Braun et al. | Computer Communications xxx (2006) xxx—xxx 7

n:=first _element(N); N:=N - n;
n.path from root I (v.path from
root, n);
n.distance _to _root T =
tance_to_root + 1;
V:=V+n;

v.dis-

}
}
/* here,
root */
/* describes the path from the root to x, */
/* x.distance_from root describes the num-
ber of */
/* hops from root to x */
F:=G-T,;
while (F '=) {/* part 2: O(m logn) */
f:=first _element(F); F:=F - £}
f.backup path := (f.x.path from root,
£.¥);
X
f

for all vertices x: x.path from

:= (lowest common parent of f.x and
Y5
/* we apply binary search:
O(logn)*/
f. backup_path common 1=
to_root + 1;

complexity

X.distance__

}

/* e.xX, e.y are the vertices of e (e.x ->
e.y)*/

/* at this point each edge e from G-T stores
the */

/* path from the root to e.x plus edge e.y */
E:={edges of Twith leaf vertices};
/* leaf vertex: vertex with degree 1 */
while (E '= @){/* part 3: O(m)*/

e :=first_element(E); E:=E - ¢e;

e. backup path = ();

e. backup_path common = MAXINT;

for (j:=2; J>0; j—){

if (j==2)
F:={alledgesf|f€T&& f.x==¢e.y};
else
F:={all edges £ |[f € G-T && f.y ==
e.y};

while (F !'= J){
f:=first_element(F); F:=F - £}
if ((e.y is not twice in f.back-
up_path) & &
(f.backup path common
< e.backup_path common)
e.backup path := (f.backup_path,
e.X);
e. backup_path common
path _common;

;= f.backup_

}

}
e.labelled : = TRUE;

if (all edges gec Twithg.x==¢€e.Xx

are labeled) {
h:=(edge € Twithh.y==¢e.x);
E:=E + h;

Fig. 3 shows the state after copying the backup paths
from the edges in G-T to the leaf edges. We consider all
the leaf edges as labeled. After that the copy operations
are performed on the other edges of T, which are not yet
labeled.

Fig. 4 shows the final result of the algorithm. After pro-
cessing leaf edges in the first round, edges (D, F), (D, G),
(C, H), and (I, M) are processed in the second round. Basi-
cally, the backup paths are copied towards the root of the
tree. For edge (D, F) the backup path copied from edge (K,
F), i.e. SABDGKFD/4 is copied, but becomes removed,
because the other backup path (SACHLIFD/2) from edge
(F, J) has a lower common path length (2 vs. 4). In a later
round, edge (A, C) is considered. From the backup paths
copied from edges (E, C) and (H, C) only the one from
(H, C) is appropriate (SABDFJLHCA/2). The other one
from edge (C, E) SACHLNMIECA/3 contains C twice
and must therefore be removed. When edge 1 (S, A) is con-
sidered, all backup paths from edges (A, C) and (A, B) con-
tain A twice. Therefore, (S, A) can not be repaired and is
marked as not repairable.

4.3. Complexity analysis

4.3.1. General case

The complexity of the first part is O(n). We basically cal-
culate for each edge (x, y) € T the path from the root of the
tree to y and the distance of y to the root.

The while loop in the second part is executed for each
edge in G-T, i.e. with O(m). The determination of the
lowest common parent can be performed in O(log n)

m SACHLNM/3

SACEIMNL/3|
SACHLN/3|

SABDFJLH/2 |
SACEIMNLH/3

SACHLJ2 |
SABDFJL/2|

SACHLJF/2 |

SABDGKJ/4——
| SABDFJK/4

Fig. 3. Result of first round of backup multicast tree construction.

640
641
643
644
646
647

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668

669

670
671
672
673
674
675
676

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

8 T. Braun et al. | Computer Communications xxx (2006) xxx—xxx

[MLSACHLNM/3

SACHLNMIE/3

n SACHLNMI/3

SACEIMNL/3|
SACHLN/3|

SABDFJLH/2
SACEIMNLH/

SABDFJLHC/2

SADB/2
SACHLJFDB/2 SABDGKFD/4
ACHLJFD/2 SACHLJ/2|
SABDFJL/2|
SABDFKGD/4 ‘
SACHLJF/2 ‘\
SABDFK/4 7 ABDGKJF/4

SABDGKF/4/
SABDFKG/Z /

SABDFJKG/4 SABDGKJ/M4——

~ SABDFJK/4

Fig. 4. Final result of backup multicast tree construction.

steps, if we apply binary search. For example, when we
calculate the lowest common parent of vertices F and
K, we have to consider the paths from the root to F
and K, respectively. These paths are SABDF and SAB-
DGK. The lowest common parent is D and D’s distance
to the root is 3. In our example, where the lowest com-
mon parent for edge (F, K) is calculated, we could have
selected position 3 (B), then position 5 (G vs. F), and
finally position 4 (D). Applying binary search, searching
the lowest common parent of the two nodes of an edge
has a complexity of O (log D), with D = the depth of the
default multicast tree. Since D < n, the total complexity
O (m log n).

In the third part of the algorithm the inner loop is exe-
cuted once for each edge in G. This results in a complexity
of O(m). This also means that the overall complexity of the
backup multicast tree algorithm is O(m log n).

4.3.2. Binary tree with full mesh

We now assume that the default multicast tree is a
complete binary tree and the graph is a full mesh, i.e.
each node is connected to any other. For the complexity
analysis we assume that we perform the determination
of the lowest common parent by sequential search in
the paths starting at the root of the tree. We now take
one edge (x, y) from G and perform the comparison
described above for the two paths S—x and S —y.
The probability that the two paths along the binary tree
to the two nodes x and y differ at the second node is at
least 1/2. This means that for m/2 edges (x, y) of G a
single basic comparison operation (comparison whether
two nodes are different) is sufficient to find a difference
in the two paths S — x and S — y. The probability that
the two paths along the binary tree to the two nodes x
and y are equal at the second node but differ at the
third node is at least 1/4. The probability that the
two paths along the binary tree to the two nodes x

and y are equal at the /™ node but differ at the
i+ 1M node is at least (1/2)'.

In case of a complete binary tree for the default mul-
ticast tree and a full mesh for the complete graph an
upper limit for the total number of path comparisons
to find a difference in the two paths S—x and S—y
for all m edges (x, y) of the mesh is given by the follow-
ing formula:

m-1+Lom.2

3
+
ool—
3
w
+
BN

e

D1
limmd L=m

D :

3

,:mZZ%:mZZf—,l:mZ%:mﬁZZm.

[l
N|~

T

i

T

<

T

This means that in a full mesh with a complete binary
tree as default multicast tree the total number of com-
parisons to find the lowest common parent of the two
nodes of any edge is limited by 2m. The total com-
plexity of part 3 becomes O(m). In that case, calculat-
ing n— 1 backup links can even be performed with a
lower complexity than computing the minimum span-
ning tree.

4.4. Performance measurements

Fig. 5 shows the performance of an implementation
of the backup multicast tree algorithm using gcc on
an Intel™ Xeon 3.06 GHz CPU with 512 KB cache
and 1 GB main memory. Random topologies with up
to 500 nodes have been generated. For each node, links
to 20% of other nodes randomly selected are generated
(m=02 n?). A topology with n=2500 nodes has
m = 500 * 500 * 0.2 = 50,000 links. Calculating all back-
up links for the n — 1 default multicast tree links takes
less than 40 ms for a 500 node topology. The graph
shows the measured time using 95% confidence intervals
compared with the function f(m, n) = 0.3 (m log n). We
see that the curve for f(m, n) is growing faster than the
curve representing the computing time of the backup
spanning tree algorithm. Fig. 6 shows the performance
when each node establishes only 4 links to other nodes
(m = 4n). In addition, the function f(m, n) =0.4 (m log
n) is plotted. Again this indicates that our determined
complexity of O(m log n) is correct.

Although we did not optimize the implementation, we
compare the performance numbers with related work.
Since we are not aware of a similar algorithm, we have
to compare the performance with shortest path computa-
tion algorithms. In [22], a fast shortest path algorithm
has been implemented and the processing time per edge
has been presented. Values >5 us per edge are reported,
however using less powerful hardware than for our eval-
uation. Our implementation is running on a computer
with a four times faster CPU and with four times more
memory. It needs below 1 ps per edge. Note that a short-
est path algorithm would have to run n times to get n
backup trees.

713
714
715
716
717
718
719
720

722

723
724
725
726
727
728
729
730

731

732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763

764

765

766
767
768
769
770
771
772
773
774
775
776
777

T. Braun et al. | Computer Communications xxx (2006) xxx—xxx 9

(in ms)

—— measured time —*— 0.3 (m log n)‘

300

400 500 600

nodes

Fig. 5. Backup multicast tree performance (each node has connections to 20% of the other nodes).

—— measured time —*— 0.4 (m log n)‘

(in ms)

2.5

-

0.0 f/ , , , , ,

0 100 200

300

400 500 600

nodes

Fig. 6. Backup multicast tree performance (each node has four connections to other nodes).

5. Removing nodes from a multicast tree
5.1. Overview

Backup multicast trees can also support situations,
where nodes leave the multicast group and new group keys
need to be distributed among the remaining group mem-
bers efficiently, but such that the leaving node does not
receive the key. Our goal is to construct from the default
multicast tree a new tree that covers all nodes except the
leaving node. This new tree is also called reduced multicast
tree hereafter. A reduced multicast tree can be derived from
a single backup multicast tree, only if a node leaving the
tree is not a branching point. In that case and assuming
that x is the leaving node, w is the upstream node (the next
node from x to the root), and y is the downstream node

(the directly connected child of x), a backup multicast tree
should be constructed by replacing edge (x, y) by the cor-
responding backup edge and by eliminating edge (w, x).
Given the example of Fig. 4 and assuming that node F
leaves the group, we can construct a reduced multicast tree
by replacing edge (F, J) by backup edge (L, J) and by
removing edge (D, F).

However, a single backup multicast tree is not able to
support leaving nodes that are branching points of the tree.
In the following we describe a general mechanism to con-
struct a so-called reduced multicast tree. This tree can be
used to reach all nodes of the default multicast tree, but
not a single node that shall be removed from the tree. To
remove a node from a default multicast tree, we have to
remove the upstream edge of that node and to replace
the downstream edges of that node by other links.

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

827

828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848

10 T. Braun et al. | Computer Communications xxx (2006) xxx—xxx

The replacement is required to re-connect the vertices fur-
ther down the tree. The replacement of different down-
stream edges can be supported by the reduced multicast
tree algorithm presented in Section 5.2. A downstream
edge can be replaced by its backup edge, if the following
condition is fulfilled: The path S — y via the backup edge
of (x, y) does not lead via x. It is important to note that
if there exists such a backup edge that can replace the
downstream edge, the algorithm presented in Section 4.2
will find such a backup edge.

If we consider again the scenario in Fig. 4 and assume
that node C leaves the group and needs to be removed,
the backup edge for downstream edge (C, H) is edge (J,
L). The resulting path from S to H is SABDFJLH. This
path meets the condition above and does not lead via
the leaving node C. However, the backup edge for edge
(C, E) is edge (L, N) and the resulting path from S to
E is SACHLNMIE. This path does not meet our condi-
tion and leads via node C. Therefore, backup edge (L,
N) is not appropriate to replace downstream edge (C,
E). We have to emphasize here that if any of the vertices
along this sub-tree (E, I, M, N) would have had an edge
to another vertex not in the sub-tree of C, this edge would
have been found as a backup edge for downstream edge
(C, E) by the algorithm presented in Section 4. This
means that if this sub-tree (E I, M, N) can be connected
to the default multicast tree without going via C, there
must either exist a connection via the other sub-tree
beginning at C or it cannot be connected at all to the
default multicast tree. This observation leads to the fol-
lowing algorithm for removing a node x from a default
multicast tree and for constructing a reduced multicast
tree.

5.2. Reduced multicast tree algorithm

In the first part of the algorithm given in C-like pseudo
code below, we process all edges of T. If the backup path
for edge (x, y) leads via vertex x, vertex y is colored red,
otherwise it is colored green. If a vertex y is colored green,
we can replace edge (x, y) by its backup edge for the con-
struction of the reduced multicast tree.

In the second part, we process each edge of G-T. All
these edges might be needed to connect the sub-trees of
the red vertices to the reduced multicast tree. For each edge
(x, y) of T we create an edge set. Then, we map each edge of
G-T to one of these edge sets. An edge (w, z) is mapped to
the edge set D, ,, if x is the lowest common parent of w
and z in T and if w is a child of y in T. The edges in an edge
set D, , are candidates to connect the sub-tree below y to
the reduced multicast tree.

The third part processes all edges mapped to one of the
edge sets in the second part. First, we select a node x to be
removed and store all direct children of x in sets GREEN
or RED depending on their color from the first part. We
take one green node y after another and check whether
an edge of its set D, , connects to a sub-tree of a vertex

in set RED. If so, the red vertex becomes green and the
edge is added to set I, (set of interconnection edges for
x). At the end of the algorithm, a reduced multicast tree
can be constructed for all nodes x with only green direct
children y. For constructing the reduced multicast tree,
we take the default multicast tree and remove all edges that
include x. We add all edges of sets B, and I,. This results
again in a spanning tree, which includes all vertices of the
default multicast tree except x.

If a node x has one or more directly connected red chil-
dren, it is not possible to construct a reduced multicast tree.
In this case, several group members become even discon-
nected from the multicast group. It is not possible to build
a new default multicast tree that includes those vertices
with the current set of edges. New edges (overlay links)
need to be established in this case.

Algorithm.

vertex x, y, a, b;

vertex set RED, GREEN, Y;

edge e, f;

edge_set B, ¥, G, T, V(x,y) € T: D,

Ix, Bx;

E:=T; /*part 1: O(n)*/

while (E !'= &) {
e:=first_element(E); E:=E - e;
X :=e.X;
if (xis in e. backup_path) {

Ly VX ET:

e.y.color : = red;
else {
e.y.color : = green;

B, : = By + backup_edge(e);

}
}
E:=G-T; /*part 2: O(m) */
order(E); /*order all edges according to */

/* some predefined criteria */

while (E !'= &) {

e:=first_element(E); E:=E - ¢;

X 1= (lowest common parent of e.x and
e.v);

a := (next node from x towards e. x);
Dy,a:=Dy,0+ €;

}
V :={all vertices of T}; /* part 3: O(m) */
while (V !'= &) {

x :=first_element(V); V:=V - x;

Y :={all vertices y |

Jedge e inTwithe.x==x, e.y ==y}

GREEN : = {all green vertices of Y}

RED : = Y - GREEN;

while (GREEN !=) {

y := first_element(GREEN); GREEN : =
GREEN - y;
F:=D

X,V

while (F !'=) {

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
364

865

866
867
868
869
870
871
872
873
874
875
878
878
879
880
883
884
885
886
887
888
889
890
891
892
893
895
896
897
898
899
900
902
903
904
905
906
907
908

909
910
911
912
913
914
916
913
920
922
923
924

925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946

T. Braun et al. | Computer Communications xxx (2006) xxx—xxx 11

f:=first_element(F); F:=F - £}
b := (next node fromx towards f.y);
if (b.color == red) {
Iy:=1,+ 1
b.color : = green;
GREEN : = GREEN + b;
RED : = RED - b;

Fig. 7 illustrates the reduced multicast tree construction
process with a given default multicast tree consisting of the
solid line edges. X is the node to be removed. The sub-trees
of vertices Y and Y5 have backup edges that connect their
sub-trees to the default multicast tree without going via X.
The backup edges are added to Bx. Therefore, vertices Y,
and Y5 are colored green initially, all others (Y, Y3, Yy4)
become red. In the second part, the various links of G-T
are mapped to edge sets. For example, (W, Z,) and (Z;,
Z,) are mapped to edge set D(x v1). One of these two edges
is processed first (let us assume (W, Z,)) and it is discov-
ered that this edge connects to the sub-tree of the red vertex
Y,. Y,becomes green and (W, Z,) is added to set Iy. Later
edges (W,, Z3) and (Zs5,W,) are also added to Iy. In order
to get a reduced multicast tree for node X we have to
remove all edges with X as a vertex from the default mul-
ticast tree and add the edge sets Iy and By.

Note that if no reduced multicast tree for node X can be
constructed by the given algorithm the nodes downstream
of a leaving node X will be disconnected from the graph
and no tree that includes all of them exists. In this case,
the underlying peer-to-peer network must solve the connec-

'| tree edge
'|backup
.edge

|

connection
".gdge

.
’0

!
s
"""
0y

tivity problem. This problem can be avoided if each node
establishes a certain amount of links to other overlay
nodes. It might also be helpful, if not only links to close
peers are established. Otherwise, network partitioning
might occur with a higher probability in case of link
failures.

Instead of distributing a multicast message via a single
reduced multicast tree, one could also use several trees, if
a single reduced multicast tree cannot be constructed.

In the case of multiple leaves, we have to serialize the
leaves and construct the reduced multicast trees according-
ly. In this case, for a hierarchical scenario as depicted in
Fig. 7 the algorithm can be performed concurrently in each
sub-tree.

5.3. Complexity analysis

The loop in part 1 of the reduced multicast tree algo-
rithm is performed once for each edge in T. This results
in a complexity of O(n). The second part has a complexity
of O(m), because the loop is performed for each edge in G-
T. Also part 3 has a complexity of O(m). The inner loop is
performed once per edge in G-T. Each edge is in one of the
sets D, ,. This means that an overall complexity of O(m) is
required to construct n reduced multicast trees, if we
assume that all backup edges are known in advance.

6. Tree IDs for multicast delivery trees

In the previous sections we have presented concepts to
calculate backup and reduced multicast trees from a given
default multicast tree. In particular, n — 1 backup multicast
trees and n — 1 reduced multicast trees can be calculated in
order to support failures or cases with leaving nodes. The

ey

as

Fig. 7. Reduced multicast tree construction.

947
948
949
950
951
952
953
954
955
956
957
958
959
960

961

962
963
964
965
966
967
968
969
970

971

972
973
974
975
976

977
978
979
980
981
982
983
984

985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

12 T. Braun et al. | Computer Communications xxx (2006) xxx—xxx

idea is that the sender (the root of the tree in case of source-
specific multicast) selects an appropriate multicast delivery
tree among several alternatives to distribute the multicast
message. We propose to calculate for each alternative mul-
ticast delivery tree a unique identification called tree ID
which allows a forwarding node to discover how a message
must be forwarded. Such an ID should have the following
characteristics:

e The tree IDs of two consecutive default multicast trees
(before and after a node joins or leaves) should differ,
because some messages might be delayed and messages
that shall be forwarded along different trees might be
present simultaneously. Also the protocol operations
presented in Section 3.2 require that a tree ID remains
valid for some time after a tree has been changed.

e The tree IDs of all backup and reduced multicast trees
should be different in order to be able to distinguish
which trees associated with a default multicast tree shall
be used to distribute a multicast message.

e The size of such a tree ID should be limited in order to
scale for large groups.

Based on this discussion, we propose to use three fields
for specifying the selected multicast distribution tree:

1. a default multicast tree ID for specifying the currently
used default multicast tree used for the multicast group,

2. a type ID specifying whether the default multicast, one
of its n — 1 backup multicast trees or one of its n — 1
reduced multicast trees shall be used,

3. a node ID specifying in case of a reduced multicast tree
which node shall be excluded from the default multicast
tree and in case of a backup multicast tree which
upstream link of the specified node shall be replaced
by its backup link.

For the calculation of the default multicast tree ID we
propose a combination of a cardinal representation and
MDS5 [23]. A link-based scheme as used in [6] is not appro-
priate for our case, because links among peers will change
more frequently than router links. Moreover, in case of
large groups a tree ID consisting of all traversed link IDs
might become too large.

The default multicast tree ID is based on a cardinal rep-
resentation [24,25], which encodes the structure of the tree
and its IDs separately. The structure is represented using a
balanced parenthesis representation obtained by a pre-or-
der traversal wherein a “(” is output when we enter a node
and a “)” when we leave a node. This is then combined
with the pre-order traversal of the node IDs. This represen-
tation takes (n log n + 2n) bits to encode a tree of n nodes.
Further, it can be used to represent arbitrary sub-trees
since the nodes are simply listed in pre-order. At each for-
warding node, a single traversal of the encoding is sufficient
to find the children and construct the encodings of the sub-
trees. Thus at each node the number of bits in the encoding

reduce by a significant amount. For the tree given in the
example below the following path ID is calculated at root
St (((COYNO(0)))SABGDFCKE]. Since this path ID is
variable in length and can easily become very long in large
groups, we have to map it to a constant length identifier.
We propose to apply a hashing mechanism on the cardinal
representation and use the resulting hash value as path ID.
In cases where the cardinal presentation is short enough,
hashing could be avoided. Also in this case, the pre-compu-
tation of n — 1 backup trees or n — 1 reduced trees would
not be required, since the sender of the multicast packet
is able to completely specify the path to be taken by the
multicast packet. In this case, our presented algorithms
can be used to efficiently calculate alternative routes for
single link breaks and node leaves. However, cardinal pre-
sentations are not limited in size and may exceed a given
maximum size value [25].
Example:

7. Distributed algorithms

For the calculation of the backup and reduced multicast
trees, we assumed that each node knows the default multi-
cast tree and the complete mesh topology. Based on this
knowledge, the backup and reduced multicast trees can
be computed by each node independently according to
the algorithms presented in Sections 4 and 5. An issue to
be investigated in this section is whether the algorithms
can be performed without that each node knows the com-
plete topology. In the following sub-sections we show that
this is possible, but under the constraint that additional sig-
naling between the nodes is introduced.

For both sub-sections we assume a more light-weight
basic signaling mechanism than described in Section 3.2
based on tree, join, and leave messages. A joining node
sends a join message towards the root of the multicast
delivery tree. The root in turn confirms the inclusion of
the joining node by a tree message and inserts the path
from the root to the joining node along the default multi-
cast tree. This way, each node can learn the path from
the root node to itself.

7.1. Backup multicast tree

For the distributed algorithm of the backup multicast
tree algorithm, all the nodes need to know to which other
nodes they connect to and which of these links are used
for the default multicast tree. The algorithm makes use of
two additional signaling messages in addition to tree, join,
and leave messages:

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

1051

1052

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

1073

1074
1075
1076
1077
1078
1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136

T. Braun et al. | Computer Communications xxx (2006) xxx—xxx 13

e Backup Path Establishment (BPE)
e Backup Path Termination (BPT)

The protocol begins with the transmission of BPE mes-
sages over links that are not part of the default multicast
tree. Initially, the node originating a BPE message will
put the IDs of the nodes along the default multicast tree
path from the root to itself into the BPE message. We
assume that each node has learnt that path before, e.g.
by a tree message.

A leaf node receiving a BPE message will then select
from all received BPE messages that one that includes the
best backup path as defined for the backup multicast tree
algorithm in Section 4. The node will append its own ID
to the backup path in the BPE message and forward it to
its upstream node towards the root of the default multicast
tree. A forwarded BPE indicates that a node is part of a
backup path in order to replace a link. For all BPE messag-
es that are not selected by a leaf node, a BPT message is
sent back towards the originator of the BPE message.
The node creating a BPT message is also called terminating
node hereafter. BPT messages are forwarded in the reverse
direction as the corresponding BPE messages until the final
destination (the originating node of a BPE message) has
been reached. BPT messages contain the recorded path
information from the root via the node originating node
of the BPE message to the terminating node. If a node
receives a BPT message it can learn from the included
backup path, for which links the backup path (and the
backup link) have been selected. In particular, these are
all the links between the nodes originating and terminating
the BPE message.

A node, which is not a leaf node in the default multicast
tree, will receive BPE messages from links that are not part
of the default multicast tree, but also from its downstream
nodes via default multicast tree links. Processing of BPE
messages is performed in exactly the same way as in the
case of leaf nodes. Forwarding of BPE messages to
upstream nodes shall be performed periodically and a node
has to consider BPE messages received from all other links.

For example, we consider Fig. 4. Node L issues a BPE
message with path SACHL to node N. N forwards the
BPE message via M, I, and E to C. C terminates this
BPE message and returns a BPT message including the
backup path SACHLNMIEC. Backup link (L, N) can
serve as backup link for the default multicast tree links
between C and L. These are (C, E), (E, I), (I, M), and
(M, N). Later, any node between the root and C might
detect or be informed (via additional failure notifications)
that there exists a problem on link (C, E). Such a node
might simply insert a tree ID into the multicast packet indi-
cating that the packet shall be forwarded via the backup
multicast tree instead of the default multicast tree. This
means that the packet shall be forwarded via the backup
link (L, N) instead of link (C, E). When node C receives
such a message, it does not forward the packet via link
(C, E). The packet arrives also at node L, which has

learned from the exchange of BPE and BPT messages that
link (L, N) serves as backup link for link (C, E). Therefore,
L forwards the multicast packet via the backup link to N.
Then, the packet travels to E along the branch of the
default multicast delivery tree, but in the opposite
direction.

The signaling overhead associated with this procedure
depends on the number of edges (m). There is not more
than one BPE message on each of the m links. Since the
BPT messages travel exactly on the reverse path back to
the originators of BPE messages, also not more than m
BPT messages are generated. Note that in a dynamic envi-
ronment these messages should be distributed periodically.
In that case one BPE and one BPT message occur on each
link per interval.

7.2. Reduced multicast tree

With the signaling protocol described in Section 7.1 each
node learns the backup links and the backup paths for all
links, to which it is directly connected. With this informa-
tion a node Y,;(i=1, ..., 5) in Fig. 7 can derive, whether
there exists a backup path for link (X, Y;) that does not
lead via node X. If such a backup path exists node Y, is
a green node and can be connected to the multicast tree
via the backup link for (X, Y;). If this is not the case, node
Y, is a red node and has to search for a connection to one
of the other sub-trees of X that are represented by the
nodes Y,.

This search can be supported by another signaling pro-
tocol extension. Each node Y, that can not be connected
via backup links to the multicast tree has to send an explore
message towards the children along the default multicast
tree. The message contains the link (X, Y;) as a parameter.
The message is flooded on the complete sub-tree of Y;, and
each node on this sub-tree that has a link from (G-T) for-
wards the message to its neighbor. The neighbor receives
this message and discards it, if X is not on the path from
the root to itself. If X is on the path from the root to itself,
the message is forwarded towards X and will be received by
a child of X that is directly connected to X. This direct
child is one of the downstream nodes, for example Y;. If
Y; is a green node, it returns an interconnect message to
Y; in the reverse direction than the explore message. The
message passes one link that is not in T. We call this link
interconnection link. The nodes of the interconnection link
learn that this link is required to reach node Y, if node X
becomes removed and will later forward multicast packets
that contain a tree ID for the reduced multicast tree for
node X. After node Y; has received the interconnect mes-
sage, it becomes a green node and can also return intercon-
nect messages for incoming explore messages from other
red nodes.

In our example given in Fig. 7, Y, and Y5 are green
nodes, the other nodes Y,-Y4 are red. Y, sends an explore
message, because it has learned that there is no backup link
for (X, Y,) that does not lead via X. The explore message is

1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151

1152

1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206

1207

1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231

1232

1233
1234
1235
1236

1237

1238
1239
1240
1241
1242
1243

14 T. Braun et al. | Computer Communications xxx (2006) xxx—xxx

forwarded by W, via Z; to Y3, which is a red node too and
does not respond the explore message. However, the
explore message is forwarded by Z, via Z; and W to Y.
Y responds with an interconnect message that travels back
to Y,. Wy learns that (W, Z,) will be required to reach Y,
if node X becomes removed. Y, receives the interconnect
message, becomes red and may later respond to explore
messages from other red nodes such as Y5 with intercon-
nect messages.

The signaling mechanism to support reduced multicast
trees requires an exchange explore/interconnect messages
for each red node of the tree. The overhead can be reduced
by piggy-backing the various explore and interconnect
messages that are traveling up and down the sub-tree below
the node to be removed.

8. Conclusions

In this paper, we have proposed a concept for explicit
routing in multicast overlay networks. In particular, it
allows specifying a particular distribution tree for the
transmission of multicast data. We proposed to calculate
n — 1 backup multicast trees for a given default multicast
tree (e.g., a minimum spanning tree) that interconnects
the n nodes belonging to a group. The complexity for cal-
culating these backup multicast trees is slightly above the
complexity for calculating a minimum spanning tree but
can be even lower with certain types of graphs. The per-
formance measurements of the backup multicast tree
algorithm implementation confirm the determined com-
plexity. In addition, an algorithm has been presented that
allows calculating a reduced multicast tree by discarding a
particular node, e.g. a node leaving the multicast tree,
from the default multicast tree. Unique IDs for the alter-
native (default, backup, or reduced) multicast trees are
required in order to specify which of the trees shall be
used for multicast message forwarding. An appropriate
encoding scheme has been developed and discussed. We
also described a distributed version of the algorithms
avoiding that each node needs to be aware of the full
topology. This requires introducing a light-weight signal-
ing protocol.

Acknowledgements

We thank Prof. Shivkumar Kalyanaraman, who intro-
duced us to the problem of explicit multicast for overlay
networks. The second author has worked with him to de-
sign encoding schemes for multicast trees [25].

References

[1] C.W. Kong, M. Gouda, S. Lam, Secure group communications using
key graphs, IEEE/ACM Transactions on Networking 8 (1) (2000)
16-30.

[2] S. Banerjee, B. Bhattacharjee, Scalable secure group communication
over IP multicast, IEEE Journal on Selected Areas in Communica-
tions 20 (8) (2002) 1511-1527.

[3] S. Deering, B. Hinden, Internet Protocol, Version 6 (IPv6) Specifi-
cation, RFC 2460, December 1998.

[4] R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, O. Paridaen,
Explicit Multicast (Xcast) Basic Specification, Internet Draft, work in
progress, August 2003.

[5] E. Rosen, A. Viswanathan, R. Callon, Multiprotocol Label Switching
Architecture, RFC 3031, January 2001.

[6] H.T. Kaur, S. Kalyanaraman, A. Weiss, S. Kanwar, A. Gandhi,
BANANAS: an evolutionary framework for explicit and multipath
routing in the internet, in: ACM SIGCOMM 2003 Workshop on
Future Directions on Network Architectures (FDNA), Karlsruhe/
Germany, August 25-27, 2003.

[7] D. Eppstein, Finding the & Shortest Paths, 35th Symposium on
Foundations of Computer Science, IEEE, November 1994.

[8] M. Castro, P. Druschel, A.M. Kermarrec, A. Rowstron, Scribe: a
large-scale and decentralized application-level multicast infrastruc-
ture, IEEE Journal on Selected Areas in Communications 20 (8)
(2002).

[9] A. Rowstron, P. Druschel, Pastry: Scalable, Distributed Object
Location and Routing for Large-scale Peer-to-peer Systems, IFIP/
ACM Middleware 2001, Heidelberg/Germany, November 2001.

[10] S. Zhuang, B. Zhao, A. Joseph, R. Katz, J. Kubiatowicz, Bayeux: an
architecture for scalable and fault-tolerant wide-area data dissemina-
tion, in: 11th International Workshop on Network and Operating
System Support for Digital Audio and Video, Port Jefferson/USA,
June 2001.

[11] B. Zhao, L. Huang, J. Stribling, S. Rhea, A.D. Joseph, J.D.
Kubiatowicz, Tapestry: a resilient global-scale overlay for service
deployment, IEEE Journal on Selected Areas in Communications 22
(1) (2004).

[12] S. Banerjee, B. Bhattacharjee, Ch. Kommareddy, Scalable application
layer multicast, in: ACM SIGCOMM 2002, Pittsburgh/USA, August
19-23, 2002.

[13] S. Banerjee, S. Lee, B. Bhattacharjee, A. Srinivasan, Resilient
multicast using overlays international conference on measurements
and modelling of computer systems, in: ACM SIGMETRICS 2003,
San Diego/USA, June 9-14, 2003.

[14] Y. Chu, S. Rao, S. Seshan, H. Zhang, Enabling conferencing
Applications on the Internet using an overlay multicast architecture,
in: ACM SIGCOMM 2001, San Diego, August 27-31, 2001,
pp. 55-67.

[15]Y. Chu, S. Rao, S. Seshan, H. Zhang, A case for end system
multicast, IEEE Journal on Selected Areas in Communications 20 (8)
(2002).

[16] Zhi Li, P. Mohapatra, Hostcast: a new overlay multicasting protocol,
in: IEEE International Conference on Communications (ICC) 2003,
Anchorage/USA, May 11-15, 2003.

[17] Y. Zhu, B. Li, J. Guo, Multicast with network coding in application-
layer overlay networks, Journal on Selected Areas in Communica-
tions 22 (1) (2004) 1-13.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A
Scalable content addressable network, in: ACM SIGCOMM 2001,
San Diego/USA, August 27-31, 2001.

[19] L. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F. Kaeshoek,
F. Dabek, H. Balakrishnan, Chord: a scalable peer-to-peer lookup
protocol for internet applications, IEEE/ACM Transaction on
Networking 11 (1) (2003).

[20] D. Andersen, H. Balakrishnan, M. Kaashoek, R. Morris, The case for
resilient overlay networks, in: Proceedings of the Eighth Annual
Workshop on Hot Topics in Operating Systems (HotOS-VIII),
Schloss Elmau, Germany, May 2001.

[21] R. Prim, Shortest connection networks and some generalizations, Bell
System Technical Journal 36 (1957) 1389-1401.

[22] S. Pettie, V. Ramachandran, S. Sridhar, Experimental evaluation of a
new shortest path algorithm, in: Proceedings of the Fourth Workshop
on Algorithm Engineering and Experiments, LNCS vol. 2409, pp.
126-142, 2002.

[23] R.Rivest, The MDS5 Message-Digest Algorithm, RFC 1321, April 1992.

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311

1312
1313
1314

COMCOM 3024
16 March 2006 Disk Used

ARTICLE IN PRESS

No. of Pages 15, Model 5+
Sankar (CE) / PadmaPriya (TE)

T. Braun et al. | Computer Communications xxx (2006) xxx—xxx 15

[24] D. Benoit, E. Demaine, J. Munro, V. Raman, Representing trees of
higher degree, in: Proceedings of the Sixth International Workshop
on Algorithms and Data Structures (WADS’99), pp. 169-180, 1999.

[25] V. Arya, T. Turletti, S. Kalyanaraman, Encodings of multicast trees,
in: IFIP Networking Conference, Waterloo, Canada, May 2-6, 2005,
pp- 992-1004.

1315
1316
1317

1318

	Explicit routing in multicast overlay networks
	Introduction
	Related work
	Explicit path selection
	Application level multicast

	Explicit routing in multicast overlay networks
	Overview
	Signaling support

	Backup multicast trees
	Overview
	Backup multicast tree algorithm
	Complexity analysis
	General case
	Binary tree with full mesh

	Performance measurements

	Removing nodes from a multicast tree
	Overview
	Reduced multicast tree algorithm
	Complexity analysis

	Tree IDs for multicast delivery trees
	Distributed algorithms
	Backup multicast tree
	Reduced multicast tree

	Conclusions
	Acknowledgements
	References

